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Abstract In the paper we consider the existence of calcium travelling waves for
systems with fast buffers. We prove the convergence of the travelling waves to an
asymptotic limit as the kinetic coefficients characterizing the interaction between cal-
cium and buffers tend to infinity. To be more precise, we prove the convergence of
the speeds as well as the calcium component concentration profile to the profile of the
travelling wave of the reduced equation. Additionally, we take into account the effect
of coupling between the mechanical and chemical processes and show the existence
as well the monotonicity of the profiles of concentrations. This property guarantees
their positivity.

Keywords Calcium waves · Reaction–diffusion systems ·
Mechanochemical coupling

1 Introduction

Calcium waves have been extensively studied in the last decade as it is believed that
their propagation through an individual cell or across a group of cells is responsible
for the coordination of the response to the local changes of the conditions. It seems
that the crucial role in supporting calcium waves is played by an autocatalytic mech-
anism; after reaching some concentration threshold, the calcium ions by a positive
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feedback stimulate their own release. The simplest mathematical model is provided
by a single “bistable” reaction–diffusion equation for the calcium concentration. The
reaction term of this equation has two stable equilibria: the ground state (low calcium
concentration) and the excited state (of high calcium concentration). It is known (Fife
1979; Diekmann and Temme 1976) that such an equation has a solution in the form of
a heteroclinic travelling wave joining the above mentioned equilibria. One encounters
the same situation in the case of buffered systems (see Sneyd et al. 1998; Tsai and
Sneyd 2005; Shenq Guo and Tsai 2006) presenting more realistic description of cal-
cium dynamics. On the other hand experimental observations suggest that the excited
state relaxes slowly to the ground state (Young et al. 1999). Due to this fact, in the paper
Sneyd et al. (1998) the scalar Reaction–diffusion equation for calcium concentration
is supplemented by an ordinary differential equation for the evolution of a new, so
called recovery variable, to form a FitzHugh–Nagumo (FHN) like model. Since the
recovery process is slow, travelling waves of calcium concentration, as seen in exper-
iments (Young et al. 1999), have the form of homoclinic pulses with a sharp leading
edge and a long tail. The movement of the leading edge can be well approximated by
an advancing heteroclinic travelling front, i.e. moving in the direction opposite to the
concentration gradient (see Fig. 5 in Sneyd et al. 1998). Such an approximation will
be adopted in this work.

The dynamics of Ca++ in cells is significantly influenced by the presence of buffers
(see Sneyd 2002; Sneyd et al. 1998; Falcke 2004). These are proteins of molecular
masses about tens of kDa (e.g. parvalbumin and EGTA) being able to bind the calcium
ions. The percentage of Ca++ which can be bound to different kind of buffers can
achieve the value of 99. For simplicity, we confine here our considerations to the case of
one representative buffer. However the same considerations can be applied to systems
with many buffers. The evolution of the free calcium and the buffer concentrations are
described by the following system of Reaction–diffusion equations:

∂c

∂t
= Dc∇2c + f (c)+ β−2[k−b − k+c(b∗ − b)], (1)

∂b

∂t
= Db∇2b − β−2[k−b − k+c(b∗ − b)], (2)

where c denotes the free cytosolic calcium concentration, b denotes the concentra-
tion of proteins with Ca++ bound, Dc and Db are respective diffusion coefficients,
b∗ = const is the total buffering molecules concentration (0 ≤ b ≤ b∗), k+ and k−
are the rates of binding and unbinding of calcium by the buffer respectively, f (c) is the
function describing calcium transport into and out of the cytosol. β−2 > 0 is a formal
parameter which will be used in our asymptotic analysis. Thus large β−2 means that
the buffer kinetics is much faster than the diffusion of the buffer. The assumption of
very fast buffer kinetics makes it possible to analyze the influence of the buffer on the
calcium dynamics. Indeed, in the limit β−2 → ∞, one can expect that

[k−b − k+c(b∗ − b)] = 0, (3)
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Calcium waves with fast buffers and mechanical effects 3

yet the expression β−2(k−b − k+c(b∗ − b)) may not tend to zero, thus contributing
to the equation for c. Differentiating the relation (3), we can express ∂b/∂t − Db∇2b,
hence also β−2(k−b − k+c(b∗ − b)), by means of the partial derivatives of c. Putting
this into Eq. 1 we arrive at a single Reaction–diffusion equation for the free calcium
concentration:

∂c

∂t
= Dc + Db S(c)

1 + S(c)
∇2c − 2Db S(c)

(c + L)(1 + S(c))
|∇c|2 + f (c)

1 + S(c)
, (4)

where S(c) = b∗L/(L + c)2 and L = k−/k+ (see Keener and Sneyd 1998). This
equation can in turn be used to analyze the existence and properties of travelling wave
solutions for system (1–2) as it is done in Sneyd et al. (1998), and Keener and Sneyd
(1998). Thus a system of many equations (there may be many kinds of buffer particles)
is, in a way, replaced by a single Reaction–diffusion equation, which is much easier
to analyze. The aim of this paper is to justify this heuristic reasoning. We will be
interested in a strict mathematical proof that the calcium component of the travelling
wave solutions tends to the travelling wave solution of the scalar equation (4). This is
the main result of the paper.

An additional aim of this work is to study the mechano-chemical effects, which
accompany travelling waves of calcium concentration. Local variations of calcium
concentration induce local variations of mechanical properties of the cytogel, and
in consequence the appearance of mechanical stresses which can cause the cytogel
deformation (Murray 1993).

On the other hand, mechanical deformations of the medium can evoke local changes
of calcium concentration. The local cytogel deformations can lead to the change of
calcium concentration, by releasing the calcium from internal stores situated in endo-
plasmic reticulum. Thus a mechanical stimulus (e.g. poking an end of a cell with a
micropipette) can induce a wave of calcium concentration (see Fig. 12.8 in [14]).

To incorporate these mechano-chemical effects into our considerations we will use
the simplified model presented in Murray (1993), where cells are treated as a visco-
elastic medium. According to this model Eq. 1 should be completed by the mechanical
term γ θ to obtain

∂c

∂t
= Dc∇2c + f (c)+ β−2[k−b − k+c(b∗ − b)] + γ θ,

where θ = ∇ · u is the mechanical dilation (u is the mechanical displacement). In this
case the system is supplemented by the equation describing the balance of mechanical
forces:

∇ ·
{

E(c)

1 + ν(c)

[
ε + ν(c)

1 − 2ν(c)
θI
]

+ μ1(θ, c)
∂ε

∂t
+ μ2(θ, c)

∂θ

∂t
I + τ̂ (c)

}
=0. (5)

The first term under the divergence symbol is the elastic part of the stress tensor, the
second and the third term are the viscous part of the stress tensor and the fourth term is
so called traction tensor. It represents the forces which are caused by the changes of the
calcium concentration in the cytosol. The inertial terms in Eq. 5 have been neglected.
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This is justified as the motions of the medium induced by changes of the calcium con-
centration is very slow. [The speed of calcium waves is of order of 10 ÷ 30 microns
per second (Jaffe 1991)]. Sometimes, one can also take into consideration volume
forces of the form ku measuring the strength of attachment of cells to the surrounding
medium (Winkler model). These forces are also neglected.

The quantities in Eq. 5 have the following meaning: u = u(x, t), displacement;
ε, strain tensor i.e. ε = 1/2(∇u + ∇uT ); θ = ∇ · u, dilation; E , Young modulus;
ν, Poisson ratio; μ1, μ2, shear and bulk viscosities; I, unit matrix; c, calcium concen-
tration; τ̂ (c)-active concentration stress tensor resulting from the actomyosin traction.
In Murray (1993) it is assumed that τ̂ (c) is isotropic: τ(c)I, but this assumption will
be relaxed in the paper. As the concentration influences the mechanical properties of
the medium, then we assume that the coefficients E, ν, μ1 and μ2 are the functions
of c. Additionally we assume that μ1 and μ2 depend on dilation θ .

Viscosity coefficients μ1, μ2 of any physical medium are nonnegative and the
Poisson ratio for usual materials satisfies the inequality 0 ≤ ν < 1/2 (Fung 1965).
Also, the Young modulus of any real physical medium is positive and finite. From
the physical point of view the values of the calcium concentration c are non-negative.
However, due to the possibility of appropriate extensions of the coefficient functions
for the negative values of c, we take the following assumption:

Assumption 1 Let us assume that, for all c∈R
1 and θ ∈R

1, ν(c), E(c), τ (c), μ1(θ, c)
andμ2(θ, c) are C3-functions of their arguments, such thatν(c) ∈ (0, 1/2),μ1(θ, c) >
0, μ2(θ, c) > 0 and 0 < E1 ≤ E(c) < ∞, where E1 is a constant.

Remark As one will notice later, c will take values from the vicinity of a bounded
interval [c1, c3] (see Assumption 2). Similarly, θ will take only values from some
bounded interval containing 0.

In this paper we are interested in travelling plane waves propagating in long cylindrical
cells in the x-direction. We assume also that in the Cartesian coordinates where x-axis
is the axis of the cylinder, the traction tensor is diagonal and τ̂ = diag(τx , τr , τr ) –
thus assuming that the problem is axially symmetric.

We will confine ourselves to two extreme cases:

1. Waves in cells whose lateral boundaries cannot move in the directions perpendic-
ular to the axis of the cylinder

2. Waves in cells with free lateral surface (when the forces acting at each point of
the lateral surface are negligible)

In both of these cases Eq. 5 takes the form

μ(θ, c)
∂θ

∂t
+ K (c)θ + τ(c) = σ0. (6)

Here σ0 is the integration constant, which has the meaning of an asymptotic (external)
stress.

In case 1. u = (ux , 0, 0), εxx = ux,x (x), whereas the other components of the
tensor ε are equal to zero. Thus θ = ux,x (x) and by integration with respect to x we
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obtain Eq. 6 with

K (c) = E(c)(1 − ν(c))/[(1 + ν(c))(1 − 2ν(c))],
μ(θ, c) = μ1(θ, c)+ μ2(θ, c), τ (c) = τx (c),

whereas in case 2. we have

K (c) = E(c)

1 − 2ν(c)
, μ(θ, c) = μ1(θ, c)+ 3μ2(θ, c), τ (c) = 2τr (c)+ τx (c).

(7)

To derive relations (7), let us consider a long cell of radius r0, whose lateral bound-
ary is free (unloaded). For convenience we express here the strain–stress relations
using the Lame coefficients G, λ instead of E and ν and do not denote their explicit
dependence on c (as well as the dependence of μ1 and μ2 on c and θ ). We thus have
the relations:

σ = 2Gε + λIθ + μ1ε,t + μ2 Iθ,t + τ̂ , (8)

where

λ = Eν

(1 + ν) (1 − 2ν)
, G = E

2 (1 + ν)
(9)

and τ̂ represents the traction tensor (in general not isotropic). In the cylindrical system
of coordinates (r, φ, x) the cell will be represented as an infinite cylinder {(r, φ, x) :
r ≤ r0, φ ∈ [0, 2π), x ∈ R

1}, whereas relations (8) take the form:

σrr =2Gεrr +λθ+μ1εrr,t +μ2θ,t +τr , σφφ=2Gεφφ+λθ+μ1εφφ,t +μ2θ,t +τφ,
σxx =2Gεxx + λθ + μ1εxx,t + μ2θ,t + τx , σrφ = 2Gεrφ + μ1εrφ,t , (10)

σφx =2Gεφx + μ1εφx,t , σr x = 2Gεr x + μ1εr x,t ,

where θ = εrr + εφφ + εxx . We assume here that our problem is axially symmetric,
thus τ̂ = diag(τr , τr , τx ). (Note that τ̂ may behave differently along the axial and per-
pendicular directions.) We assume that u = (ur , uφ, ux ) with uφ = 0. By assumption
r0 is small, so we take the first order approximation in r :

ux = a(x, t)+ a1(x, t)r + O(r2), ur = b0(t, x)+ b(t, x)r + O(r2). (11)

The strain tensor components have thus the following form:

εrr = ur,r , εφφ = r−1ur , εxx = ux,x

εrφ = 0, εφx = 0, εxr = 1

2

(
ux,r + ur,x

)
.
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To avoid singularity in εφφ at r = 0, we have to assume that b0(x, t) ≡ 0. Since the
displacement vector is expressed up to linear terms in r , therefore it is reasonable to
compute strain tensor up to zero order terms in r (differentiation lowers the order of
approximation by 1). In such an approach εrr = εφφ and the tensor ε and consequently
stress tensor σ does not depend on r . It depends only on x . This is important, since in
this way we obtain ordinary differential equation for the wave profile. Otherwise, the
wave profile would depend also on r . The equations of mechanical equilibrium read
(see Fung 1965, Section 4.12):

σrr,r + σxr,x + r−1(σrr − σφφ) = 0

σr x,r + σxx,x + r−1σr x = 0

whereas the boundary conditions on the unloaded lateral surface of the cylinder read

σrr = 0, σr x = 0 for r = r0.

