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Abstract The dynamics of disease transmission strongly depends on the properties
of the population contact network. Pair-approximation models and individual-based
network simulation have been used extensively to model contact networks with non-
trivial properties. In this paper, using a continuous time Markov chain, we start from
the exact formulation of a simple epidemic model on an arbitrary contact network and
rigorously derive and prove some known results that were previously mainly justified
based on some biological hypotheses. The main result of the paper is the illustration
of the link between graph automorphisms and the process of lumping whereby the
number of equations in a system of linear differential equations can be significantly
reduced. The main advantage of lumping is that the simplified lumped system is not an
approximation of the original system but rather an exact version of this. For a special
class of graphs, we show how the lumped system can be obtained by using graph
automorphisms. Finally, we discuss the advantages and possible applications of exact
epidemic models and lumping.

Keywords Network · Epidemic · Markov chain · Lumping · Graph automorphism

Mathematics Subject Classification (2000) 92D25 · 92D30 · 92D40 ·
00A71 · 00A72

1 Introduction

The spread and persistence of infectious diseases is a result of the complex interac-
tion between the behaviour of individual epidemiological units (e.g. individual, city,
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county etc), disease characteristics and various control programmes that are aimed at
halting disease transmission or bringing infection prevalence to as low a level as pos-
sible (Anderson and May 1991). The main aim of many models is to gain insight into
how diseases transmit and to identify the most effective strategies for their prevention
and control. The early work by Kermack and McKendrick (1927) forms the basis of
differential-equation-based models which lie at the heart of modern quantitative epide-
miology. Traditionally, mathematical epidemiology is based on differential equation
models (Anderson and May 1991; Diekmann and Heesterbeek 2000) and these oper-
ate on the basis of some strong simplifying assumptions about the behaviour of the
individuals and the biology of the disease. While these models do not explicitly model
contact-network structure, they allow us to improve our understanding of the disease
transmission process and to derive threshold quantities such as the basic reproduction
number R0 and critical vaccination threshold (Diekmann and Heesterbeek 2000) in
terms of key biological parameters such as rate of infection and infectious period.

A key component in any disease transmission model is the population contact
structure (i.e. the collection of disease causing contacts between individual epidemi-
ological units) (Ball et al. 1997; Diekmann et al. 1998). In most cases, this is highly
heterogeneous with strong correlations and non-trivial large scale structure (Hufnagel
et al. 2004; Kao et al. 2006; Kiss et al. 2006a) which can make it difficult to use
compartmental differential equations. In an attempt to increase model accuracy, in
the context of ecological and epidemiological modelling, various pair-approximation
(Keeling 1999; Keeling et al. 1997; Rand 1999; Sato et al. 1994; van Baalen 2000)
and individual-based models (Keeling and Eames 2005) have been developed. These
more sophisticated models can more accurately capture contact network properties
but often at the expense of limited analytical tractability. Pair-approximation models
focus on the interaction between pairs of individuals and assume that changes in the
status of individuals depends on the status of their neighbours. A key factor in such
models is the closing relation which is used to truncate and close equations at the level
of pairs. This is a useful approach which works well for certain classes of networks,
although its precise domain of applicability remains unknown.

Individual-based models where each individual is represented as a node and poten-
tially infectious links between these as edges is a more flexible approach that can
account for many complexities in the contact structure (Keeling and Eames 2005;
Kenah and Robins 2007; Newman 2002). However, this comes at the price of little
analytical tractability, unless some strong limiting assumptions (i.e. proportionate mix-
ing), are made. Individual-based network models fall in two broad categories. First,
those where network data is available and can be used to specify the contact network
(Dent et al. 2008; Green et al. 2006; Kao et al. 2006; Kiss et al. 2006a), and sec-
ond, theoretical network models that focus on understanding the impact of specific
network properties on outbreak threshold, final epidemic size or prevalence level and
the efficacy of control measures (Keeling 1999, 2005; Kiss et al. 2005, 2008; May
and Lloyd 2001). The latter models are used to establish some general principles
while the former are driven, at least partially, by the real-time predictive modelling
of human (SARS, Hufnagel et al. 2004; Lipsitch et al. 2003; Meyers et al. 2005; and
the current swine-flu outbreak, Smith et al. 2009) and animal disease (foot-and-mouth
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disease, Ferguson et al. 2001; Kao et al. 2006; Avian Influenza, Dent et al. 2008)
outbreaks.

Modelling disease transmission in finite populations using stochastic simulations
alone poses many challenges. For example, to tease apart rare events from average
system behaviour many replicate simulations are needed. A more rigorous mod-
elling alternative as discussed by Keeling and Ross (2008) is the use of Markov
chains (Kemeny and Snell 1976) where the future state of the population depends
on current state only (memoryless process) and the probability of the population
being in any of the possible states at a given time is determined by a system of
linear differential equations that can be constructed based on the rates of transition
between states. In this paper, using a continuous time Markov chain (CTMC), we
start from the exact formulation of a simple epidemic model on an arbitrary con-
tact network. We rigorously derive and prove some known results that were previ-
ously mainly justified directly from biological hypotheses rather than being deduced
from an exact system of equations (Rand 1999). We revisit lumping (see Appen-
dix A in Diekmann and Heesterbeek 2000 and Filliger and Hongler 2008; Jacobi
and Görnerup 2009) and illustrate how graph automorphisms can be used to guide
the lumping process which leads to a significant reduction in the large number of
equations (2N − 1 for a model with two disease states, such as the SIS model, on a
network with N nodes) of the original exact system. For a special class of graphs,
we illustrate how lumping can be directly inferred from graph automorphisms and
we combine lumping on a complete graph with simple mathematical techniques to
show that, in the limit of large networks, the solution of the exact Markov chain model
converges to that of the ODE-based mean-field model. In addition, we discuss the
advantages, disadvantages and possible applications of exact epidemic models and
lumping.

2 Model

2.1 Disease dynamics and the network of contacts

The SI S type dynamics (Anderson and May 1991) is considered on a network with
N nodes and with adjacency matrix G = (gi j )i, j=1,2,...,N ∈ {0, 1}N 2

where gi j = 1 if
node i and j are connected, and gi j = 0 otherwise. Here, we only consider networks
with bi-directional edges and without self-loops. This requirement translates to the
following two constraints upon G: G = GT and gii = 0. The dynamics of trans-
mission has two key stages: transmission of the disease and recovery of infectious
individuals. Infection starting from an initial index case is transmitted at rate τ across
every (S, I ) edge. This is followed by the recovery of infectious individuals at rate γ .
Upon recovery, infectious individuals become susceptible again. Both infection and
recovery are modelled as independent Poisson processes. For example, in a small time
interval δt , a susceptible individual with kI infectious neighbours becomes infected
with probability 1 − exp(−kI τδt). Similarly, 1 − exp(−γ δt) represents the recovery
probability of a single infectious individual, and this is independent of the status of its
neighbours.

123



482 P. L. Simon et al.

2.2 Formulation of the disease transmission model

At any point in time, every node can be either susceptible (S) or infected and infectious
(I ), and hence, the state of the system is given by a vector of length N with all entries
either S or I (or zero and one). The state space of system is given by S = {S, I }N

or S = {0, 1}N and the transmission dynamics on the network can be formulated in
terms of a transition matrix between all possible states. In the case of continuous time,
this matrix is also known as the infinitesimal generator matrix (Brauer et al. 2008;
Daley and Gani 1999; Kemeny and Snell 1976). Based on the generator matrix, it is
straightforward to write down the Kolmogorov differential equations that uniquely
determine the probability of the system being in a particular state at a given time
(Brauer et al. 2008; Daley and Gani 1999). However, in practice even for small net-
work size, this approach becomes unfeasible due to the large number of equations
(i.e. 2N − 1). As detailed in the introduction, using various techniques, it is possible
to reduce the number of states (i.e. number of equations) and derive models that are
either equivalent to the original system or are approximations that in the limit of large
graphs (i.e. N → ∞) become exact.