The second condition for σr x = 0 implies that a1(x, t) = 0, hence σr x ≡ 0. As
σrr = σφφ , then finally the full set of equations is reduced to:

σrr = 0 (12)

σxx,x = 0. (13)

Since in our case εrr = εφφ then

θ = 2εrr + εxx .

Integrating equation (13) with respect to x and putting the integration constant equal
to σ0, we obtain

2σrr + σxx = σ0

which gives us an equation for θ

(2G + 3λ)θ + (μ1 + 3μ2)θ,t + (2τr + τx ) = σ0.

By means of (9) we rewrite the last equation as

K θ + μθ,t + τ = σ0

where

K = 2G + 3λ = E

1 − 2ν
, μ = μ1 + 3μ2, τ = (2τr + τx ).

We thus obtain (7).
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Calcium waves with fast buffers and mechanical effects 7

For μ = 0 Eq. 6 can be solved for θ to obtain

θ0(c, σ0) = (K (c))−1(σ0 − τ(c)). (14)

Since σ0 is constant, the explicit dependence of θ0 on σ0 will be further suppressed
for simplicity.

For solutions depending only on x and t , Eqs. 1, and 2 can be written as:

∂c

∂t
= Dc

∂2c

∂x2 + g(c)+ γ (θ − θ0(c))+ (β−2)[k−b − k+c(b∗ − b)] = 0. (15)

∂b

∂t
= Db

∂2b

∂x2 − β−2[k−b − k+c(b∗ − b)], (16)

where

g(c) = f (c)+ γ θ0(c). (17)

System (6–16) describes the process of diffusion and reactions of calcium and buffer
particles together with the accompanying mechanical effects. As we are interested in
travelling wave solutions we impose the following assumption.

Assumption 2 The function g(c) is of C2 class. It is bistable with c1, c3 > c1 the
stable zeros and c2 ∈ (c1, c3) the unstable zero.

Remark Let us note that experimentally the function g(·) is determined rather than
the function f (·).

Forμ = 0, we have θ ≡ θ0 and the equation corresponding to (4) has the following
form

∂c

∂t
= Dc + Db S(c)

1 + S(c)
∇2c − 2Db S(c)

(c + L)(1 + S(c))
|∇c|2 + g(c)

1 + S(c)
, (18)

2 Existence and properties of travelling wave solutions

Looking for travelling wave solutions we assume that

θ(x, t) = θ(x − vt), c(x, t) = c(x − vt), b(x, t) = b(x − vt).

Inserting this into system (6), (15–16) we arrive at the following system of equations

−μ(θ, c)vθ ′ + K θ + τ(c) = σ0 (19)

Dcc′′ + vc′ + g(c)+ γ (θ − θ0(c))+ (β−2)[k−b − k+c(b∗ − b)] = 0 (20)

Dbb′′ + vb′ − (β−2)[k−b − k+c(b∗ − b)] = 0, (21)

where ′ denotes differentiation with respect to z = x −vt . As we are interested in het-
eroclinic solutions to system (19–21) we assume that the first and second derivatives
of the functions θ(·), c(·) b(·) tend to zero at infinities and that
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lim
z→−∞ c(s) = c1, lim

z→∞ c(z) = c3,

lim
z→−∞ θ(z) = θ0(c1), lim

z→∞ θ(s) = θ0(c3),

lim
z→−∞ b(z) = b1 := b∗k+

c1

k+c1 + k−
, lim

z→∞ b(z) = b3 := b∗k+
c3

k+c3 + k−
.

(22)

The quantities at the right hand side are the components of the constant steady state
solutions of the considered system.

2.1 Existence of waves

Using the implicit function theorem in the appropriate Banach spaces, we will show
the existence of travelling wave solutions of the system (6), (15), (16). First, we will
write the considered system in a non-dimensional form to exhibit the small parameter
related to the influence of viscosity.

Let l denote the typical width of the calcium wave profile in the considered medium,
that is to say the effective length of the interval in which the free calcium concentration
changes substantially, e.g. (c3 − c1)/maxz c′(z). Let P denote the typical speed of the
calcium waves in the considered medium. The values of l are of order of 10 ÷ 20
microns and the value of P is of order of 10 ÷ 30 microns per second (see Jaffe 1991;
Kupferman et al. 1997). We will introduce the dimensionless wave variable:

z∗ = z/ l (23)

and the following dimensionless dependent variables

c∗ = c/c3, b∗ = b/c3. (24)

In these variables, system (19–21) can be written in the following way:

−ε2v∗μ∗(θ∗, c∗)θ∗′ + K ∗(c∗)θ∗ + τ ∗(c∗) = σ ∗
0 , (25)

D∗c∗′′ + v∗c∗′ + g∗(c∗)+ γ ∗(θ∗ − θ∗
0 (c

∗))+ β−2G∗(c∗, b∗) = 0 (26)

D∗b∗′′ + v∗b∗′ − β−2G∗(c∗, b∗) = 0, (27)

where ′ denotes the differentiation with respect to z∗ = z/ l,

ε2 = μ0 P

K0l
(28)

and

D∗
c = Dc/(l P), D∗

b = Db/(l P), g∗(c∗)=[l/(Pc3)]g(c∗c3), γ ∗ =[l/(Pc3)]γ
v∗ = v/P, G∗

i (c
∗, b∗)=k∗−b∗ − k∗+c∗(b∗∗ − b∗), k∗− = lk−/P, k∗+ = lk+c3/P,
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b∗∗ = b∗/c3, μ∗(θ∗, c∗) = (μ0)
−1μ(θ∗, c∗c3), K ∗(c∗) = (K0)

−1 K (c∗c3),

τ ∗(c∗)=(K0)
−1τ(c∗c3), σ ∗

0 = σ0

K0
, μ0 =μ(0, c3), K0 = K (c3). (29)

Remark The reason for choosing the small parameter in the form ε2 comes from the
fact that we want to use the implicit function theorem in the open neighbourhood of
ε = 0, which corresponds to zero viscosity.

Remark In the derivation of system (25–27) we used the fact that in the new spatial
variable x∗ = x/ l the new displacement u∗ satisfies the relation u = lu∗. Moreover,
∂u/∂x = ∂u∗/∂x∗, thus θ = θ∗. According to relations (22) the asymptotic states
for the new system (25–27) are now θ∗(−∞) = θ0(c1), c∗(−∞) = c∗

1 = c1/c3,
b∗(−∞) = b∗

1 = b1/c3, θ∗(∞) = θ0(c3), c∗(∞) = c∗
3 = c3/c3 = 1, b∗(∞) = b∗

3 =
b3/c3.

Below, we will assume that ε2 is sufficiently small. For example in smooth mus-
cles of pulmonary arteries ε2 is less then 0.1 (see Bia et al. 2004). From now on, for
simplicity, the stars by the variables will be omitted. Hence we obtain the following
system of equations with two small parameters ε and β:

−ε2vμ(θ, c)θ ′ + K (c)θ + τ(c) = σ0, (30)

Dcc′′ + vc′ + g(c)+ γ [θ − θ0(c)] + β−2[k−b − k+c(b∗ − b)] = 0 (31)

Dbb′′ + vb′ − β−2[k−b − k+c(b∗ − b)] = 0, (32)

Instead of the variables θ , c and b, let us introduce the new dependent variables h,
c and η, where

h = θ − θ0(c), η = k−b − k+c(b∗ − b). (33)

The quantities h and η measure the deviation from the zeroth order approximations
(ε = 0, β = 0) of θ and b. Therefore it is convenient to rewrite the system (30–32) in
variables h, c and η. By Eqs. 32 and 33 we have

β−2η = vb′ + Dbb′′. (34)

Solving the second equality in (33) we obtain

(η + k+cb∗)(k− + k+c)−1 = b.

By differentiation of the last relation we have

b′ = m(c)−1η′ + b∗L/(L + c)2c′ − ηk+m(c)−2c′
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and

b′′ = m(c)−1η′′ + b∗L/(L + c)2c′′ +
[
−2b∗L/(L + c)3 + 2ηk2+ m(c)−3

]
c′2

−η′c′k+ m(c)−2 − ηk+ m(c)−2c′′,

where

L = k−
k+
, m(c) = (k− + k+c).

Putting these relations into Eq. 34, we can express the term β−2[k−b − k+c(b∗ − b)]
by means of c, c′, c′′, η, η′η′′ and eliminate it from Eq. 31. Hence one may arrive at
the system for h, c and η of the form:

h′ − (ε2vμ)−1 K h −
[
τ(c)− σ0

K (c)

]
,c

c′ = 0 (35)

D1(c, η)c
′′ − D2(c)c

′2 + vc′ + (1 + S(c))−1 [g(c)+ γ h
]

+�1(c, c′, η, η′, η′′, v) = 0 (36)

Db
1

m(c)
η′′ − β−2η +�2(c, c′, c′′, η, η′, v) = 0 (37)

with

S(c) = b∗L
(L + c)2

, D1(c, η) = Dc + Db S(c)− Dbk+m(c)−2η

1 + S(c)
,

D2(c) = 2Db S(c)

(L + c)(1 + S(c))
,

�1(c, c′, η, η′, η′′, v)

= (1 + S(c))−1

{
2Dbk2+ηc′2

m(c)3
+ vη′

m(c)
− k+c′(vη + Dbη

′)
m(c)2

+ Dbη
′′

m(c)

}
, (38)

�2(c, c′, c′′, η, η′, v) =
{

2Dbk2+ηc′2

m(c)3
+ vη′

m(c)
− k+c′(vη + Dbη

′)
m(c)2

+ S(c)vc′

+ Dbb∗
[

c

L + c

]′′
− Dbηk+ m(c)−2c′′

}
. (39)

Let us note that

�1(c, c′, η, η′, η′′, v) ≡ 0 for η ≡ 0 (40)

and �2 does not contain η′′. The coefficient by c′′ in �2 is equal to Db S(c) −
Dbηk+ m(c)−2, so if we calculate c′′ from Eq. 36 and put it into Eq. 37 we obtain an
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Calcium waves with fast buffers and mechanical effects 11

equation of the form:

W −1η′′ − β−2η + W −1 F(h, c, c′, η, η′, v) = 0. (41)

where

(W (c, η))−1 = Db

m(c)

[
Dc

Dc + Db S(c)− Dbk+η(m(c))−2

]
. (42)

The function F is rather complicated, so, due to the fact that its precise form is not
essential, we do not write it explicitly here. One notes that (W (c, 0))−1 > 0, so
(W (c, η))−1 is positive for η sufficiently small. Equation 41 can be written as

η′′ − W (c, η)β−2η + F(h, c, c′, η, η′, v) = 0. (43)

Remark It may be verified that the functions �1 and F are of C2 class of their argu-
ments for c from some neighbourhood of the interval [0, 1],η from some nighbourhood
of 0 and all h, c′, η′, η′′ ∈ R

1. In Eq. 35 the function μ should be treated as a function
of the variables h and c due to the definition (33).

For β = 0 and ε = 0 Eqs. 35 and 37 are satisfied for h = 0 and η = 0. (This can
be seen by multiplying these equations by ε2 and β2, respectively.) Thus, due to 40,
Eq. 36 changes to:

D1(c, 0)c′′ − D2(c)c
′2 + vc′ + (1 + S(c))−1g(c) = 0 (44)

with S, D1 and D2 defined after system (35–37). According to Keener and Sneyd
(1998) (pp. 342–344), under suitable assumption on the term (1+ S(c)), there exists a
unique heteroclinic pair (c(·), v) = (C(·), V ) ∈ C2(R1)× R

1 satisfying Eq. 44 such
that C(−∞) = c1, C(∞) = c3 and C(0) = 1

2 [C(−∞)+ C(∞)] and C ′(z) > 0 for
all z ∈ R

1. As we mentioned in the Introduction, we consider here only the advancing
waves. As c3 > c1, this condition is equivalent to the demand that the wave velocity
for ε = 0 satisfies the inequality

V < 0. (45)

Definition 1 For = i = 0, 1, 2, let Bi denote the space of functions u(z) of Ci (R)

class tending to finite limits as z → ±∞ together with their derivatives (which tend to
zero). Let B∗

i denote the subspace of Bi consisting of functions vanishing for z = ±∞
and Bi0 the subspace of functions u satisfying the condition:

u(0) = 1

2
[u(−∞)+ u(∞)]. (46)

123



12 B. Kaźmierczak, Z. Peradzyński

The norms in the spaces B j are taken to be

‖u‖B j =
j∑

k=0

sup
z∈R1

∣∣∣∣ dk

dzk
u(z)

∣∣∣∣ .

For, v �= 0 and some ε0 > 0, let us consider the operator: H : B∗
1 × B20 × R

1 ×
(−ε0, 0) ∪ (0, ε0) → B∗

1 :

H(h, c, v, ε)(z) =
z∫

0

exp

⎡
⎣

z∫
s

1

ε2

1

χ(h(ζ ), c(ζ ))

1

v
dζ

⎤
⎦ κ(c(s))c′(s)ds

+ C̃ exp

⎡
⎣

z∫
0

1

ε2

1

χ(h(ζ ), c(ζ ))

1

v
ds

⎤
⎦ ,

where

κ(c(s)) :=
[
τ(c)− σ0

K (c)

]
,c
∣∣c=c(s)

(47)

and

χ(h(ζ ), c(ζ )) := μ(h(ζ ), c(ζ ))

K (c(ζ ))
.

In fact H(z) is the solution to Eq. 35 with h(·) and c(·) in the coefficients μ and K
treated as the given functions. The constant C̃ should be chosen in such a way that
H(h, c, v, ε) ∈ B∗

1 . It is easy to note that accordingly to the sign of the parameter v
one should take

C̃ =

⎧⎪⎨
⎪⎩

− ∫∞
0 exp

[
− ∫ s

0
1
ε2

1
χ(h(ζ ),c(ζ ))

1
v

dζ
]
κ(c(s))c′(s) ds for v > 0

− ∫ −∞
0 exp

[
− ∫ s

0
1
ε2

1
χ(h(ζ ),c(ζ ))

1
v

dζ
]
κ(c(s))c′(s) ds for v < 0

Hence

H(h, c, v, ε)(z)=

⎧⎪⎨
⎪⎩

− ∫∞
z exp

[∫ z
s

1
ε2

1
χ(h(ζ ),c(ζ ))

1
v

dζ
]
κ(c(s))c′(s) ds for v>0

∫ z
−∞exp

[∫ z
s

1
ε2

1
χ(h(ζ ),c(ζ ))

1
v

dζ
]
κ(c(s))c′(s) ds for v<0

(48)

Our considerations will be carried out for v < 0, i.e. for the advancing waves.
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Calcium waves with fast buffers and mechanical effects 13

Lemma 1 Let ε2 > 0, G, F ∈ B1(R
1),G > G0 > 0. Then

I (z) :=
z∫

−∞
exp

⎡
⎣−

z∫
s

1/(ε2G(ζ ))dζ

⎤
⎦ F(s)ds = ε2G(z)F(z)+ O(ε4)

and

I ′(z) = ε2G(z)F ′(z)+ ε2G ′(z)F(z)+ o(ε2)

as ε → 0. Moreover, I (z) and I ′(z) are continuous functions of ε2.

Proof In the proof we will make use of the following indefinite integral identity:

∫
xm exp(ax)dx =exp(ax)

(
a−1xm +

m∑
k=1

(−1)ka−k−1xm−km(m−1) . . . (m−k+1)

)
.

To prove the first equality of the lemma, let us divide the region of integration (−∞, z)
into two parts (−∞, z − ω] and (z − ω, z), where ω = |ε|5/4. In the first interval we
have

∣∣∣∣∣∣
z−ω∫

−∞
exp

⎡
⎣−

z∫
s

1/(ε2G(ζ ))dζ

⎤
⎦ F(s)ds

∣∣∣∣∣∣ ≤ ‖F‖B0

z−ω∫
−∞

exp

⎡
⎣−

z∫
s

1/(ε2‖G‖B0)dζ

⎤
⎦ds

≤ ‖F‖B0ε
2‖G‖B0 exp

[
−1/(|ε|3/4‖G‖B0)

]
= O(exp[−1/(|ε|3/4‖G‖B0)]), (49)

as ε2 → 0. As F and G are continuously differentiable, then for ζ ∈ (s, z), s ∈
(z − ω, z), 1/G(ζ ) = 1/G(z) + p(ζ, z)(ζ − z), F(s) = F(z) + q(s, z)(s − z). By
the mean value theorem

∫ z
s p(ζ, z)(ζ − z)dζ = p(ζ ∗, z)(ζ ∗ − z)(z − s) for some

ζ ∗ ∈ (s, z). Let k(y) := (exp(y)− 1)/y. We can write

exp[−ε−2 p(ζ ∗, z)(ζ ∗ − z)(z − s)] = 1 + ε−2k(s, z)p(ζ ∗, z)(ζ ∗ − z)(s − z).

Since ζ ∗ ∈ (s, z) and s ∈ (z − |ε|5/4, z), then ε−2(ζ ∗ − z)(s − z) ≤ |ε|1/2 and
k(s, z) → 1 as |ε| → 0. Hence in the second interval we have

123



14 B. Kaźmierczak, Z. Peradzyński

z∫
z−ω

exp

⎡
⎣−

z∫
s

1/(ε2G(ζ ))dζ

⎤
⎦ F(s)ds

=
z∫

z−ω
exp

⎡
⎣−

z∫
s

{1/(ε2G(z))

⎤
⎦ exp

⎡
⎣−

z∫
s

ε−2 p(ζ, z)(ζ − z)dζ

⎤
⎦

×[F(z)+ q(s, z)(s − z)]ds

=
z∫

z−ω
exp[−(z − s)/(ε2G(z))]

[
1 + ε−2k(s, z)p(ζ ∗, z)(ζ ∗ − z)(s − z)

]

×[F(z)+ q(s, z)(s − z)]ds

=: ε2G(z)F(z)[1 − exp[−1/(|ε|3/4G(z)]] + U (z). (50)

We thus have

U (z) =
z∫

z−|ε|5/4
exp[−(z − s)/ε2G(z)]

×
{[

1 + ε−2k(s, z)p(ζ ∗, z)(ζ ∗ − z)(s − z)
]

q(s, z)(s − z)

+ ε−2k(s; z)p(ζ ∗z)(ζ ∗ − z)(s − z)F(z)
}

ds.

Consequently

|U (z)| ≤
z∫

z−|ε|5/4
exp[−(z − s)/ε2G(z)]

×
{[

1 + ε−2|k(s, z)||p(ζ ∗, z)|(s − z)2
]
|q(s, z)||(s − z)| + ε−2|k(s; z)|

×|p(ζ ∗z)|(s − z)2|F(z)|
}

ds ≤ cU ε
4
(

1 + exp[−1/(|ε|3/4G(z))]
)

with the constant cU independent of z and ε2. Combining the above inequalities, we
obtain the first equality of the lemma. Using this equality, inequality (49) and the
definition of U (z), we have

I ′(z) = F(z)− 1/(ε2G(z))

z∫
−∞

exp

⎡
⎣−

z∫
s

1/ε2G(ζ )dζ

⎤
⎦ F(s)ds

= [−U (z)+ O(exp(−1/(|ε|3/4‖G‖B0))]/(ε2G(z))

= −U (z)/(ε2G(z))+ O
(

exp(−1/(|ε|3/5‖G‖B0))
)
.
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Calcium waves with fast buffers and mechanical effects 15

Moreover, as we mentioned above k(s, z) → 1 as ε2 → 0 for all s ∈ (z − |ε|5/4, z),
whereas (ζ ∗−z)(s−z) → (s−z)2/2, q(s, z) → F ′(z) and p(s, z) → −G ′(z)/G2(z).
Hence

− U (z)/(ε2G(z)) = −1/(ε2G(z))

z∫

z−|ε|5/4
exp[−(z − s)/(ε2G(z))]

×
{
F ′(z)(s − z)−(2ε2)−1G ′(z)/G2(z)(s−z)2 F(z)

}
ds+h.o.t

= ε2G ′(z)F(z))+ ε2G(z)F ′(z)+ o(ε2) (51)

proving the second equality of the lemma. �
Using Lemma 1 we conclude that

H(h, c, v, ε)(z) = −ε2χ(h(z), c(z))v κ(c(z)) c′(z)+ O(ε4), (52)

so we have ‖H(h, c, v, ε)(·)‖B0 → 0 as ε → 0. By Eq. 35 and Lemma 1 that for all
z ∈ R

1

(H(h, c, v, ε)(z))′ = O(ε2). (53)

Hence, for v �= 0,

‖H(h, c, v, ε)(·)‖B∗
1

→ 0 for ε → 0. (54)

Thus the definition of the operator can be extended to the segment (−ε0, ε0) by taking

H(h, c, v, 0) = 0.

For simplicity, the extended operator will be denoted also by H . Now, let us note that
for any (h, c, v) ∈ B∗

1 × B20 × R
1, v �= 0, the Frechet derivative DH(h, c, v, ε) of

the operator H with respect to (h, c, v) at a point (h, c, v, ε) with v < 0 acting on the
vector [δh, δc, δv] has the following form:

DH(h, c, v, ε)[δh, δc, δv](z) =
z∫

−∞
exp

⎡
⎣

z∫
s

1

ε2

1

χ(ζ )

1

v
dζ

⎤
⎦

×
⎧⎨
⎩κ,c(c(s))c′(s)δc(s)+ κ(c(s))(δc)′(s)− ε−2κ(c(s))c′(s)

×
z∫

s

1

χ2

1

v
[χ,hδh + χ,cδc + χv−1δv]dζ

⎫⎬
⎭ ds. (55)
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16 B. Kaźmierczak, Z. Peradzyński

Now, using Assumption 1, we may proceed similarly as in the proof of Lemma 1,
dividing the region of integration into two parts and carrying out appropriate esti-
mations. Thus, using the Taylor expansion, we infer that for s ∈ (z − |ε|5/4, z) the
integral in the integrand is equal to (z − s)κ(c(z))c′(z)[χ,h(z)δh(z)+ χ,c(z)δc(z)+
χ(z)v−1δv]/(χ2(z)v)+ O(|ε|5/2), so

DH(h, c, v, ε)[δh, δc, δv](z) = ε2{χ(z)v κ,c(c(z))c′(z)δc(z)+ κ(c(z))(δc)′(z)
−κ(c(z))c′(z)[vχ,h(z)δh(z)+ vχ,c(z)δc

+χ(z)δv]} + O(ε4).