2.2.1 Kolmogorov equations in the case of an arbitrary graph

The 2N elements of the state space can be conveniently divided into N + 1 subsets as
follows: (a) S0 is the subset with one single element, namely the state with all nodes
susceptible: S0 = (S, S, . . . , S), (b) Sk is the subset of all states with k infected nodes
(on a graph with N nodes, k infected nodes can be arranged in

(N
k

)
distinct config-

urations), and (c) SN is the subset with one single element, namely the state with
all nodes infected: SN = (I, I, . . . , I ). The elements of the subset Sk are denoted
by Sk

1 ,Sk
2 , . . . ,Sk

ck
, where ck = (N

k

)
. The status of the lth node of state Sk

j will be

denoted by Sk
j (l), thus Sk

j (l) = S or Sk
j (l) = I . The state of the system can change

in two ways:

– A node becoming infected: an S node becomes an I node, that is an Sk
j →

Sk+1
i type transition, where j and i are chosen such that ∃ l for which Sk

j (l) =
S,Sk+1

i (l) = I , and Sk
j (m) = Sk+1

i (m) for ∀m �= l. Moreover, ∃ r �= l such that

Sk
j (r) = I and glr = 1 (i.e. there is an (S, I ) type edge between nodes labelled l

and r ).
– The recovery of a node: an I node becomes an S node, that is an Sk

j → Sk−1
i type

transition, where j and i are chosen such that ∃ l for which Sk
j (l) = I,Sk−1

i (l) =
S, and Sk

j (m) = Sk−1
i (m) for ∀m �= l. This means that states Sk

j and Sk−1
i may

differ only at one position, this is the l’th position.

The evolution in the state space can be described by a continuous time Markov-pro-
cess. Let us denote the probability of the system being in state Sk

j at time t by Xk
j (t).

Let

Xk(t) = (Xk
1(t), Xk

2(t), . . . , Xk
ck

(t))
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be a ck-dimensional vector for k = 0, 1, . . . , N . The above transitions determine the
Kolmogorov equations (i.e. a system of linear differential equations) for the probability
functions Xk

j (t). In the general case of an arbitrary graph, the Kolmogorov equations
can be written in terms of a matrix with the following block tridiagonal form

Ẋ k = Ak Xk−1 + Bk Xk + Ck Xk+1, k = 0, 1, . . . , N , (1)

where A0 and C N are zero matrices. Thus Eq. 1 can be written in the following form

Ẋ = P X,

where

P =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

B0 C0 0 0 0 0
A1 B1 C1 0 0 0
0 A2 B2 C2 0 0
0 0 A3 B3 C3 0
0 0 · · · · · · · · · 0
0 0 0 0 AN B N

⎞

⎟⎟
⎟⎟⎟⎟
⎠

.

We note that often the transpose of P is used, and then X is a row vector, not a
column. However, here we use this formulation since it is more convenient from a
dynamical system point of view. The Ak matrices capture the infection while the Ck

matrices describe the recovery process. These matrices depend on the structure of the
network, and the transmission and recovery rates. The dimension and the entries of
these matrices can be obtained using some simple bookkeeping rules.

The entry in the i th row and j th column of the matrix Ak is denoted by Ak
i, j . This

element gives the rate of transition from Sk−1
j to Sk

i . In the Sk−1 class there are ck−1

elements, and in the Sk class there are ck elements, hence matrix Ak has ck rows
and ck−1 columns. The entry Ak

i, j is non-zero only in the case when the states Sk−1
j

and Sk
i differ at one position, say at position l and Sk−1

j (l) = S,Sk
i (l) = I , and

Sk−1
j (m) = Sk

i (m) for ∀m �= l. Moreover, we also require that there ∃ r �= l such that

Sk−1
j (r) = I and glr = 1 (i.e. there is an (S, I ) type edge between nodes labelled l

and by r ). In this case

Ak
i, j = τ · #{r ∈ {1, 2, . . . , N } : Sk−1

j (r) = I, glr = 1}. (2)

In order to better understand the role of the Ak matrix let us consider a state Sk−1
j and

choose an index l such that the node at position l is S (i.e. Sk−1
j (l) = S). Next, find an

index i ∈ {1, 2, . . . , ck} such that states Sk−1
j and Sk

i only differ at position l, that is

Sk
i (l) = I and Sk−1

j (m) = Sk
i (m) for ∀m �= l. Let us denote by q the number of nodes

in state Sk−1
j which are I and are connected to node l which is S. Then Ak

i, j = τq.

Repeating this for all l ∈ {1, 2, . . . , N }, such that Sk−1
j (l) = S, it can be observed
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that the total number of (S, I ) edges in the Sk−1
j state multiplied by τ is equal to the

sum of the elements in the j th column of matrix Ak , that is for ∀ j ∈ {1, 2, . . . , ck−1}
the following equality holds

ck∑

i=1

Ak
i, j = τ NSI (Sk−1

j ), (3)

where NSI (Sk−1
j ) denotes the number of (S, I ) edges in state Sk−1

j .

The entry in the i th row and j th column of matrix Ck is denoted by Ck
i, j . This

element gives the rate of transition from Sk+1
j to Sk

i . In the Sk+1 class there are

ck+1 elements, and in the Sk class there are ck elements, hence matrix Ck has ck rows
and ck+1 columns. The entry Ck

i, j is non-zero only in the case when the states Sk+1
j and

Sk
i differ at one position, say at position l such that Sk+1

j (l) = I,Sk
i (l) = S and

Sk+1
j (m) = Sk

i (m) for ∀m �= l. In this case Ck
i, j = γ . In state Sk+1

j , k + 1 nodes of

the graph are in state I , hence in the j th column of matrix Ck there are k+1 entries that
are equal to γ and the remaining entries are zero. Hence, for all j ∈ {1, 2, . . . , ck+1}
the following equality holds

ck∑

i=1

Ck
i, j = γ (k + 1). (4)

The matrix Bk is a diagonal matrix with the number of rows and columns equal to
ck . This is due to Bk only accounting for the rate of the Sk

i → Sk
j type transitions,

where the rate of a transition from Sk
i to Sk

j is equal zero if i �= j . The diagonal

elements of Bk are determined such that the sum of entries in each column of P sum
to zero. This gives the following expression for the entries of B,

Bk
i,i = −

ck+1∑

j=1

Ak+1
j,i −

ck−1∑

j=1

Ck−1
j,i . (5)

In the Appendix, the rules detailed above are used to derive the Kolmogorov equa-
tions for a complete graph with N = 3. We note that the above rules can be con-
veniently programmed in a code, using Matlab, that will automatically generate and
provide numerical solution to the full set of differential equations.

2.2.2 Approximation and simulation methods

The system given by Eq. 1 consists of 2N linear differential equations that are imprac-
tical to solve or cannot be solved for large N . However, it is not always necessary to
determine all probability functions, and in many situations, the expected values of the
number, or proportion, of susceptible (S) and infectious (I ) nodes or individuals is
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equally valuable. These expected values at time t are denoted by [S](t) and [I ](t) and
can be expressed as follows

[I ](t) =
N∑

k=0

k
ck∑

j=1

Xk
j (t), [S](t) =

N∑

k=0

(N − k)

ck∑

j=1

Xk
j (t). (6)

There are three different approaches to determine or approximate these exact values
as given by the system in Eq. 1. The simplest way is through individual-based net-
work simulation (Keeling and Eames 2005; Kiss et al. 2005, 2008). However, this
offers little insight into the dynamics, and results obtained from simulation are diffi-
cult to generalise. An alternative is the derivation of mean-field type equations upon
using pair or triple approximations (House et al. 2009; Keeling 1999; Keeling et al.
1997; Rand 1999; Sato et al. 1994; van Baalen 2000). Finally, where appropriate, by
using the technique of lumping (see Appendix A in Diekmann and Heesterbeek 2000
and Filliger and Hongler 2008; Jacobi and Görnerup 2009), the 2N equations can
be reduced to a tractable number of equations that are not an approximation of the
original system but an exact equivalent. The first two techniques are well known and
widely used in Mathematical Epidemiology where a considerable amount of research
focuses on models of disease transmission within populations with complex contact
structure.

3 Mean-field and closure approximations

In this section, we report on various approximation techniques and for some mean-
field type models we show how these can be derived directly from the Kolmogorov
equations. We also formalise rigorously the validity of approximation models and
discuss the limit in which approximations become exact.

3.1 Mean-field equations

The idea of deriving mean-field equations is based on the observation that [S] and [I ]
are linear combinations of the probability functions in Eq. 1. Hence, based on Eq. 1,
it is feasible to try to derive a new system of differential equations that will uniquely
define [S] and [I ]. Introducing [SI ] as the expected value of (S, I ) pairs (directed
edges), that is

[SI ](t) =
N∑

k=0

ck∑

j=1

NSI (Sk
j )Xk

j (t), (7)

we obtain the following system:
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Lemma 1 The expected values [S] and [I ] satisfy the following system

˙[S] = γ [I ] − τ [SI ], (8)
˙[I ] = τ [SI ] − γ [I ]. (9)

Despite this being a well-known system (Rand 1999), we provide a proof of this
Lemma because of two reasons. On one hand, this system is usually not derived from
the differential equations of the Markov-process, and on the other hand, the proof
illustrates the usefulness of the block tridiagonal form of the transition matrix P .