(For simplicity, we denotedχ(h(z), c(z)) byχ(z). Similar remark concerns the deriva-
tives of the functionχ .) Differentiating (55) and continuing as in the proof of Lemma 1,
one can show that

‖DH(h, c, v, ε)[δh, δc, δv]‖B∗
1

= O(ε2)
(
‖δh‖B∗

1
+ ‖δc‖B2 + |δv|

)
for ε → 0.

(56)

Thus for ε ∈ (−ε0, 0) ∪ (0, ε0) the Frechet derivative DH(h, c, v, ε) is well defined
and DH : B∗

1 × B20 × R
1 → B∗

1 . Moreover, similarly as in the case of H , we can
extend the definition of DH also for ε = 0, by means of (56). Namely, for v �= 0, we
set

DH(h, c, v, 0) = 0. (57)

Hence DH is continuous with respect to ε and DH → 0 in the operator norm as
ε → 0.

Now, let us note that Eq. 35 can be written in the form

Q1(h, c, η, v, ε, β) = 0,

where

Q1(h, c, η, v, ε, β) = h − H(h, c, v, ε). (58)

According to the above considerations the following lemma holds.

Lemma 2 Let Q1 be defined by (58). Then for all η, β and all (h, c, v, ε) from some
neighbourhood of (0,C, V, 0):

1. Q1 is a continuous mapping from B∗
1 × B20 × B2 × R

1 × R
1 × R

1 to B∗
1 and

‖Q1(h, c, η, v, ε, β)− h‖B∗
1

= O(ε2)

as ε → 0
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Calcium waves with fast buffers and mechanical effects 17

2. Q1 is continuously Frechet differentiable with respect to (h, c, η, v) and

‖DQ1(h, c, η, v, ε, β)[δh, δc, δη, δv]−δh‖B∗
1
=ε2 O

(
‖δh‖B∗

1
+‖δc‖B2 +|δv|

)

as ε → 0. Consequently for h = 0, c = C, η = 0, v = V , ε = 0, β = 0 we have

DQ1(0,C, 0, V, 0, 0)[δh, δc, δv] = δh. (59)

Now, for y ∈ B2 and fixed (c, η, β) ∈ B20 × B2 × R
1, let A : B2 → B0 be defined

by the equality

[A(c, η, β)y](z) := y′′(z)− W (c(z), η(z))β−2 y(z), (60)

where W is defined by (42). For c such that c(z) > −k−/(2k+) for all z ∈ R
1,

‖η‖B0 ≤ lη‖c‖B0 with lη sufficiently small and β2 > 0, A has a bounded inverse
A−1 : B0 → B2 and Eq. 43 can be written as

Q3(h, c, η, v, ε, β) := η − A−1(c, η, β)F(h, c, c′, η, η′, v) = 0. (61)

The following lemma holds.

Lemma 3 Let Q3 be defined by (61). Then for all (h, c, η, v, ε, β) from some neigh-
bourhood of (0,C, 0, V, 0, 0):
1. Q3 is a continuous mapping from B∗

1 × B20 × B2 × R
1 × R

1 × R
1 to B2 and

‖Q3(h, c, η, v, ε, β)− η‖B2 = O(|β|) as β → 0

2. Q3 is continuously Frechet differentiable with respect to (h, c, η, v) and

‖DQ3(h, c, η, v, ε, β)[δh, δc, δη, δv] − δη‖B2

= |β|O(‖δh‖B∗
1

+ ‖δc‖B2 + ‖δη‖B2 + |δv|)

as β → 0.

Thus definition of the operator Q3 and its derivative DQ3 can be extended to β = 0
by taking

Q3(h, c, η, v, ε, 0) = η, DQ3(h, c, η, v, ε, 0)[δh, δc, δη, δv] = δη.

For simplicity, the extended operators will be denoted in the same way.
Lemma 3 is analogous to Lemma 1 in Kazmierczak and Peradzyński (1996). How-

ever, for the reader’s convenience we give its proof in the Appendix 1. Lemmas 2 and
3 allow us to use the implicit function theorem and reduce effectively the problem of
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18 B. Kaźmierczak, Z. Peradzyński

travelling wave existence to the analysis of one second order equation for the concen-
tration of calcium. Let us note that due to the above considerations system (19–21)
can be written in the form:

Q1(h, c, η, v, ε, β) = 0, Q2(h, c, η, v, ε, β) = 0, Q3(h, c, η, v, ε, β) = 0,

(62)

where Q2 is the left hand side of Eq. 36, or more concisely in the form

Q(h, c, η, v, ε, β) = (Q1(h, c, η, v, ε, β), Q2(h, c, η, v, ε, β), Q3(h, c, η, v, ε, β))

with Q : B∗
1 × B20 × B2 ×R

1 ×R
1 ×R

1 → B∗
1 × B0 × B2. Obviously, for ε = 0 and

β = 0 this system is satisfied by the quadruple (h(·), c(·), η(·), v) = (0,C(·), 0, V ).
We will show that for |ε|, |β| sufficiently small there exists a unique heteroclinic
quadruple

(h(·, ε, β), c(·, ε, β), η(·, ε, β), v(ε, β))

to system (62) such that (h(·, ε, β), c(·, ε, β), η(·, ε, β), v(ε, β)) → (0,C, 0, V ) as
(ε, β) → 0. According to the implicit function theorem, it suffices to show that the
operator DQ(0,C, 0, V, 0, 0) has a bounded inverse.

Lemma 4 The system

DQi (0,C, 0, V, 0, 0)[δh, δc, δη, δv] = fi , i = 1, 2, 3,

has for all f1 ∈ B∗
1 , f2 ∈ B0, f3 ∈ B2 uniquely determined solution

(δh, δc, δη, δv) ∈ B∗
1 × B20 × B2 × R

1.

Proof According to Lemmas 2 and 3

DQ1(0,C, 0, V, 0, 0)[δh, δc, δη, δv] = δh,

DQ3(0,C, 0, V, 0, 0)[δh, δc, δη, δv] = δη.

Hence the equations

DQ1(0,C, 0, V, 0, 0)[δh, δc, δη, δv] = f1,

DQ3(0,C, 0, V, 0, 0)[δh, δc, δη, δv] = f3

have obviously uniquely determined solutions B∗
1 � δh = f1 and B2 � δη = f3,

respectively. Having δh and δη we can solve the equation

DQ2(0,C, 0, V, 0, 0)[δh, δc, δη, δv] = f2
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with respect to δc ∈ B20 and δv ∈ R
1. One can check that

DQ2[δh, δc, δη, δv] = L0δc + C ′δv + (1 + S(C))−1γ δh + D1,η(C, 0)C ′′δη + F
(63)

where

L0δc = D1(C, 0)δc′′ − (2D2(C)C
′ − V )δc′

+ ∂

∂c

{
(1 + S(c))−1g(c)+ D1(c, 0)C ′′ − D2(c)C

′2}∣∣∣∣
c=C

δc. (64)

and

F =
∑

j=0,1,2

�1,η( j) (C,C ′, 0, 0, 0, V )(δη( j)).

(�1,c( j) (0, 0, 0,C,C ′, V ) = 0, j = 0, 1, and �1,v(0, 0, 0,C,C ′, V ) = 0 accord-
ing to 40). Let us note that the function C ′ satisfies the equation L0δc = 0. This
function however does not belong to the space B20. Using these facts one can prove
that for any f̃2 ∈ B2 there exists a unique pair (δc, δv) ∈ B20 × R

1 and that the
operator L0δc + C ′δv defines an isomorphism between the spaces B20 × R

1 and
B2 (Kazmierczak and Peradzyński 1996; Kazmierczak and Volpert 2003, see also
Crooks and Toland 1998; Kazmierczak 2001). Thus noting that F ∈ B0 we can
uniquely solve the equation

L0δc + C ′δv = −(1 + S(C))−1γ δh − D1,η(C, 0)C ′′δη − F + f2 := f̃2,

with respect to δc and δv. For instance, the value of δv is determined from the following
condition

∞∫
−∞

C ′(z) exp

⎛
⎝

z∫
0

a(s)ds

⎞
⎠{

C ′(z)δv − f̃2(z)
}

dz = 0, (65)

where a(z) = −[2D2(C(z))C ′(z)−V ]. Using the implicit function theorem we obtain
the thesis of the lemma. �
Theorem 1 Assume that all the functions in system (6), (15), (16) are of C1 class of
their arguments and that Assumption (2) and condition (45) are satisfied. Suppose that
Eq. 44 has a unique (up to translations) heteroclinic solution pair (C(·), V ) satisfying
the conditions limz→−∞ C(z) = c1, limz→∞ C(z) = c3. Then for |ε|, |β| sufficiently
small there exists a heteroclinic quadruple

(h(·, ε, β), c(·, ε, β), η(·, ε, β), v(ε, β)) (66)
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20 B. Kaźmierczak, Z. Peradzyński

solving system (62) such that

(h(·, ε, β), c(·, ε, β), η(·, ε, β), v(ε, β)) → (0,C(·), 0, V )

in the norm of the space B∗
1 × B2 × B2 × R

1 as (ε, β) → 0. Consequently for
sufficiently small |ε| and |β| there exists a travelling wave solution (T , C,B) of the
system (6), (15), (16): T (x, t; ε, β) = θ(x − v(ε, β)t; ε, β), C(x, t; ε, β) = c(x −
v(ε, β)t; ε, β), B(x, t; ε, β) = b(x − v(ε, β)t; ε, β), such that

c(z; ε, β) → c1, θ(z; ε, β) → θ0(c1), b(z; ε, β) → b∗k+
c1

k+c1 + k−

as z → −∞ whereas

c(z; ε, β) → c3, θ(z; ε, β) → θ0(c3), b(z; ε, β) → b∗k+
c3

k+c3 + k−

as z → ∞. This solution is unique up to translation in the variable z = x − v(ε, β)t
and for (ε, β) → (0, 0)

θ(·; ε, β)→θ0(c(·; ε, β)), c(·; ε, β)→C(·), b(·; ε, β)→b∗k+
c(·; ε, β)

c(·; ε, β)k++k−

whereas v(ε, β) → V in the norms of the spaces B1, B20, B2 and R
1, respectively.

2.2 First order approximations for h, v and η

In this section, we derive approximate expressions for the functions h and η corre-
sponding to small values of β2 and ε2 in the considered system. We will consider the
two cases: the case of nonzero viscosity with infinitely fast buffers and the case of
zero viscosity and finitely fast buffers. In the first case we assume for simplicity that
μ = const, K = const . We thus have η ≡ 0 and system (35–36) changes to the
system

ε2μvh′ − K h − K −1ε2μvτ(c(z))′ = 0. (67)

D1(c, 0)c′′ − D2(c)c
′2 + vc′ + (1 + S(c))−1[g(c)+ γ h] = 0 (68)

In the zeroth approximation h ≡ 0, whereas the first order correction to h is equal
to

h1(z) = −K −2ε2μV (τ (C(z))′. (69)
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Taking f̃2 = −(1 + S(C))−1γ δh in Eq. 65 we obtain

δv = B−1
v K −2ε2μγ V

∞∫
−∞

(1 + S(C(z)))−1C ′(z)[τ(C(z))]′ exp

⎡
⎣

z∫
0

a(s)ds

⎤
⎦ dz

(70)

where Bv = ∫∞
−∞(C

′(z))2 exp[∫ z
0 a(s)ds]dz. It follows that, for γ > 0, δv < 0

(δv > 0) and the absolute value of the speed increases (decreases), if for all c ∈ [c1, c3]
we have τ,c(c) > 0 (τ,c(c) < 0).

To obtain the approximate expression for the function η in the second case (β2 �= 0,
μ = 0), we will use Eqs. 37, 39. Thus in the first approximation

η(z) ∼= β2�2(0, 0,C,C ′,C ′′, V )(z) ∼= β2
{

S(C)V C ′ + Dbb∗
[

C

L + C

]′′}
(z)

(71)

It follows that η(z) < 0 for all z ∈ R
1 if only Db is sufficiently small. Let us note that

according to (33)

b(z) = b∗k+c(z)+ η(z)

k− + k+c(z)
.

In consequence also

b(z)− ba(z) := b(z)− b∗k+c(z)

k− + k+c(z)
= η(z)

k− + k+c(z)
< 0. (72)

3 Numerical simulations

To analyze how the travelling wave solutions are approaching the appropriate solutions
of the asymptotic equation (18) when ε → 0 and β → 0 we made two series of numer-
ical simulations. In the first one, the viscosity effects were suppressed by assuming
that ε = 0 and consequently that θ = θ0 in system (15–16). For the values of diffusion
coefficients we took: Dc = 300 µm2/s, Db = 20 µm2/s (see Keener and Sneyd 1998;
Tsai and Sneyd 2005), whereas for the kinetic coefficients and the total buffering mol-
ecules concentration appearing in Eq. 16 we assumed: k− = 100/s, k+ = 10 µM/s
and b∗ = 150 µM. Let us note that for β−2 = 5 the quantities k−, k+ attain the values
corresponding to typical endogeneous buffers (see, e.g. [12]). The function g(c) in
both cases was modeled by g(c) = A(c − c1)(c − c2)(c3 − c), where, inspired by
Keener and Sneyd (1998), we took c3 = 1 µM, whereas for c1 we took c1 = 0 for
simplicity as in most cases c1 = 0.01 ÷ 0.1 µM. In any case the values c1 = 0 and
c3 = 1 can be achieved by a linear transformation of the variable c. For this model of
g(c) we have advancing waves for Eq. 18 only if

∫ c3
c1

g(c)[1 + Db S(c)/Dc]dc > 0,
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Fig. 1 The dependence of the speed of the travelling wave solutions for system (15–16) on the parameter
β2 for ε = 0 for different ranges of β2: [0,1], [0,10], [10,1,000] and [0,1,000]. For small values of β2 the
difference v − V changes linearly with β2. As β → ∞ the speed tends to speed of the travelling wave for
Eq. 73

where S(c) is defined after (Eq. 4) [see inequality (12.40) in Keener and Sneyd (1998)],
so for waves with monotone profiles only if 0 < c2 < 1/2 µM. Since the real form of
the function g(·) seems to be not well known and our considerations have rather qual-
itative character we assumed the intermediate value c2 = 0.25 µM. In order to obtain
realistic travelling wave velocities, the constant A was chosen to be equal to 1,150. For
this choice, the absolute value of the speed of the travelling wave for the asymptotic
equation (18) is equal to V = 18.9635 µm/s, so lies in the interval of characteristic
speeds for calcium waves (Keener and Sneyd 1998; Jaffe 1991). Waves obtained in
numerical simulations were moving from the right to the left, so with negative speed.
In figures representing numerical results the sign of the speed was reversed for the
reader convenience. By solving numerically system (15–16) we found travelling wave
solutions propagating along the x-axis with the absolute value of the speed equal to v.
Figure 1 shows the dependence of the difference v− V on β2 for four different ranges
of β2: [0, 1], [0, 10], [10, 1,000] and [0, 1,000]. It can be noticed that v tends to the
speed for the reduced equation (18) linearly with β2 as can be seen form the upper
left panel of Fig. 1. On the other hand, for β2 → ∞, the influence of the buffer term
vanishes and the speed of the wave tends, as can be expected, to the speed of the scalar
equation

∂c

∂t
= Dc∇2c + g(c). (73)
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Fig. 2 The relative difference between the concentration of buffers b(z) and the approximate concentration
of buffers obtained from Eq. 3 for different values of the parameter β2 and ε2 = 0. The difference is scaled
by the upper buffer state b3 given by (22)

The travelling wave solution for this equation can be found explicitly and its speed is
equal to (1 − 2 · 1/4) · √ADc/2 = 207.666. This can be seen in the lower right panel
of Fig. 1; for β2 = 1,000, v is equal to 205.5291.

Figure 2 shows the dependence of the relative difference between the concentration
b(z) of the buffer particles with bound calcium and the asymptotic concentration ba(z)
obtained by solving the equation k−b(z)− k+c(z)(b∗ − b(z)) = 0 implied by Eq. 3.
This difference is normalized by b3—the higher asymptotic state defined by (22). It
is seen that for the considered values of β2 this function is very small—for example
for the case of typical endogeneous buffers (β−2 = 5) its amplitude is of order 10−2.
Moreover, it is negative for all z ∈ R

1, as it has been foreseen by inequality (72).
Figure 3 shows the graph of the difference C(z) − c(z) for β2 = 0.1, β = 1,

β2 = 5 and β2 = 10, where C denotes the profile of the travelling wave solution for
the asymptotic equation (18) and c denotes the profile of the calcium concentration
of the travelling wave solution for system (15–16). To calculate this difference the
profiles are shifted along the z-axis, so that for z = 0 they both attain the same value
equal to 1/2 in agreement with condition (46). It is seen that for β2 sufficiently small,
this difference has almost the same shape and its amplitude is proportional to β2. For
β−2 = 5 (typical endogeneous buffers) the amplitude of the difference is of order
2 · 10−3 µM.
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Fig. 3 The difference C(z)− c(z) between the profile of the travelling wave of the reduced equation (18)
and the profile of the travelling wave for system (15–16) for vanishing viscosity. To determine the profiles
uniquely, we assume that C(0) = 1/2 and c(0) = 1/2

In the second series of simulations we assumed that the buffer kinetics is infinitely
fast (β = 0) and solved numerically the equation

∂c

∂t
= Dc + Db S(c)

1 + S(c)
∇2c − 2Db S(c)

(c + L)(1 + S(c))
|∇c|2 + g(c)+ γ h

1 + S(c)
, (74)

that is to say Eq. 18 with the additional mechanical term. We took γ = ±100 µM/s.
This choice of the absolute value of γ can be justified by a rough analysis of experi-
ments with generation of calcium waves by mechanical deformations of cells (Young
et al. 1999). h is defined by (33). If we assume, for simplicity, that μ and K are
constants, then h satisfies the equation

∂h

∂t
+ (ε∗)−1h − (K −1τ),c

∂c

∂t
= 0, (75)

with ε∗ = μ/K , which can be obtained from Eq. 6. Let us note that, that according to
(28), the relation between the non-dimensional parameter ε2 and ε∗ has the form

ε2 = ε∗ P/ l,
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Fig. 4 The influence of nonzero viscosity on the speed of the travelling wave solutions for τ/K as on the left
panel. The upper curve on the right panel corresponds to γ = 100 µM/s, the lower one to γ = −100 µM/s
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Fig. 5 The influence of nonzero viscosity on the speed of the travelling wave solutions for τ/K as on the left
panel. The upper curve on the right panel corresponds to γ = 100 µM/s, the lower one to γ = −100 µM/s

where P is the characteristic speed and l the characteristic length. In our case P ∼=
20 µm/s and l ∼= 20 ÷ 30 µm. They are thus of the same order, so the smallness of ε∗
implies the smallness of ε2. We also assume that the ratio between the maximal value
of the traction force τ to the effective Young modulus K is of order of 1/10 (see, e.g.
Murray 1993). In the case of monotone calcium travelling waves only this part of the
shape of the function τ(c) is important, which is contained between c1 and c3.

The calculations have been made for two hypothetical shapes of the function τ . To
some extent, these are two extreme cases, as in the first case τ is linearly increasing
on (c1, c3) ≡ (0, 1) and in the second case τ is of a single bump type function on this
interval. The results are shown in Figs. 4 and 5.

4 Conclusions

In the paper we proved the existence of mechano-chemical travelling wave solutions

(θ(z), c(z), b(z)), z = x − vt

for system (6–16), if the parameters ε2 and β2 are sufficiently small. Here ε2 defined
in (28) is the parameter describing the relative magnitude of the viscous effects and
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β−2 determines the rate of the reactions of binding or unbinding calcium ions by the
buffer molecules. (Let us recall that ε2 = μ0 P/K0l, where K0 and μ0 are the typical
values of viscosity and elastic modulus, whereas P and l the typical speed and length
of the calcium wave in the given medium.) These waves are unique up to a translation
in z. For ε2 → 0 and β2 → 0, the speed v of these waves tends to the speed V of the
travelling wave of the reduced equation, whereas

θ(z) → θ0(C(z)), c(z) → C(z), b(z) → b0(C(z))

uniformly for z ∈ R
1, together with their derivatives. Here (C(·), V ) is the heteroclinic

pair for the reduced equation (Eq. 18) obtained by assuming infinitely fast buffer-cal-
cium reactions (β = 0) and zero viscosity, θ0(c, σ0) = (K (c))−1(σ0 − τ(c)) denotes
the solution to the mechanical equation (Eq. 6) obtained by neglecting the viscosity
terms and

b0(c(z)) = b∗k+
c(z)

c(z)k+ + k−

denotes the asymptotic concentration of the buffer molecules obtained by assuming
infinitely fast buffer-calcium reactions. These theoretical statements have been con-
firmed by numerical simulations described in Sect. 3. In particular, the calculations
confirmed the fact, that for buffers with sufficiently fast kinetics system (15–16) is
very well approximated by Eqs. 3 and 18. For μ = 0, we found the speeds of the
waves for relatively large span of the parameter β2. As β → ∞ the speed of the wave
tends to the speed of the scalar Reaction–diffusion obtained from the equation for the
calcium concentration by neglecting the influence of the buffers, i.e. putting formally
β = ∞ (Eq. 73).

The profile C(·) of the travelling wave for the asymptotic equation (44) satisfies the
condition C ′(ξ) > 0 for all ξ ∈ R

1. In Appendix 2 we show that for large reaction rates
(|β| << 1) and |ε| sufficiently small the obtained solution satisfies the inequalities
c′(ξ) > 0, b′(ξ) > 0 for all ξ ∈ R

1. In Appendix 3 we show the similar property for
β = 0.

A question arises, if the mechanomechanical coupling can destroy the existence of
advancing travelling waves for the buffer system. Though the existence proof has been
done only for small values of viscosities (represented by the parameter ε2), numerical
calculations suggest that the travelling wave solutions of advancing type exists also
for larger values of viscosity. Thus, it seems that the viscosity cannot prevent the exis-
tence of traveling waves unless the bistability condition is violated. To explain it, let
us notice that for larger viscosity the cell deformation are smaller, thus in the limit of
infinite viscosity mechanical effects cease to be visible—the system behaves as purely
chemical (i.e. we have equations for calcium and buffers only) with a bistable source
function f (c) (see Eqs. 1 and 2). It is interesting that the system formally is reduced
to the purely chemical system also in the case of vanishing viscosity. However the
source function g(c) in this case is related to f (c) (see Eqs. 15, 16 and 17) by

g(c) = f (c)+ γ θ0(c, σ0).
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Here we can assume, that θ0(c1, σ0) = 0. Therefore, if both functions f and g are
bistable, then viscosity cannot prevent the existence of traveling waves, otherwise the
existence may depend on the value of viscosity. Also by applying additional stress
on the lateral boundaries of the cell or just by stretching the cell we may destroy the
bistability of the source function and thus the waves may cease to exist.