Proof Let us introduce the row matrix Sk = (1 1 . . . 1) with ck columns. Then∑ck
j=1 Xk

j = Sk Xk (here Xk is a column vector). Hence from Eq. 6 we obtain

[I ](t) =
N∑

k=0

kSk Xk, [S](t) =
N∑

k=0

(N − k)Sk Xk . (10)

Using this notation, Eq. 5 takes the following form,

Bk
i,i = −(Sk+1 Ak+1)i − (Sk−1Ck−1)i ,

and using that Bk is a diagonal matrix Bk
i,i = (Sk Bk)i holds, and hence,

(Sk Bk)i = −(Sk+1 Ak+1)i − (Sk−1Ck−1)i

which is true for ∀i = 1, . . . ck . Thus the following equation is obtained

Sk+1 Ak+1 + Sk Bk + Sk−1Ck−1 = 0, (11)

and this holds for ∀k = 0, 1, . . . , N . We note that, when indices are out of the relevant
range (i.e. AN+1 and C−1) matrices should be set to zero. Differentiating [I ](t) and
using Eq. 1 we obtain

˙[I ] =
N∑

k=0

kSk Ẋk =
N∑

k=0

kSk(Ak Xk−1 + Bk Xk + Ck Xk+1)

=
N∑

k=1

kSk Ak Xk−1 +
N∑

k=0

kSk Bk Xk +
N−1∑

k=0

kSkCk Xk+1

=
N−1∑

k=0

(k + 1)Sk+1 Ak+1 Xk +
N∑

k=0

kSk Bk Xk +
N∑

k=1

(k − 1)Sk−1Ck−1 Xk

=
N∑

k=0

(
(k + 1)Sk+1 Ak+1 + kSk Bk + (k − 1)Sk−1Ck−1

)
Xk .
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Now upon using Eq. 11, we obtain

˙[I ] =
N∑

k=0

(
Sk+1 Ak+1 − Sk−1Ck−1

)
Xk .

The statement for [I ](t) follows from the Proposition below. The proof for [S](t) is
similar. �	
Proposition 1 1. Sk−1Ck−1 = γ kSk

2.
∑N

k=0 Sk−1Ck−1 Xk = γ [I ]
3.

∑N
k=0 Sk+1 Ak+1 Xk = τ [SI ]

Proof 1. According to Eq. 4, for all j ∈ {1, 2, . . . , ck} the following equality holds

(Sk−1Ck−1) j =
ck−1∑

i=1

Ck−1
i, j = γ k,

and this implies that Sk−1Ck−1 = γ kSk , since the j th coordinate of the left and
right-hand side are equal.

2. The second statement is a direct consequence of the first part of the Proposition
and Eq. 10.

3. According to Eq. 3, for all j ∈ {1, 2, . . . , ck} the following equality holds

(Sk+1 Ak+1) j =
ck+1∑

i=1

Ak+1
i, j = τ NSI (Sk

j ),

with this yielding

N∑

k=0

Sk+1 Ak+1 Xk =
N∑

k=0

ck∑

j=1

(Sk+1 Ak+1) j Xk
j = τ

N∑

k=0

ck∑

j=1

NSI (Sk
j )Xk

j (t) = τ [SI ].

�	
We note that the Lemma above holds for any network. However, the system given

by Eqs. 8–9 is not closed since it contains the new variable [SI ]. This problem can be
solved in two ways. First, we can aim to provide an approximation for the expected
number of [SI ] pairs in terms of [S] and [I ] (i.e. pair approximation), and second, we
can attempt to derive a differential equation for [SI ].

3.2 Closing at the level of pairs

The simplest closing relation is [SI ] 
 [S][I ], and this is based on the statistical inde-
pendence in the state of individuals (i.e. the expected number of [SI ] pairs is equiv-
alent to the product of the expected number of [S] and [I ]). Applying this relation in
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Eqs. 8–9, the well known mean-field model is obtained

˙̃S = γ Ĩ − τ S̃ Ĩ , (12)
˙̃I = τ S̃ Ĩ − γ Ĩ . (13)

Such a closure relation leads to the problem of identifying graphs for which the approx-
imation above holds. It is known that for a large, complete graph this is a good approx-
imation when τ = β/N for some fixed value β (see Appendix A in Diekmann and
Heesterbeek 2000 and Kurtz 1971). In order to formalize this statement more precisely
it is useful to use the scaled variables:

s̃ = S̃/N , ĩ = Ĩ/N , [s] = [S]/N , [i] = [I ]/N . (14)

In the new variables, with τ = β/N , the system given by Eqs. 12–13 takes the fol-
lowing form

˙̃s = γ ĩ − β s̃ ĩ, (15)
˙̃i = β s̃ ĩ − γ ĩ . (16)

It is generally believed that, under appropriate conditions, ĩ is a good approximation
of [i]. Before formalising this in a mathematically rigorous way we give details of a
key aspect which seems to contradict our previous statement. This observation also
justifies the need to formalise rigorously the meaning of ĩ being a good approximation
of [i].

It is known, and it can also be easily derived from Eqs. 15–16, that in the case of
β > γ the following holds

lim
t→∞ ĩ(t) = 1 − γ

β
,

and in the case when β ≤ γ , this limit is zero. However, the corresponding limit for
[i](t) is always zero, that is

lim
t→∞[i](t) = 0,

as shown first in Picard (1965). Nåsell (1996) has shown that in the case of large N ,
the function [i] has a quasi steady state that is close to the steady state of the ODE
system given by Eqs. 15–16. Computing [i](t) and ĩ(t) numerically for N > 30, the
two nearly coincide on a quite long time interval. However, for very large t, [i](t) will
tend to zero. Nåsell (1996) also investigated the length of the time interval on which
ĩ(t) is a good approximation of [i](t), while Andersson and Djehich (1997) derived
the asymptotic distribution for the extinction time in the limit of large population. The
next Theorem specifies the way in which ĩ(t) can be considered a good approximation
of [i](t).

123



Exact epidemic models on graphs 489

Theorem 1 Let G be a complete graph, and let τ = β/N for some fixed value β. Let
X be the solution of Eq. 1 and let [S], [I ], [s] and [i] be as defined by Eqs. 6 and 14.
Let (s̃, ĩ) be the solutions of the system given by Eqs. 15–16 with the following initial
conditions s̃(0) = [s](0), ĩ(0) = [i](0). Then for any t ≥ 0 we have

lim
N→∞ |[s](t) − s̃(t)| = 0, lim

N→∞ |[i](t) − ĩ(t)| = 0.

The proof of Theorem 1, as outlined in the Appendix, is based on the fact that
in the case of a complete graph the system given by Eq. 1 takes the form given in
Lemma 4 below. This significant reduction in dimensionality can be obtained intu-
itively, or by using the more rigorous formalism of lumping as explained later in
the paper. Kurtz (1970) proved that the Markov chain given by the lumped system
converges in probability to the solution of the mean-field equation. This statement is
stronger than Theorem 1 since it implies that not only the expected value converges
to the solution of the mean-field equation but also the distribution. However, the proof
of this general statement uses abstract tools, namely an extension of Trotter’s operator
semigroup approximation theorem. Later Kurtz (1971) formalised the statement in a
more abstract setting and proved a central limit theorem using martingale theory. Our
proof of Theorem 1 is an alternative proof that does not use abstract semigroup and
martingale theory and it is based on ideas outlined in the Appendix A in Diekmann
and Heesterbeek (2000).

3.3 Closing at the level of triples

As illustrated in Eqs. 8–9, the dynamics of the number of Ss ([S]) and I s ([I ]) or
singles depends on the number of pairs (e.g. [SI ]), and these in turn will depend
on the number of triples. For example the number of [SS] pairs decreases due to
infection from outside the pair (i.e. [SSI ] triples). Using simple heuristic reasoning
and by accounting for all within- and outside-pair transitions the following Lemma is
obtained.

Lemma 2 The expected values of [S], [I ], [SI ], [I I ] and [SS] satisfy the following
system of differential equations

˙[S] = γ [I ] − τ [SI ], (17)
˙[I ] = τ [SI ] − γ [I ], (18)
˙[SI ] = γ ([I I ] − [SI ]) + τ([SSI ] − [I S I ] − [SI ]), (19)
˙[I I ] = −2γ [I I ] + 2τ([I S I ] + [SI ]), (20)
˙[SS] = 2γ [SI ] − 2τ [SSI ]. (21)

While we will not provide a proof for the above Lemma, we believe that a proof
similar to that given for Lemma 1 is possible. Such a proof would again provide a
rigorous derivation from the exact epidemic model as given by Eq. 1. Rand (1999) and
others (Keeling et al. 1997; Keeling 1999; van Baalen 2000) provide the derivation of
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the above equations based on biological hypotheses and without rigorous derivation
from some form of master equation.

We can observe that in the equation for [SI ] new unknowns, the triples appear.
Hence we have two possibilities again. Either derive differential equations for the
triples, or approximate the triples with pairs and singles. These approximations are
called closing relations. For randomly mixed and clustered homogeneous graphs,
where every node has the same number of edges, the following closing relation has
been proposed and has been extensively used in disease modelling

[ABC] 
 n − 1

n

[AB][BC]
[B]

(
(1 − φ) + φ

N

n

[AC]
[A][C]

)
.

Here n is the node degree and φ is the clustering coefficient (i.e. the ratio of triangles
to triples over the whole graph (Keeling 1999)). Using this closing approximations
in Eqs. 17–21, a nonlinear system of ODEs for [S], [I ], [SI ], [I I ] and [SS] can be
obtained.

It is known that closing relations depend on the structure of the graph and these
relations have been discussed at length elsewhere (Keeling 1999; Keeling et al. 1997;
Rand 1999; Sato et al. 1994; Sharkey 2008; van Baalen 2000). To evaluate the perfor-
mance of such closing relations, the typical approach in the literature is the following.
A closing relation yielding a closed ODE system is introduced heuristically, then its
validity is justified numerically by comparing the values of [S](t) and [I ](t) obtained
numerically from Monte Carlo simulation to those obtained by numerically solving
the ODE system. According to our knowledge, finding the exact class of graphs for
which the above closing relations or others hold is an open problem. Our approach
presented in this paper makes an attempt towards providing rigorous proof for the
validity of some closing relations (i.e. see Theorem 1).

4 How to lump using graph automorphism

In this section we revisit the process of lumping linear ordinary differential equations
and illustrate the link between network/graph automorphisms and lumping. For some
particular graph types, and for an SI S type dynamics, we use lumping to derive exact
models where the number of equations compared to the original complete system is
significantly reduced. In this case, the lumped system is a reduced but exact version
of the original system.

4.1 General definition of lumping

We start by defining lumping in general. Let us consider an n-dimensional linear
system Ẋ = AX , where A is an arbitrary n × n matrix.

Definition 1 The linear system Ẋ = AX (or equivalently the corresponding
Markov-process) is called lumpable, if there is a partition {L1, L2, . . . , Lm} of the
set {1, 2, . . . , n} (or equivalently of the state space) satisfying the following property.
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For any j and l in {1, 2, . . . , m} there exist a number B jl such that

B jl =
∑

i∈L j

Air , for ∀r ∈ Ll ,

that is the sum does not depend on r whenever r ∈ Ll . The m × m matrix B is called
the lumping of matrix A.

In simple terms, lumping is equivalent to defining new variables based on addi-
tive combinations of the original variables. For example, for the SI S-type dynamics
on a complete graph, the new variables in the lumped system could be defined as
Yk = Xk

1 + Xk
2 +· · ·+ Xk

ck
for ∀k = 0, 1, . . . , N . In general, the condition in the Def-

inition above amounts to requiring that the sum of the rates of all possible transitions
from any individual element of any newly defined variable to all individual elements
(rates of transmission to some elements might be zero) of another specified new vari-
able should be the same. To formalise lumping and to derive the precise grouping of
the original variables, as given by the partition of the state space, the following two
useful propositions are given.

Proposition 2 If matrix B is the lumping of matrix A, then there exists an m × n
matrix T , such that T A = BT .

Proof Let us define matrix T by Tji = 1 when i ∈ L j , and let all the other entries of
T be zero. Then the element in the j th row and r th column of T A is

(T A) jr =
n∑

i=1

Tji Air =
∑

i∈L j

Air = B jl ,

where l is the index for which r ∈ Ll .
The element in the j th row and r th column of BT is

(BT ) jr =
m∑

k=1

B jk Tkr = B jl ,

where l is the index such that r ∈ Ll given that in every column of T there is a single
entry which is 1, the others are zero. �	
Proposition 3 Let B be the lumping of matrix A and let T be the matrix for which
T A = BT holds. Based on this, we introduce the new, m dimensional (lumped) vari-
able x = T X. This lumped variable satisfies the lumped linear ODE system ẋ = Bx.

Proof

ẋ = T Ẋ = T AX = BT X = Bx .

�	
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It is worth noting that the crucial ingredient for lumping is the partition of the state
space. This can either be derived intuitively or attempting to search for partitions that
satisfy the property stated in the Definition of lumping. Once the partition is known
both B and T follow. The lumpability condition on P is a non-trivial requirement and
not all systems will be lumpable.

4.2 The use of graph automorphism to lump the SIS network model

In the previous section the lumping procedure for a general linear ODE was defined
and detailed. We now consider the linear system given by Eq. 1, where matrix P has
a special block tridiagonal structure. In the previous general case, the state space was
given as the set {1, 2, . . . , n}. For the epidemic model, the state space has 2N ele-
ments but instead of the set {1, 2, . . . , 2N }, we denote the state space by S as given
in Sect. 2. The reason for this notation is motivated by the special structure of the
state space S = ∪Sk which is worth conserving throughout the lumping process. This
is essential when using the solution of the lumped system ẋ = Bx to determine the
expected values [S](t) and [I ](t). There are choices of lumping such that the lumped
system ẋ = Bx cannot be used to determine [S](t) and [I ](t). For example, the trivial
lumping, when T is a row matrix full of ones, is not a useful lumping. In this case,
all variables are lumped into one single variable and the lumping of matrix A (i.e.
B) will be a single row and single column matrix with a single zero entry. This just
shows that the system is closed and that at any one point in time, the probabilities of
being in any of the specified 2N states sum to one. In order to use the lumped system
to determine [S](t) and [I ](t), the states with different number of I nodes cannot
be lumped together. Hence we will use the following more restrictive definition of
lumping.

Definition 2 The linear system given by Eq. 1 (or equivalently the corresponding
Markov-process) is called lumpable, if there is a partition {L1, L2, . . . , Lm} of the
state space S satisfying the following two properties.

1. For any l there exist k, such that Ll ⊆ Sk .
2. For any j and l there exist a number Q jl such that

Q jl =
∑

i∈L j

Pir , for ∀r ∈ Ll , (22)

that is the sum does not depend on r whenever r ∈ Ll .

The m × m matrix Q is called the lumping of matrix P .

We note that in Part 1 of the Definition, the state space is considered to be S,
however in Part 2, the state space is given by the set {1, 2, . . . , 2N }. In order to avoid
this ambivalence we will introduce the following more detailed notation of the lump-
ing partition or classes. The lumping classes that are subsets of Sk will be denoted
by Lk

1, Lk
2, . . . , Lk

lk
with the condition that Sk = Lk

1 ∪ Lk
2 ∪ · · · ∪ Lk

lk
, and the total

number of lumping classes is m = l0 + l1 + · · · + lN . It is worth noting that for any
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arbitrary lumping l0 = lN = 1 since the classes S0 and SN contain a single state or
element. Using this new notation for the lumping classes, the first assumption of the
Definition is automatically fulfilled and the second assumption can be expressed in
terms of matrices Ak and Ck as follows.

Lemma 3 The linear system given by Eq. 1 is lumpable, if for ∀k ∈ {0, 1, 2, . . . , N }
there is a partition Lk

1, Lk
2, . . . , Lk

lk
of the set Sk satisfying the following properties.

For any p ∈ {1, 2, . . . , lk−1} and r ∈ {1, 2, . . . , lk} there exist a number A
k
r p such

that

A
k
r p =

∑

Sk
i ∈Lk

r

Ak
i j , for ∀Sk−1

j ∈ Lk−1
p , (23)

that is the sum does not depend on j whenever Sk−1
j ∈ Lk−1

p .

For any p ∈ {1, 2, . . . , lk+1} and r ∈ {1, 2, . . . , lk} there exist a number C
k
r p such

that

C
k
r p =

∑

Sk
i ∈Lk

r

Ck
i j , for ∀Sk+1

j ∈ Lk+1
p , (24)

that is the sum does not depend on j whenever Sk+1
j ∈ Lk+1

p .