Acknowledgments The authors express their gratitude to an anonymous referee for many helpful remarks
and suggestions. This paper was partially supported by the Polish Ministry of Science and Higher Education
Grant No 1P03A01230.

Appendix 1: Proof of Lemma 3

The substitution y′/y = w changes the equation

y′′(z)− β−2 Q(z)y(z) = 0 (76)

into the Riccati-type equation w′ + w2 − β−2 Q(z) = 0. Let w = w̃ + φ, where
w̃(z) = |β|−1√Q(z). Then φ satisfies the equation

φ′(z)+ 2

β

√
Q(z)φ + φ2 + Q′(z)

2|β|√Q(z)
= 0. (77)

Let

Kβ : C1(R1) → C0(R1), C1(R1) � φ Kβ→ φ′ + 2

|β|
√

Qφ,

where Q ∈ C2(R1), Q(z) > Q̃ > 0. For f ∈ C1(R1) we have

(K −1
β f )(z)=

z∫
−∞

exp

⎡
⎣−

z∫
s

2
√

Q(ζ )

|β| dζ

⎤
⎦ f (s)ds → |β|

2
√

Q(z)
f (z) as |β| → 0

(78)

in the norm of the space C1(R1) (see Lemma 1 and Remark after it). In particular for
f = −Q′/(2|β|√Q) the last expression is equal to −Q′/4Q. Eq. 77 can be written
as

K(φ, β) :=φ + K −1
β

(
φ2+ Q′

2|β|√Q

)
= 0.

K may be treated as a mapping from the space C1(R1) × R
1 to C1(R1). One notes

that as β → 0

K(φ, β) → φ − S,

123
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where S = − Q′
4Q . It follows that the mapping can be defined also for β = 0 by

taking K(φ, 0 = φ − S. Moreover, by means of the methods used in the proofs of
Lemmas 1 and 2 we can prove that K(φ, β) has a well determined Frechet derivative
DK(φ, β) with respect to φ, which is continuous in a neighbourhood of the point
(φ, β) = (S, 0), and DK(S, 0)δφ = δφ. Consequently, we can apply the implicit
function theorem to prove that for |β| sufficiently small there exists a unique solution
in BC1(R1) to Eq. 77 close to φ1 = S being the limit of the sequence of successive
approximations φ1, φ2, . . . Thus in the second approximation we have (see Crandall
1977)

φ2 − φ1 = −[DK(S, 0)]−1K(φ1, β) = −K(φ1, β),

that is to say

φ2(z)− S(z) = −S(z)− K −1
β

(
S2 + Q′

2|β|√Q

)
(z). (79)

Now, identifying ε2 with |β|, G with (2
√

Q)−1, F with S2 + Q′
2|β|√Q

and using Lemma

2 together with its proof [especially relations (50) and (51)], we obtain

φ2(z) = S(z)+ |β|
[

Q′′

8Q3/2 − 5Q′2

32Q5/2

]
(z),

and φ(z) = φ2(z)+o(|β|). Using the fact thatw = w̃+φ and y′/y = w we obtain by
simple integration the form of a solution Y+ to Eq. 76 behaving as exp(

∫ z
0

√
Q(s)ds)

for |z| → ∞. Namely, we have

(ln |y(z)|),z = |β|−1
√

Q(z)+ φ2(z)+ o(|β|).

As − Q′(z)
4Q(z) = (ln |Q− 1

4 |),z , we obtain

Y+(z)= Q− 1
4 (z) exp

⎡
⎣|β|−1

z∫
0

{√
Q(s)+|β|2

(
Q′′

8Q3/2 − 5Q′2

32Q5/2

)
(s)+o(|β|2)

}
ds

⎤
⎦.

(80)

In the similar way, taking w̃(z) = |β|−1√Q(z), we can obtain a solution behaving as
exp(− ∫ z

0

√
Q(s)ds). It can be written as

Y−(z)= Q− 1
4 (z) exp

⎡
⎣|β|−1

z∫
0

{
−√

Q(s)−|β|2
(

Q′′

8Q3/2 − 5Q′2

32Q5/2

)
(s)+o(|β|2)

}
ds

⎤
⎦.

(81)
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The Wronskian of this pair of solutions, independent of z, is equal to

2|β|−1 + O(1)+ O(|β|) = 2

|β| [1 + s(β)β],

where limβ→0 |s(β)| = s0. Thus for f ∈ B0 the unique B2 solution of the equation

y′′(z)− β−2 Q(z)y(z) = f (z) (82)

can be written in the form

y(z, β) = 2−1|β|[1 + s(β)β]−1

⎧⎨
⎩Y−(z)

z∫
−∞

Y+(s) f (s)ds+Y+
∞∫

z

Y−(s) f (s)ds

⎫⎬
⎭ .
(83)

Below for simplicity we will use the symbols ‖·‖ j instead of ‖·‖B j . For f ∈ B1 (see
Definition 1), according to Lemma 2, y(z, β) = β2 f (z)Q(z)−1 + O(|β|3‖ f ‖1). Dif-
ferentiating we obtain the equation Z ′′(z)−β−2 Q(z)Z(z) = f ′(z)+β−2 Q′(z)Z(z),
Z := y′. This yields ‖y‖1 = O(β2)‖ f ‖1. Combining the above estimations we obtain

‖y‖1 = O(β2)‖ f ‖1 ‖y‖2 = O(|β|)‖ f ‖1. (84)

Now, we are in a position to prove Lemma 3. Part 1. follows straightforwardly from
the estimations (84). To prove the second part, let us note that W defined implicitly
by (42) can be treated as a mapping acting from the space B20 × B2 to the space B0.
Let us also introduce the operator F̂ acting from B∗

1 × B20 × B2 × R
1 to B0:

F̂(h, c, η, v)(z) := −F(h(z), c(z), c′(z), η(z), η′(z), v),

where F is the function appearing in Eq. 41. Let (c, η) and (c, η) satisfy the conditions
guaranteeing the existence and boundedeness of the operator A−1 formulated after the
definition (60). Let y and y be the solutions of the equations

y′′ − β−2W (c, η)y = F̂(h, c, η, v)

y′′ − β−2W (c, η)y = F̂(h, c, η, v).

The difference Y := y − y satisfies the equation

Y ′′−β−2W (c, η)(z)Y =[F̂(h, c, η, v)− F̂(h, c, η, v)+β−2 y(W (c, η)−W (c, η))](z)

W and F̂ are Frechet differentiable as mappings from B∗
1 × B20 × B2 ×R

1 to B0 (see
the remark after [43)], thus according to the definition of the operator A, we obtain
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from the last equation:

Y = A−1(c, η, β)
(

DF̂(h, c, η, v)+ β−2 y DW (c, η)
)

[δh, δc, δη, δv]
+A−1(c, η, β)(RF (δh, δc, δη, δv)+ RW (δh, δc, δη, δv)), (85)

where δh = h − h, δc = c − c, δη = η − η, δv = v − v, DF̂ and DW denote the

Frechet derivatives of the mappings F̂ and W with respect to (h, c, η, v) at (h, c, η, v).
Here ‖RF (δh, δc, δη, δv)‖1, ‖RW (δh, δc, δη, δv)‖1 are of order of o(‖δh‖1, ‖δc‖2 +
‖δη‖2 + |δv|) as ‖δh‖ + ‖δc‖2 + ‖η‖2 + |δv| → 0.

Now taking into account that the functions on which A−1 acts have their B1 norms
bounded (according to the definition of the mappings F̂ and W ) we infer that the
Frechet derivative of the operator A−1 acting on the vector [δh, δc, δη, δv] is equal to

A−1(c, η, β)
(
(DF̂ + β−2 y DW )[δh, δc, δη, δv]

)
.

According to the part 1. of Lemma 3 we obtain the validity of the part 2, thus the
whole lemma is proved.

Appendix 2: Monotonicity of solutions

According to Theorem 1 there exist β0 > 0 and ε0 > 0 such that for all (β, ε) satisfy-
ing |β| < β0, |ε| < ε0 there exists a unique solution (c(β, ε, ·), b(β, ε, ·), h(β, ε, (·))
to system (30), (31), (32) with h defined in (35) together with the speed v(β, ε). If β0
and ε0 is sufficiently small then v(β, ε) < 0 (as the initial speed V < 0 by assump-
tion (43)). For ε = 0 the solution is monotone, i.e. c′(β, 0, ξ) > 0, b′(β, 0, ξ) > 0
for all ξ ∈ R

1 according to Theorem 2.1, p. 15 in Volpert et al. (1994). We will
show that for |ε| sufficiently small (in general depending on |β|) the inequalities
c′(β, ε, ξ) > 0 and b′(β, ε, ξ) > 0 hold also for all ξ ∈ R

1. For simplicity, we
will denote the functions c(β, ε, ξ), b(β, ε, ξ), h(β, ε, ξ) simply by c(ξ), b(ξ), h(ξ).
Because the position of the front profile is fixed by the condition c(0) = (c1 + c3)/2,
therefore for any finite interval (A−,A+) � 0, the functions c and b have positive
derivatives for all sufficiently small |ε|, what follows from their continuous depen-
dence on the parameter ε. We will divide our considerations into two parts: for negative
and positive values of ξ . We will start from the interval (−∞, 0]. As we mentioned,
for a fixed A− < 0 there exists ε− ∈ (0, ε0], such that for all |ε| < ε− we have the
inequalities c′(ξ) > 0, b′(ξ) > 0 for ξ ∈ (A−, 0]. Our task will be thus to show
that the monotonicity property remains valid also for ξ ∈ (−∞,A−). By defining:
u = (u1, u2) := (c, b), d1 = Dc and d2 = Db, D = diag(d1, d2), H = (H1, H2),
H1 = g + M , H2 = g − H1, M := β−2[k−b − k+c(b∗ − b)], system (31–32) can be
written in the form:

Du′′ + vu′ + H(u)+ γ

(
1
0

)
h(ξ) = 0. (86)
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Let us note that H(u) has two stable steady states (c1, b1) and (c3, b3) and has its
diagonal entries negative and off-diagonal entries positive in some neighbourhoods of
these states.

Theorem 2 Let 0 < |β| < β0. Then there exists ε− ∈ (0, ε0] such that for all
|ε| < ε−, c′(ξ) > 0 and b′(ξ) > 0 for all ξ ∈ (−∞, 0].
Proof The proof of the theorem will be based on Lemmas 5,6 and 7 which will be
proved later. By differentiation of system (86) we obtain:

DU ′′(ξ)+ vU ′(ξ)+
∑
j=1,2

H(u(ξ))U (ξ)+ γ

(
1
0

)
h′(ξ) = 0, (87)

where U = (U1,U2) := (u′
1, u′

2) and H is the Jacobian matrix of H , i.e. Hi j (u) =
Hi,u j (u). In the proof we will use the fact that, if c′ attains a global extremum for
some ξ = ξ∗, then it is possible to estimate h′(ξ∗) only by the values of c′(ξ∗). Thus,
we will be able to apply the method based on the notion of the Perron–Frobenius
eigenvector of H(u) (Volpert et al. 1994). Let P = (P1, P2), denote the Perron–
Frobenius eigenvector (with positive components) assigned to the negative eigenvalue
of the matrix H(c1, b1) (Kazmierczak and Volpert 2008). As (c(ξ, b(ξ)) → (c1, b1)

for ξ → −∞, then, if |A−| is taken sufficiently large, (c(ξ), b(ξ)) will lie suffi-
ciently close to (c1, b1) and the inequality H(c(ξ), b(ξ))P < 0 will hold for all
ξ ∈ (−∞,A−).