Proof As mentioned above we only have to prove that the second condition in the
definition of lumping is fulfilled. Let us take two lumping classes L j and Ll . Accord-
ing to the new ordering of the lumping classes, there exists k ∈ {0, 1, 2, . . . , N }
and r ∈ {1, 2, . . . , lk} such that L j = Lk

r and there exist h ∈ {0, 1, 2, . . . , N } and
p ∈ {1, 2, . . . , lh} such that Ll = Lh

p. Because of the tridiagonal structure of matrix
P and based on Eq. 1, there are four possible cases: h = k − 1, h = k, h = k + 1 or
h has a different value. For all four cases, we will separately prove that Eq. 22, given
in the definition of lumping, holds. In the case of h = k − 1, the part of matrix P
corresponding to the index set in Eq. 22 is part of matrix Ak , hence Eq. 22 is equivalent
to Eq. 23. In the case of h = k + 1 the part of matrix P corresponding to the index
set in Eq. 22 is part of matrix Ck , hence Eq. 22 is equivalent to Eq. 24. In the case
of h = k the part of matrix P corresponding to the index set in Eq. 22 is part of
matrix Bk , hence Eq. 22 is equivalent to the following. For any p ∈ {1, 2, . . . , lk} and

r ∈ {1, 2, . . . , lk} there exist a number B
k
r p such that

B
k
r p =

∑

Sk
i ∈Lk

r

Bk
i j , for ∀Sk

j ∈ Lk
p. (25)

This equation is a consequence of Eqs. 23 and 24, and taking into consideration Eq. 11
(i.e. the sum of every column of P is zero). Finally, if h �= k −1, h �= k and h �= k +1,
then the part of matrix P corresponding to the index set in Eq. 22 has only zero entries
and hence, Eq. 22 obviously holds. It is worth noting that the analysis above is based
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on considering all transitions that takes the system to a state that belongs to Sk (i.e.
through an infection from Sk−1, through a recovery from Sk+1, nothing happening
and zero rate transitions from Sl , when l ∈ {0, 1, 2, . . . , N }\{k − 1, k, k + 1}). �	

Before formulating one of our main results, we recall the Definition of a graph
automorphism and the automorphism group of the graph.

Definition 3 Let G = G(V, E) be a graph with vertices and edges given by sets V (G)

and E(G) respectively. A bijection � : V (G) → V (G) such that (x, y) ∈ E(G) if
and only if (�(x),�(y)) ∈ E(G) is an automorphism of graph G. The set of all
automorphisms of G, under the composition of maps, forms the automorphism group
denoted by Aut (G) (Yap 1986).

For graphs with labelled vertices (i.e. nodes or vertices labelled with S or I ), a graph
automorphism � needs to also conserve the labelling of the nodes in the sense that
for ∀x, y ∈ V (G) it must be that the state of nodes x and �(x), and y and �(y)

are the same. We will say that the automorphism � takes the state Sk
i to the state

Sk
j if Sk

i (l) = Sk
j (�(l)). Now, we can formulate our main results that connects the

automorphism group of the graph to the lumping of the Markov chain.

Theorem 2 Let us introduce the following equivalence relation in the state space S.
The states Sk

i and Sk
j are equivalent if there is an automorphism of the graph that

takes Sk
i to Sk

j . Then the classes of this equivalence relation yield a lumping of the
system defined by Eq. 1.

Proof Let us denote the lumping classes as in Lemma 3. We will prove that Eq. 23
holds. The proof of Eq. 24 is similar, hence it is not detailed here. Let k ∈
{0, 1, 2, . . . , N }, p ∈ {1, 2, . . . , lk−1} and r ∈ {1, 2, . . . , lk} be arbitrary numbers. Let
Sk

i1
∈ Lk

r ,Sk−1
j1

∈ Lk−1
p and let z = Ak

i1 j1
�= 0. This means that the states Sk

i1
and Sk−1

j1

differ only at one node, say at node numbered by u, and Sk
i1
(u) = I,Sk−1

j1
(u) = S.

Moreover, according to Eq. 2 the number of I nodes in the state Sk−1
j1

that are con-
nected to the node numbered by u is equal to z/τ (see the definition of matrix A). Now
let us consider another element in the lumping class Lk−1

p , that is let Sk−1
j2

∈ Lk−1
p .

Then there is an automorphism of the graph that takes the state Sk−1
j1

into the state

Sk−1
j2

. Let us apply this automorphism to the state Sk
i1

. Then we get the state Sk
i2

∈ Lk
r .

This means that the relation between the states Sk
i2

and Sk−1
j2

is the same as the relation

of the states Sk
i1

and Sk−1
j1

. Hence we have Ak
i2 j2

= z. Thus, if there is a non zero

element z in the j1th column of the matrix Ak in a row belonging to the lumping class
Lk

r , then this element z appears also in the j2th column of the matrix Ak in a (possibly
different) row belonging to the same lumping class Lk

r , which proves Eq. 23. �	
This Theorem proves that graph automorphisms can be used to identify states that

can be lumped together. This can be formalised further using group theory arguments.
In the case when the automorphism group (i.e. Aut (G)) is known, finding the lumping
classes is equivalent to working out the orbits of the elements of the state space with
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respect to the group Aut (G). For example, the orbit of an element Sk
j ∈ Sk is given

by the set Aut (G)(Sk
j ) = {�(Sk

j ) : � ∈ Aut (G)} ⊆ Sk . The orbit of the element
will contain all the individual states that can be lumped together and thus defines a
lumping class. Finding further lumping classes can be done by working out the orbits
of elements in Sk that are not yet part of any previously computed orbits. The num-
ber of elements in an orbit is bounded from above by the number of elements in the
automorphism group (i.e. |Aut (G)|). Thus, the number of elements in a lumping class
is also bounded from above by |Aut (G)| which in turn means that the number of

lumping classes is bounded from below by 2N

|Aut (G)| . It is worth noting that this is a

weak lower bound and it is only meaningful when 2N > |Aut (G)| (this is not the case
for a completely connected graph). When the inequality holds, the lower bound can
serve as an indicator of the effectiveness of lumping in reducing the dimensionality
of the original exact system.

4.3 Lumping for some classes of graphs

In this section we show some applications of the above theorem and show how the
lumping can be carried out when the graph has some special structure.

4.3.1 Lumping for the complete graph

First we show that for a complete graph the 2N -dimensional system given by Eq. 1
can be lumped to an N + 1-dimensional system. The lumped system is well-known
in the literature, however, according to our knowledge, its derivation from the full
2N -dimensional system is not available.

The automorphism group of the complete graph is the permutation group SN, hence
there is an automorphism between any two states in Sl . Hence, the orbit of any element
from Sl is the same and is equal to Sl itself. Therefore all the states with l infected
nodes can be lumped together. This means that there are N + 1 lumping classes:
Ll = Sl for ∀l ∈ {0, 1, . . . , N }. That is we have m = N + 1 and the lumping matrix
T takes the form

T =

⎛

⎜⎜⎜⎜
⎝

S0 0 0 0 0
0 S1 0 0 0
0 0 S2 0 0
0 0 · · · · · · 0
0 0 0 0 SN

⎞

⎟⎟⎟⎟
⎠

where Sk = (1, 1, . . . , 1) is a vector of length ck . Thus the new (scalar valued)
unknown functions are introduced as

xk =
ck∑

j=1

Xk
j = Sk Xk, k = 1, . . . , N .
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Lemma 4 If G is a complete graph, then the xk functions satisfy the following differ-
ential equations.

ẋ0 = γ x1,

ẋ k = (k + 1)γ xk+1 + (k − 1)(N − k + 1)τ xk−1 − (k(N − k)τ + kγ )xk,

ẋ N = (N − 1)τ x N−1 − Nγ x N ,

for k = 1, 2, . . . , N − 1.

Proof The system for Xk in Eq. 1 consists of ck equations. Adding these equations
we obtain

ẋ k = Sk Ak Xk−1 + Sk Bk Xk + SkCk Xk+1.

Now the statement follows from Proposition 1 and from the Proposition below. �	
Proposition 4 1. Sk Ak = (k − 1)(N − k + 1)τ Sk−1.
2. Sk Bk = −(k(N − k)τ + kγ )Sk.

Proof 1. In a complete graph for ∀ j ∈ {1, 2, . . . , ck} we have that NSI (Sk
j ) = k(N −

k) since every node in state I is connected to every other node in state S. Hence
according to Eq. 3, for ∀ j ∈ {1, 2, . . . , ck−1} the following relation holds

(Sk Ak) j =
ck∑

i=1

Ak
i, j = τ NSI (Sk−1

j ) = (k − 1)(N − k + 1)τ.

This proves that Sk Ak = (k − 1)(N − k + 1)τ Sk−1 since the j th coordinate of the
left and right-hand sides are equal.

2. The second statement follows from Proposition 1 and from Eq. 11. �	
In the Appendix, the lumping process is derived and explained for a complete graph
with N = 3 nodes.

4.3.2 Lumping for the star graph

Let us consider a star like graph with N nodes. In this graph a single central node
is connected to all other nodes with no further connections. Let the N th node be the
center of the star. Thus, for example SS . . . SI denotes the state when the central
node is infected and the other nodes are susceptible. We will show that in the case
of a star graph, the 2N -dimensional system as defined by Eq. 1 can be lumped to a
2N -dimensional system.

The automorphism group of the star graph is the permutation group SN−1, since an
automorphism leaves the central node unchanged and it can permutate the remaining
N − 1 nodes in an arbitrary way. However, the labelling of the nodes have to be taken
into account. Therefore two states can be taken into each other by an automorphism if
and only if the center is in the same state and the number of I ’s among the non-central
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nodes is the same. Hence, for l = 1, 2, . . . , N −1 the set Sl of states of the graph, such
that there are l nodes in state I , can be lumped into two classes: in the first class the cen-
tral node is I and there are l−1 non-central I nodes, in the second class the central node
is S and there are l non-central I nodes. In the case of l = 0 and l = N there is obviously
only one class. This means that altogether there are 2N = 2(N −1)+2 lumping clas-
ses: L1 = S0, L2N = SN , L2k = {Sk

j : Sk
j (N ) = I }, L2k+1 = {Sk

j : Sk
j (N ) = S}

for all k ∈ {1, 2, . . . , N − 1}.
Thus the lumped variables can be introduced as

x0 = X0, x N = X N , xk
1 =

∑

Sk
j (N )=I

Xk
j , xk

2 =
∑

Sk
j (N )=S

Xk
j ,

for k = 1, . . . , N − 1. Similarly to Lemma 4, we can prove the following Lemma,

Lemma 5 If G is a star graph, then the xk
i functions satisfy the following differential

equations.

ẋ0 = γ (x1
1 + x1

2),

ẋ k
1 = (N − k + 1)τ xk−1

1 + (k − 1)τ xk−1
2 − (kγ + (N − k)τ )xk

1 + kγ xk+1
1 ,

ẋ k
2 = −k(γ + τ)xk

2 + γ (xk+1
1 + (k + 1)xk+1

2 ),

ẋ N = τ x N−1
1 + (N − 1)τ x N−1

2 − Nγ x N ,

for k = 1, 2, . . . , N − 1, where the following notations are used: x0
1 = 0, x0

2 =
x0, x N

1 = x N , x N
2 = 0.

4.3.3 Lumping for the household graph

Let us consider the simplest graph with a so-called household structure. This graph
consists of two types of nodes, inner and outer nodes. Outer nodes have only within
household connections while inner nodes have within household as well as connec-
tions to other households. We consider the simplest case where each household has
two nodes, an inner and outer node. The inner nodes of all households form a complete
graph with N/2 nodes (N is an even number), and every outer node is connected to an
inner node. Thus the degree of all inner nodes is N

2 and the degree of all outer nodes
is 1. We will show that in the case of this household-type graph the 2N -dimensional
system given by Eq. 1 can be lumped to an

(N/2+3
3

)
-dimensional system.

The automorphism group of this graph is the permutation group SN/2, since an
automorphism can permutate the inner nodes in an arbitrary way, and once the auto-
morphism is given on the inner nodes, its effect on the outer nodes is determined
uniquely. In order to determine the lumping classes let us note first that there may be
four different types of households in this graph: SI households, in which the inner
node is S and the outer node is I, I S households, SS households and I I households.
Therefore two states of the whole graph can commute through an automorphism if
and only if the number of SI, I S, SS and I I type households is the same in the two
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distinct states of the complete system. Hence, to obtain all different states we have
to choose (with repetition) N/2 households out of the four different types. Thus, the
number of different states (i.e. states where the number of SS, SI, I S and I I -type
households is different but their distribution can be arbitrary) can be obtained as the
number of combinations with repetitions:

(4+N/2−1
N/2

) = (N/2+3
3

)
. Hence, states with

the same number of SS, SI, I S and I I -type households can be lumped into one newly
defined lumped variable.

4.3.4 Lumping for the cycle graph: non-trivial lumping

For the completely connected and star graph, lumping can also be carried out intu-
itively. However, lumping based on intuition alone can become unwieldy even for
a relatively simple graph such as the cycle graph (CN ) where N nodes are con-
nected in a close chain such that each node connects to the two nearest neighbours
only. The automorphisms of the cycle graph can be given in terms of all possible
rotations and reflections of the graph. These together, N of each, give 2N auto-
morphisms, and hence |Aut (CN )| = 2N . The automorphism group of the cycle
graph is also known as the dihedral group DN . Carrying out lumping based on
intuition alone is prone to error and it is desirable to use the automorphism group
to work out lumping classes rigorously. For small graphs, these calculations can
be done on paper or for larger graphs calculations can be easily carried out using
some suitable software or programming language. To illustrate the process, let us
consider the case of a cycle graph with N = 5 nodes. Here, |D5| = 10 is made
up of five rotations including the identity and five reflections. The lumping clas-
ses Li (i = 1, 2, . . . , m), with m yet to be determined, have to be such that for
∀i = 1, 2, . . . , m, ∃ k ∈ {0, 1, . . . , N } such that Li ⊆ Sk (as required by Defini-
tion 2). Based on this the first lumping class is trivial L1 = {(SSSSS)}. This is followed
by considering S1 = {(SSSSI ), (SSSI S), (SSI SS), (SI SSS), (I SSSS)} when it is
easy to show that the orbit of the first element (SSSSI ) is Aut (Cn)((SSSSI )) =
{�((SSSSI )) : � ∈ Aut (CN )} = S1. Hence L2 = S1. This is a desirable situation
since all elements in S1 can be lumped together to give a new variable. The situation
changes when S2 is considered

S2 = {(SSSI I ), (SSI SI ), (SI SSI ), (I SSSI ), (SSI I S), (SI SI S), (I SSI S),

(SI I SS), (I S I SS), (I I SSS)}.

The orbit of the first element (SSSI I ) ∈ S2 is

Aut (Cn)((SSSI I )) = {�((SSSI I )) : � ∈ Aut (Cn)}
= {(SSSI I ), (I SSSI ), (SSI I S), (SI I SSS), (I I SSS)} = L3.

In this case the orbit of (SSSI I ) only captures 5 out of the 10 possible states in S2.
This means that rotations and reflections map (SSSI I ) onto identical configurations
and this increases the number of lumping classes and the reduction in dimensionality
of the system is not so significant. The remaining five elements form a new lumping
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class L4 = {(SSI SI ), (SI SSI ), (SI SI S), (I SSI S), (I S I SS)}. Based on similar
argument four more lumping classes can be identified. This means that the original
system with 25 = 32 equations can be reduced to a system with only 8 equations.
Using similar arguments, it is easy to show that for N = 6, N = 7 and N = 8 the
exact system can be lumped from 64, 128 and 256 to 13, 18 and 30 equations, respec-
tively. Given that for the cycle graph 2N > |Aut (G)| = 2N , the argument presented
in Sect. 4.2 can be used to show that the number of lumping classes for the cycle

graph is bounded from below by 2N

2N = 2N−1(1/N ). This indicates that the number
of equations in the lumped system is much larger than polynomial in N .

5 Discussion

In this paper, using a continuous time Markov chain, we have formulated an SIS type
epidemic model on an arbitrary graph and discussed various approximation methods
that allow us to reduce the number of equations from 2N − 1 to a feasible number
that can either be solved analytically and/or numerically. Exploring the special block
tridiagonal nature of the transition matrix P , we have rigorously derived mean-field
approximations that previously have only been derived heuristically based on biolog-
ical hypotheses. The key result of the paper is the precise formulation of lumping in
terms of graph automorphisms and their group. Lumping is a powerful method that
can be used to reduce large linear ODE models to a tractable number of equations
which are still exact and can be used to evaluate the time evolution of quantities of
interest as required by the specific modelling context. For example, Table 1 illustrates
that for graphs with a high number of automorphisms, the exact equations given by
Eq. 1 can be more effectively lumped into fewer equations that are easier to analyse.