Let ρ = supξ∈(−∞,A−)(|c(ξ)− c1| + |b(ξ)− b1|). Note that by decreasing A− we
decrease both ε− and ρ. For a given A− and |ε| < ε−, let us also denote

ρ = max{ρ, ε2}.

Our basic lemma gives the estimation of h′(ξ) at a point of an extremum of c′(·). �

Lemma 5 Let c′′(z) = 0 for some z ∈ (−∞,A−). Then there exist bounded constants
J and B (independent of z) such that

|h′(z)| ≤ ρ J sup
ξ∈(−∞,z)

|c′(ξ)| + ε2 B sup
ξ∈(−∞,z)

|b′(ξ)|. (88)

Suppose that b′(ξ) attains a non-positive minimum for ξ = z̃. By differentiat-
ing the equation for b (Eq. 32) and using the maximum principle we note that it is
possible only if c′( z̃ ) ≤ 0. Hence, we may confine ourselves to the proof that the
function c′(·) is positive. Suppose that there exists ξ2 such that the function c′ attains a
global non-positive minimum at ξ = ξ2 on the set (−∞,A−). Two cases are possible:
i. there exists a point ξ1 < ξ2 such that c′ attains a global positive maximum at ξ1 on
the interval (−∞, ξ2) and supξ∈(−∞,ξ2)

|c′(ξ)| = c′(ξ1), ii. |c′(ξ)| < |c′(ξ2)| for all
ξ ∈ (−∞, ξ2).

Let us consider case i. The following lemma holds.

123



32 B. Kaźmierczak, Z. Peradzyński

Lemma 6 Suppose that there exists a point ξ1 < ξ2 such that the function c′(ξ)
attains a global positive maximum for ξ = ξ1 on the interval (−∞, ξ2) and
supξ∈(−∞,ξ2)

|c′(ξ)| = c′(ξ1). Then the function b′ must have a global positive max-
imum for some ξb ∈ (−∞, ξ2). Moreover, |b′(ξb)| ≤ C |c′(ξ1)|, where C independent
of ε.

If, instead of c and b, we consider the functions (−c) and (−b), then these functions will
have negative minima at points ξ1 and ξb. The vector function (V1, V2) = (−c′

1,−b′
2)

satisfies the system

di V ′′
i (ξ)+ vV ′

i (ξ)+
∑
j=1,2

Hi j (u(ξ))Vj (ξ)− γ δi1h′(ξ) = 0, i = 1, 2. (89)

Let s = max{sc, sb}, where sc and sb are constants satisfying sc P1 − c′(ξ1) =
0 and sb P2 − b′(ξb) = 0. For the above choice of s > 0, the vector function
Vs(ξ) := (V1(ξ), V2(ξ)) + s(P1, P2) ≥ 0 componentwise for all ξ ∈ (−∞, ξ2).
Moreover, there exists ξ∗ ∈ (−∞, ξ2) such that Vs(ξ

∗) = 0 or there exists an
index l ∈ {1, 2} such that Vl(ξ

∗) + s Pl > 0, while Vk(ξ
∗) + s Pk = 0, where k

is an index complementary to l and Vk(·) attains its global minimum at ξ = ξ∗.
Thus Vk(ξ

∗) = −s Pk , V ′
k(ξ

∗) = 0 and V ′′
k (ξ

∗) ≥ 0. Let us consider the first sit-
uation, that is to say, let us assume that (V1(ξ

∗), V2(ξ
∗)) = −s(P1, P2) for some

ξ∗ ∈ (−∞, ξ2). Thus the functions c′ and b′ attain their maximal values (global
maxima) on the interval (−∞, ξ2) at ξ = ξ∗ = ξ1 = ξb. By Lemmas 5 and 6,
|h′(ξ∗)| ≤ ρ J |c′(ξ∗)| + ε2 B|b′(ξ∗)| ≤ (ρ J + ε2 BC)|c′(ξ∗)|, so we can write the
system (89) for ξ = ξ∗ in the following form:

di V ′′
i (ξ

∗)+
∑
j=1,2

H∗
i j (u(ξ

∗))Vj (ξ
∗) = 0, (90)

where H∗
i j (u(ξ

∗)) = Hi j (u(ξ∗))−C∗ρδi1δ j1 for some bounded constant C∗. (Recall
the definition of ρ.) The matrix H∗(u(ξ∗)) is thus an O(ρ) perturbation of the matrix
H(c1, b1). Hence, for i = 1, 2,

∑
j=1,2 H∗

i j [−s Pj ] > 0, if only ρ is sufficiently small,
i.e. if A− is taken sufficiently small. As V ′′

i (ξ
∗) ≥ 0, then we arrive at contradiction

with (90).
Now, suppose that (V1(ξ

∗), V2(ξ
∗)) + s(P1, P2) �= 0, but Vk(ξ

∗) + s Pk = 0 and
Vk(·) attains its global minimum at ξ = ξ∗. Then Vl(ξ

∗) + s Pl > 0, where l is the
index complementary to k. We will show that in this case

∑
j=1,2

H∗
k j (u(ξ

∗)) Vj (ξ
∗) > 0. (91)

First, note that if ξ∗ = ξ1, then Lemma 5 holds. If ξ = ξb, then the estima-
tion given by this lemma is not necessary, as in (91) we have no non-local terms.
Let us consider the function φk(y) = ∑

j=1,2 H∗
k j (u(ξ

∗))[Vj (ξ
∗)(1 − y) − s Pj y].

We have φk(1) = ∑
H∗

k j (u(ξ
∗))[−s Pj ] > 0 and φ′

k(y) < 0 due to the fact that
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φ′
k(y) = H∗

kl(u(ξ
∗))[−Vl − s Pl ] = −H∗

kl [Vl + s Pl ] < 0, as for l �= k, we have
Vl(ξ

∗)+ s Pl > 0 and H∗
kl(u(ξ

∗)) > 0. Hence φJ (0) = φk(1)− φ′
k(y) · 1 > 0. Thus

inequality (91) is proved. But this leads to contradiction as V ′′
k (ξ

∗) ≥ 0. Thus, the
monotonicity property is proved in this case.

Let us consider case ii. Analogously to Lemma 6 the following lemma holds.

Lemma 7 Suppose that |c′(ξ)| < |c′(ξ2)| for all ξ ∈ (−∞, ξ2). Then the func-
tion b′ must have a global negative minimum for some ξb ∈ (−∞, ξ2). Moreover,
|b′(ξb)| ≤ C |c′(ξ1)|, where C is a constant independent of ρ.

We may thus repeat the considerations of the previous case, by taking advantage of the
fact that supξ∈(−∞,ξ2)

|c′(ξ)| = |c′(ξ2)|. This time we can apply the above reasoning
to functions c and b on the interval (−∞,A−) and use system (87). The theorem is
proved.

Proof of Lemma 5 According to Eq. 48 the function h ∈ C1 satisfies the equality

h(z) =
z∫

−∞
exp

⎡
⎣−

z∫
s

(ε2G(ζ ))−1dζ

⎤
⎦ κ(c(s))c′(s)ds

=
z∫

−∞
exp

⎡
⎣−

z∫
s

(ε2G(ζ ))−1dζ

⎤
⎦ κ(c(z))c′(z)ds

+
z∫

−∞
exp

⎡
⎣−

z∫
s

(ε2G(ζ ))−1dζ

⎤
⎦ (κ(c(s))c′(s)− κ(c(z))c′(z))ds

=: I1(z)+ I2(z). (92)

Here we denoted G(ζ ) := |v|χ(h(ζ ), c(ζ )) and κ is given by (47). Obviously,
I1(z) = ε2κ(c(z))c′(z)G(z)(1 + O(ε2)) as ε2 → 0. Using the equation for h,
which can be written as h′(z) + ε−2(G(z))−1h(z) − κ(c(z))c′(z) = 0, we con-
clude that h′(z) = κ(c(z))c′(z)O(ε2) − ε−2(G(z))−1 I2(z). We have κ(c(s))c′(s) −
κ(c(z))c′(z) = κ(c(s))(c′(s) − c′(z)) + c′(z)(κ(c(s)) − κ(c(z))). The second term
is proportional to c′(z). Thus, as (κ(c(s)) − κ(c(z))) ≤ Cρ, we conclude that for a
bounded function φ0:

I2(z) = φ0(z)ρε
2c′(z)+ I3,

I3(z) =
z∫

−∞
exp

⎡
⎣−

z∫
s

(ε2G(ζ ))−1dζ

⎤
⎦ κ(c(s))(c′(s)− c′(z))ds.

(93)

By choosing |A−| sufficiently large (implying thatρ is sufficiently small), we can guar-
antee that κ(c(s)) is of constant sign for s ∈ (−∞,A−). Hence for some bounded
functions θ̃ (z, s) and ψ(z), the integral I3 can be written as
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c′′(z + θ̃ (z, s)(s − z))

z∫
−∞

exp

⎡
⎣−

z∫
s

(ε2G(ζ ))−1dζ

⎤
⎦ (s − z)κ(c(s))ds

= ε4ψ(z) c′′(z + θ̃ (z, s)(s − z)).

We thus conclude that for some bounded functions φ1 and φ2,

h′(z) = ρφ1(z)c
′(z)+ ε2φ2(z)c

′′(z∗(z)) (94)

where z∗(z) ∈ (−∞, z). To finish the proof one must estimate c′′(ξ) for ξ ∈ (−∞, z).
This can be done by differentiating the equation for c. If c′′(z) = 0 and c′′(−∞) = 0,
then there must exist a point of an extremum on the interval (−∞, z) of the function
c′′. For ε2 sufficiently small, this allows us, by means of inequality (94), to find the
estimation for |c′′(ξ)| and obtain estimation (88). �
Proof of Lemma6 Assume that b′(ξ2) > 0 and that b′(ξ) does not attain a positive
maximum in (−∞, ξ2). Suppose that there exists ξb < ξ2 such that |b′(ξb)| is a global
maximum of |b′| on the interval (−∞, ξ2), in particular that |b′(ξb)| ≥ |b′(ξ1)|. By
means of the maximum principle at ξ = ξb we have the estimation

|b′(ξb)| ≤ Bbb|c′(ξb)| ≤ Bbb|c′(ξ1)|, (95)

where Bbb =−H2,c(c(ξb), b(ξb))[H2,b(c(ξb), b(ξb))]−1. Hence the condition c′′′(ξ1)

≤ 0, according to Lemma 5 and (95), gives

b′(ξ1) ≥ Bb1c′(ξ1), (96)

where Bb1 = −Ac/Ab, Ac = H1,c(c(ξ1), b(ξ1))(1 + O(ρ)) < 0, Ab = H1,b(c(ξ1),

b(ξ1))(1+ O(ρ)) > 0. In particular, it means b′(ξ1) > 0. Similarly, using the fact that
c′′′(ξ2) ≥ 0, we arrive at the condition −[ Ãcc′(ξ2) + Ãbb′(ξ2) + O(ρ)c′(ξ1)] ≥ 0,
where Ãc = H1,c(c(ξ2), b1(ξ2)) < 0, Ãb = H1,b(c(ξ2), b(ξ2)) > 0. Hence we obtain
b′(ξ2) ≤ Bb2ρc′(ξ1), and |c′(ξ2)| ≤ ρBc2c′(ξ1), where Bb2 and Bc2 have the obvious
meaning. Combining these estimations with (96), we obtain ρBb2c′(ξ1) ≥ b′(ξ2) ≥
b′(ξ1) ≥ Bb1c′(ξ1) > 0, as Bb2 and Bb1 stay can be estimated by constants indepen-
dent of ρ. We would thus arrive at contradiction with our assumption according to
which b′(ξ2) ≥ b′(ξ1). If we assume that ξb satisfying the above assumption does not
exist (meaning that |b′(ξ)| ≤ b′(ξ1) on the interval (−∞, ξ1)), then we can arrive at
contradiction in the same way.