For the complete and star graph, the time evolution of [i] = [I ]/N is illustrated in
Fig. 1. This plot is based on the lumped system which is used to compute the expected
level of prevalence over time. This is in contrast with many such results which are
either based on some form of mean-field equations or individual-based network sim-
ulations. Figure 1 shows that the complete graph allows the infection to spread very
quickly to a high proportion of nodes. For the star graph, the spread is much slower
and only a much smaller proportion of the network will become infected. Here, the
difference between prevalence levels can be mainly explained by the marked differ-
ence in average connectivity, N+2

4 for the complete graph versus 2 − 2/N for the
star graph. The use of lumping enabled us to compare the disease spread on different
graphs and to investigate the effect of the structure of the graph on the spread of the
infection. Based on mean-field approximations, equations for the prevalence level can
be derived. For the complete and star graph, these read as follows:

lim
t→∞ ĩcomp(t) = 1 − γ

Nτ
,

lim
t→∞ ĩstar (t) = 1 − γ

τ + γ
+ γ

(N − 1)τ + γ
− 2γ

N

(
γ

τ(τ + γ )
+ 1

(N − 1)τ + γ

)
.
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Fig. 1 Prevalence of infection as a function of time using the lumped equations for a complete (solid line)
and a star (dashed line) graph with N = 50, τ = 0.1 and γ = 0.1
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Fig. 2 Prevalence of infection as a function of time for a complete graph using the lumped equations ([i](t)
solid line) and the mean-field model (ĩ(t) dashed line). Here, N = 20, τ = 0.1 and γ = 0.1

It is worth noting that even for a small graph with N = 50, the numerical values of the
exact solution [i](t) and that of the mean-field approximation ĩ(t) are close to each
other. In the case of a complete graph, the quasi steady state of [i] is 0.9796 and the
steady state of ĩ is limt→∞ ĩcomp(t) = 1 − γ

Nτ
= 0.9800, when γ = 0.1 and τ = 0.1.

In the case of a star graph with the same parameters, these values are 0.4967 versus
0.4992. In Fig. 2, we show that even for small networks N = 20, results from the
mean-field and exact models agree well, with a small further increase in N making the
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Table 1 Summary of lumping
on special graphs

Graph type Aut(G) # of eq. in the
lumped system

Complete SN N + 1

Star SN−1 2N

Household SN/2
(N/2+3

3

)

two almost indistinguishable. This is somewhat in contrast with the general belief that
mean-field and pair-approximation models become exact in the limit of large graphs.

Due to their great flexibility network models are used widely in many different
areas ranging from neuro-networks to evolutionary dynamics. For example, Broom
and Rychtář (2008) have recently considered the fixation probability of a mutant on
special classes of non-directed graphs and have shown that the total number of mutant-
resident formations is proportional to the inverse of the cardinality of Aut (G) (i.e.
|Aut (G)|). In this paper, in line with results derived by Broom and Rychtář (2008),
we have also illustrated how the richness of the automorphism group impacts on the
reduction in dimensionality of the exact system (see Table 1). For graphs with a high
number of automorphisms, such as completely connected or star graphs, the 2N equa-
tions of the exact system can be reduced to O(N ). It is worth noting that for a more
complex dynamics such as an SI R model, the number of equations in the reduced
system on a completely connected graph will be of O(N 2). While for graphs with less
symmetry (i.e. smaller number of automorphisms) the reduction in dimensionality
will not be as significant, the use of automorphism-driven lumping still provides a
rigorous way to identify the lumping classes. Even though constructing the automor-
phism group of an arbitrary graph is a challenging problem and belongs to the class
NP of computational complexity (Brandes and Erlebach 2005), there are many special
classes of graphs which are both relevant from an application point of view and pos-
sess a computable or known automorphism group. More importantly exact models for
small populations such as households, hospital wards, schools, workplaces and small
holding farms can play an important role in accounting correctly for stochastic effects
that are more important in small populations. Therefore, exploiting the structure of
the graph is key when formulating models where the derivation of analytical results
is needed to strengthen or confirm simulation results.

It is not often that mean-field and pair-approximation models are compared directly
to the solution of the exact system (Keeling and Ross 2008) and, at least for small or
large graphs with special structure, graph automorphism driven lumping can be used
to rigorously test the performance of various approximation models. These models
can both simplify calculations and underpin the derivation of some general theoretical
results. Hence, improving the testing and validation of such models is an important part
of the modelling exercise in many areas such as epidemiology, ecology and other areas
where network models are used. This study also links well-known and well-studied
problems in graph theory (Gross and Yellen 2003; Yap 1986) (e.g. graph automor-
phisms and their group) to real-life applications and we foresee that other results from
graph theory will become applicable in the context of network model formulation and
analysis.
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6 Appendix

6.1 Kolmogorov equations in the case of a complete graph with N = 3

The aim is to derive the full set of Kolmogorov differential equations using the spe-
cial block tridiagonal matrix form introduced in Sect. 2.2.1. This small graph has
a state space with 23 elements, and following previously introduced notation, this
can divided in the following subsets, X0 = X SSS, X1 = (X SSI , X SI S, X I SS), X2 =
(X SI I , X I SI , X I I S), X3 = X I I I with X = (X0, X1, X2, X3). For N = 3, P is given
by

P =

⎛

⎜⎜
⎝

B0 C0 0 0
A1 B1 C1 0
0 A2 B2 C2

0 0 A3 B3

⎞

⎟⎟
⎠ .

Taking into account the structure of the network (i.e. each node connected to every
other node) and using the bookkeeping rules presented in Sect. 2.2.1, the entries of
matrix P are given by

B0 = (
0

)
, C0 = (

γ, γ, γ
)
,

A1 =
⎛

⎝
0
0
0

⎞

⎠ , B1 =
⎛

⎝
−2τ − γ 0 0

0 −2τ − γ 0
0 0 −2τ − γ

⎞

⎠ , C1 =
⎛

⎝
γ γ 0
γ 0 γ

0 γ γ

⎞

⎠ ,

A2 =
⎛

⎝
τ τ 0
τ 0 τ

0 τ τ

⎞

⎠ , B2 =
⎛

⎝
−2τ − 2γ 0 0

0 −2τ − 2γ 0
0 0 −2τ − 2γ

⎞

⎠ , C2 =
⎛

⎝
γ

γ

γ

⎞

⎠ ,

A3 = (
2τ, 2τ, 2τ

)
, B3 = (−3γ

)
.

For example, here the entries in the first column of matrix A2 (τ, τ, 0) correspond
to the rates of the following transitions, SSI → SI I, SSI → I S I and SSI → I I S.
Given that our graph is a completely connected triangle with starting state SSI , the
transition through an infection always happens at rate τ since there is only one source
of infection. Based on the definition of the sub-matrices above, Ẋ = P X is equivalent
to the following system

Ẋ0 = B0 X0 + C0 X1,

Ẋ1 = A1 X0 + B1 X1 + C1 X2,

Ẋ2 = A2 X1 + B2 X2 + C2 X3,

Ẋ3 = A3 X2 + B3 X3.
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In terms of the most intuitive notation, this system is equivalent to

Ẋ SSS = γ (X SSI + X SI S + X I SS),

Ẋ SSI = γ (X SI I + X I SI ) − (2τ + γ )X SSI ,

Ẋ SI S = γ (X SI I + X I I S) − (2τ + γ )X SI S,

Ẋ I SS = γ (X I SI + X I I S) − (2τ + γ )X I SS,

Ẋ SI I = γ X I I I + τ(X SSI + X SI S) − 2(τ + γ )X SI I ,

Ẋ I S I = γ X I I I + τ(X SSI + X I SS) − 2(τ + γ )X I SI ,

Ẋ I I S = γ X I I I + τ(X SI S + X I SS) − 2(τ + γ )X I I S,

Ẋ I I I = −3γ X I I I + 2τ(X SI I + X I SI + X I I S),

and from either formulation, the transition matrix is

P =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

0 γ γ γ 0 0 0 0
0 −2τ − γ 0 0 γ γ 0 0
0 0 −2τ − γ 0 γ 0 γ 0
0 0 0 −2τ − γ 0 γ γ 0
0 τ τ 0 −2τ − 2γ 0 0 γ

0 τ 0 τ 0 −2τ − 2γ 0 γ

0 0 τ τ 0 0 −2τ − 2γ γ

0 0 0 0 2τ 2τ 2τ −3γ

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

.

6.2 Lumping in the case of a complete graph with N = 3

Here, we show how lumping is carried out in the case of a complete graph with three
nodes (N = 3). In this case, the differential equations for X0, X1, X2, X3 are given
above. Let us introduce the new (scalar valued) unknown functions

x0 = X0, x1 = X1
1 + X1

2 + X1
3, x2 = X2

1 + X2
2 + X2

3, x3 = X3.

By adding the differential equations corresponding to X1
1, X1

2, X1
3, and those cor-

responding to X2
1, X2

2, X2
3, we obtain the following four dimensional system for

x0, x1, x2, x3:

ẋ0 = γ x1,

ẋ1 = 2γ x2 − (2τ + γ )x1,

ẋ2 = 3γ x3 + 2τ x1 − 2(τ + γ )x2,

ẋ3 = 2τ x2 − 3γ x3.

123



504 P. L. Simon et al.

It is easy to see that matrix Q, as defined in Eq. 22, is given by

Q =

⎛

⎜
⎜
⎝

0 γ 0 0
0 −2τ − γ 2γ 0
0 2τ −2(τ + γ ) 3γ

0 0 2τ −3γ

⎞

⎟
⎟
⎠ ,

with entries based on the sum of columns in matrices Ak, Bk and Ck as they appear
in the original matrix P . For example, if only the x1 → x2 transition is considered,
the original differential equations reduce to

Ẋ2 =
⎛

⎜
⎝

Ẋ2
1

Ẋ2
2

Ẋ2
3

⎞

⎟
⎠ =

⎛

⎝
τ τ 0
τ 0 τ

0 τ τ

⎞

⎠

⎛

⎜
⎝

X1
1

X1
2

X1
3

⎞

⎟
⎠ = A2 X1.

If all the equations above are added, we obtain

ẋ2 = (Ẋ2
1 + Ẋ2

2 + Ẋ2
3) = 2τ(X1

1 + X1
2 + X1

3) = 2τ x1,

where the 2τ represents the sum of each individual column in the A2 matrix. The
lumping condition requires that each column in these matrices sum to the same value
and this allows us to lump groups of the original variables into newly defined variables
and create a new system with fewer equations. Upon lumping, the original 8-dimen-
sional system can be reduced to a four-dimensional one, and using this, the desired
expected values [S](t) and [I ](t) can still be determined as

[I ](t) = x1(t) + 2x2(t) + 3x3(t), [S](t) = 3x0(t) + 2x1(t) + x2(t).

6.3 Proof of Theorem 1

We have seen that for a complete graph we can introduce xk(t) as the total probability
of states with k infected nodes at time t , and these functions satisfy the following
system

ẋ k = (k + 1)γ xk+1 + (k − 1)(N − k + 1)τ xk−1 − (k(N − k)τ + kγ )xk, (26)

for k = 0, . . . , N , with x−1 = 0 and x N+1 = 0. The scaled expected value of
susceptible and infected nodes are

[s](t) = 1

N

N∑

k=0

(N − k)xk(t), [i](t) = 1

N

N∑

k=0

kxk(t). (27)

Our aim here is to investigate the limit of large N and compare these to the solution
of the scaled mean-field equations as given by Eqs. 15–16.
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The idea of comparison for large N is to introduce a continuous, time dependent
density function ρ(t, z) instead of the discrete distribution xk(t), with the following
formal relation, z = k/N . Following this, in Eq. 26 we can formally change ẋ k to
∂tρ(t, z), xk(t) to ρ(t, z), xk−1(t) to ρ(t, z − 1/N ) and xk+1(t) to ρ(t, z + 1/N ).
This leads to the following partial differential equation

∂tρ(t, z) = (N z + 1)γρ(t, z + 1/N ) + (N z − 1)(N − N z + 1)τρ(t, z − 1/N )

−(N z(N − N z)τ + N zγ )ρ(t, z).

Now using the approximations

ρ(t, z + 1/N ) = ρ(t, z) + ∂zρ(t, z)/N , ρ(t, z − 1/N ) = ρ(t, z) − ∂zρ(t, z)/N ,

and after some algebra we obtain

∂tρ(t, z) = (N z + 1)γ ∂zρ(t, z)/N + (2N z − N − 1)τρ(t, z)

−(N z − 1)(N − N z + 1)τ∂zρ(t, z)/N + γρ(t, z).

Substituting τ = β/N , neglecting the 1/N and 1/N 2 terms and writing ρ instead of
ρ(t, z), we obtain the following first order partial differential equation for ρ

∂tρ = zγ ∂zρ + (2z − 1)βρ − z(1 − z)β∂zρ + γρ.

Introducing the function g(z) = γ z − βz(1 − z), the equation for ρ becomes

∂tρ = ∂z(gρ). (28)

This first order partial differential equation needs an initial condition of the following
type

ρ(0, z) = ρ0(z). (29)

The desired initial condition can be obtained from the initial condition of Eq. 26. This
latter initial condition can be written as

xm(0) = 1, for some m, xl(0) = 0, for l �= m, (30)

that is at the initial instant there are m infected nodes. Since the formal relation between
the variables is z = k/N , the above initial condition yields

ρ0(z) = 1 for
m

N
< z <

m + 1

N
and ρ0(z) = 0 otherwise.

Finally, we want to determine the expected value of the infected and susceptible nodes
from the first order PDE. Thus we have to find the functions corresponding to [s](t)
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and [i](t) in Eq. 27. Using z = k/N and changing the term xk(t) to ρ(t, z), we note
that the sums in Eq. 27 correspond to integrals. Namely, [i](t) corresponds to

N
N∑

k=0

k

N
ρ

(
t,

k

N

)
1

N
,

and this sum is an approximation of the integral

N

1∫

0

zρ(t, z)dz.

Noticing that
∫ 1

0 ρ0(z)dz = 1/N , we can introduce i∗(t) as a function corresponding
to [i](t) as follows

i∗(t) =
∫ 1

0 zρ(t, z)dz
∫ 1

0 ρ0(z)dz
. (31)

The mean-field equation (Eq. 16) can be solved explicitly and the solution is given by

ĩ(t) = B(t)i0

β − γ − A(t)i0
,

where i0 = ĩ(0) is the initial condition and

A(t) = β − βexp((β − γ )t), B(t) = (β − γ )exp((β − γ )t).

The first order PDE (Eq. 28) can also be solved explicitly, and then Eq. 31 yields

i∗(t) = B(t)

A(t)

[
1 + N (β − γ )

A(t)
log

(
−1 + 2A(t)

2N (β − γ − A(t)i0) − A(t)

)]
.

Having these explicit formulas for i∗(t) and ĩ(t), it is easy to see that i∗ is not a solution
of the mean-field equation (Eq. 16) but it can be proved that as N → ∞ it tends to
the solution of Eq. 16. Namely, we have the following Lemma.

Lemma 6 Let ρ be the solution of the system given by Eq. 28 with initial condition
given by Eq. 29. Let i∗(t) be defined by Eq. 31. Let ĩ(t) be the solution of the scaled
mean-field equation given by Eq. 16 with initial condition ĩ(0) = m/N. Then for any
t ≥ 0 we have

lim
N→∞ |ĩ(t) − i∗(t)| = 0.

The Lemma can be proved by using the explicit formulas for i∗(t) and ĩ(t).
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Now the proof of the Theorem can be concluded as follows. We want to prove
that the scaled expected value [i](t) tends to the solution ĩ(t) of the scaled mean-field
equation as N → ∞. In order to prove this, we introduced a first order PDE that can
be considered the limit of Eq. 26 as N → ∞. Using this PDE, we defined the function
i∗(t) that corresponds to [i](t). According to Lemma 6, i∗(t) is close to ĩ(t) for large
N . Hence, we only have to show finally that [i](t) is close to i∗(t). Thus the proof of
Theorem 1 will be complete if the following Lemma is verified.

Lemma 7 Let xk be the solution of Eq. 26 satisfying the initial condition given by
Eq. 30, and let ρ be the solution of Eq. 28 with initial condition given by Eq. 29. Let
[i](t) and i∗(t) be defined by Eq. 27 and by Eq. 31. Then for any t ≥ 0 we have

lim
N→∞ |[i](t) − i∗(t)| = 0.

The proof of the Lemma is based on the fact that the lumped system seen in
Eq. 26 can be considered as the discretisation of the first order PDE seen in Eq.
28 in the variable z. It is known even for more general PDEs, see Chaps. 3 and 4 in
Hundsdorfer and Verwer (2003), that the solution of the discretised system tends to
that of the PDE as the step size of the discretisation goes to zero, that is in our case N
tends to infinity.
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