Now, assume that b′(ξ2) ≤ 0. Suppose that b′(ξ1) < 0. If supξ∈(−∞,ξ1] |b′(ξ)| =
|b′(ξ1)|, then we arrive at a contradiction at ξ1 with the condition c′′′(ξ1) ≤ 0. If
there exists ξb < ξ1 such that supξ∈(−∞,ξ1] |b′(ξ)| = |b′(ξb)|, the relation |b′(ξb)| ≤
C1|c′(ξb)| ≤ C2|c′(ξ1)| leads to the same contradiction at ξ = ξ1. �
The proof of Lemma 7 can be carried out similarly to the proof of Lemma 6.

Now, let us consider the monotonicity property on the interval (0,∞). This time
we will assume that the function κ(c) appearing in the integral I3 (see Eq. 93), satisfies
the inequality κ(c) < 0 close to c = c3. This is equivalent to the demand that
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τ,c(c)K (c)+ K,c(c)(σ0 − τ(c)) < 0 (97)

for |c − c3| ≤ r , r > 0. It is seen that for σ0 = 0 and K = const it is implied by
the inequality τ,c(c3) < 0. For all A+ > 0 we can find ε+ ∈ (0, ε0], such that, for
all |ε| < ε+ and all ξ ∈ (0,A+), c′(ξ) > 0, b′(ξ) > 0. Let us assume that A+ is
so large and ε+ > 0 so small that for all |ε| < ε+ and ξ > (A+,∞) the inequal-
ity H(c(ξ), b(ξ))Q < 0 holds, where Q is the Perron-Frobenius eigenvector of the
matrix H(c3, b3).

Similarly as before let us define ρ = supξ∈(A+,∞) |c(ξ) − c3|. The following
auxiliary lemma holds. �
Lemma 8 Assume that c′(z) ≤ 0 for z ∈ (A+,∞) and c′(ξ) − c′(z) > 0 for ξ ∈
(0, z). Suppose that (97) holds. Then, for some constant L independent of ε and ρ, we
have h′(z) ≥ (ρ + ε2)Lc′(z).
Proof From the proof of Theorem 2, it follows that it suffices to show that the integral
I3 is non-positive. Let us take ε+ > 0 so small andA+ > 0 so large that c(ξ) > c3−r/4
for ξ > A+. As c′(ξ) > 0 for ξ ∈ (0,A+), then we can define ξ j , j = 1, 2, 3, 4,
by the equalities c(ξ j ) = c3 − jr/4. Let also ε+ be so small that supξ∈(ξ4,ξ2)

|c′(ξ)−
c′(β, 0, ξ)| ≤ infξ∈(ξ4,ξ2) c′(β, 0, ξ)/2 =: η. Consequently, infξ∈(ξ4,ξ2) c′(ξ) ≥ η and
supξ∈(ξ4,ξ2)

c′(ξ) ≤ 3η, where η = supξ∈(ξ4,ξ2)
c′(β, 0, ξ)/2. Note that the ratio η/η

depends only on the solution c(β, 0, ·), hence is independent of ε. As c′(z) ≤ 0 and
κ(c(ξ)) < 0 for ξ ∈ (ξ4,∞), then using the denotations of Lemma 5, we have:

I3 ≤
ξ4∫

−∞
exp

⎧⎨
⎩−

z∫
s

[ε2G(ζ )]−1dζ

⎫⎬
⎭ κ(c(s))c′(s)ds

+
ξ2∫
ξ3

exp

⎧⎨
⎩−

z∫
s

[ε2G(ζ )]−1dζ

⎫⎬
⎭ κ(c(s))c′(s)ds

≤ exp

⎧⎪⎨
⎪⎩−

z∫
ξ4

[ε2G(ζ )]−1dζ

⎫⎪⎬
⎪⎭

ξ4∫
−∞

exp

⎧⎨
⎩−

ξ4∫
s

[ε2G(ζ )]−1dζ

⎫⎬
⎭ κ(c(s))c′(s)ds

+ exp

⎧⎪⎨
⎪⎩−

z∫
ξ2

[ε2G(ζ )]−1dζ

⎫⎪⎬
⎪⎭

ξ2∫
ξ3

exp

⎧⎨
⎩−

ξ2∫
s

[ε2G(ζ )]−1dζ

⎫⎬
⎭ κ(c(s))c′(s)ds

≤ exp

⎧⎪⎨
⎪⎩−

z∫
ξ2

[ε2G(ζ )]−1dζ

⎫⎪⎬
⎪⎭ ε

2

⎡
⎢⎣max{k, 0} G exp

⎧⎪⎨
⎪⎩−

ξ2∫
ξ4

[ε2G(ζ )]−1dζ

⎫⎪⎬
⎪⎭

+ kηG
(
1−O(exp{(ξ2−ξ3)/(ε

2G)})
)
⎤
⎥⎦,
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where k = supc∈(c3−r/2,c3−3r/4) κ(c) < 0, G = infξ∈(ξ3,ξ2) G(ξ), k = supξ∈(−∞,ξ4)

κ(c(ξ))c′(ξ) and G = supξ∈(−∞,ξ4)
G(ξ). As ξ2 − ξ4 ≥ r/(6η), ξ2 − ξ3 ≥ r/(12η)

and G > G∗ > 0 with G∗ not depending on ε, it is seen that for |ε| sufficiently small,
I3 ≤ 0. The lemma is proved. �

Theorem 3 Let inequality (97) hold. Let 0 < |β| < β0. Then there exists ε+ ∈ (0, ε0],
such that for all |ε| < ε+, c′(z) > 0 and b′(z) > 0 for all z ∈ (0,∞).

Suppose to the contrary that it is not true. Let a point zc, where the global non-positive
minimum for the function c′ in the interval takes place. Due to the last lemma and the
maximum principle, b′(zc) must be non-positive. Let us note that c′(zc) = 0 implies
b′(zc) = 0. If b′(z) < 0 for some z ∈ (0,∞), then c′(z) < 0 also, which a contra-
diction with the assumption that c′(zc) = 0 is a global minimum. If b′(ξ) ≥ 0 for all
ξ , then b′′(zc) = 0 and from the uniqueness of the solutions to system (86) it follows
that c(zc) = c3 and b(zc) = b3 implying that zc = ∞ and the theorem is proved. Thus
there exists zb > A+ such that the function b′ attains its negative global minimum.
This implies that c′(zc) ≤ c′(zb) < 0. The rest of the proof can be done similarly to
the case ii. in the proof of Theorem 2.

Remark As we mentioned above, the maximal value of ε2 in Theorems 2 and 3 depends
in general on the value of β2.

Appendix 3: Monotonicity of the asymptotic solution

Letting β = 0 we arrive at the asymptotic equation which is obtained by putting η = 0
in Eq. 36. It reads

D1(c, 0)c′′ − D2(c)c
′2 + vc′ + (1 + S(c))−1 [g(c)+ γ h

] = 0. (98)

For ε = 0, h ≡ 0, thus according to Keener and Sneyd (1998); Sneyd et al. (1998),
the heteroclinic solution C(·) to this equation is monotone, i.e. C ′(ξ) > 0 for all
ξ ∈ R

1. From Theorem 1 it follows that there exist ε0 > 0 such that for all ε such
that |ε| < ε0 there exists a unique solution (c(ε, ·), h(ε, (·)) to Eqs (98),(30) together
with the speed v(ε). If ε0 is sufficiently small then v(ε) < 0 [as the initial speed
V < 0 by assumption (45)]. We will show that for |ε| sufficiently small the inequality
c′(ε, ξ) > 0 holds also for all ξ ∈ R

1. For simplicity, we will denote the functions
c(ε, ξ) and h(ε, ξ) by c(ξ) and h(ξ). Because the position of the front profile is fixed
by the condition c(0) = (c1+c3)/2, therefore on any finite interval (A−,A+) � 0, the
functions c have positive derivatives for all sufficiently small |ε|, what follows from
their continuous dependence on the parameter ε. We will divide our considerations
into two parts: for negative and positive values of ξ . We will start from the interval
(−∞, 0]. For a fixed A− < 0 there exists positive ε− ≤ ε0, such that for all |ε| < ε−
we have the inequality c′(ξ) > 0 for ξ ∈ (A−, 0]. Our task will be thus to show
that the monotonicity property remains valid also for ξ ∈ (−∞,A−). Let us define:
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ρ = supξ∈(−∞,A−)(|c(ξ)− c1| + |c′(ξ)|). By differentiation of Eq. 98, we obtain

D1(c, 0)c′′′ + [V + O1(c
′)]c′′ + [(1 + S(c))−1],c[g(c)+ γ h]c′

+[1 + S(c)]−1[g′(c)c′ + O2(c
′)c′ + γ h′] = 0, (99)

where the terms O1(c′), O2(c′) → 0 as |c′| → 0. Suppose that there exists a point ξ∗
such that c′(ξ∗) ≤ 0. Thus there exists a point ξ∗, ξ∗ < ξ∗ < A− such that c′(ξ∗) = 0.
Since c′(−∞) = 0, then there must exist a point ξ0 such that |c′(·)| has a global max-
imum on (−∞, ξ∗). At this point we have c′′(ξ0) = 0. By examining the expression
for h (see 48) we conclude that there exists constants B1, B2 such that

|h′(ξ0)| ≤ ρB1|c′(ξ0)| + ε2 B2 sup
ξ∈(−∞,ξ0)

|c′′(ξ0)|. (100)

By means of the above inequality, we can prove the following lemma.

Lemma 9

|h′(ξ0)| ≤ (ρ + ε2)B|c′(ξ0)|, (101)

where B is a constant independent of ε and ρ.

Proof Let the function c′′ attain an extremum at ξ = ξ1. Then c′′′(ξ1) = 0, so consid-
ering Eq. 99 at ξ = ξ1 we can obtain the estimation of c′′(ξ1) by means of c′(ξ1), h(ξ1)

and h′(ξ1). Thus, using estimation (9), we obtain the claim of the lemma by choosing
A− sufficiently large and |ε| sufficiently small, which implies in ρ being sufficiently
small. �
Assuming that the function c′ attains a maximum at ξ = ξ0, so c′′′(ξ0) ≤ 0, so Eq. 99
gives the inequality:

K(ξ0)c
′(ξ0)+ γ h′(ξ0) ≥ 0,

where K(ξ0) = g′(c(ξ0))+ O(ρ)+ O(ε2) (as h = O(ε2)). Due to to Assumption 2,
g′(c1) < 0, hence K(ξ0) < 0. Using Lemma 9 we obtain the inequalities:

K(ξ0)c
′(ξ0)+ γ h′(ξ0) ≤ [K(ξ0)+ (ρ + ε2)B]c′(ξ0) < 0. (102)

Hence, we arrive at contradiction, as for (ρ + ε2) sufficiently small K(ξ0)+ ρB < 0
and c′(ξ0) > 0. If we assume that the function c′ attains a minimum at ξ = ξ0 then
we arrive at contradiction in the similar way. These contradictions prove that for suf-
ficiently small |ε| the solution of Eq. 98 satisfies the inequality c′(ξ) > 0 for all
ξ ∈ (−∞, 0).

Now, let us consider the monotonicity property on the interval (0,∞). In this case
we will assume that the function multiplying c′ in Eq. 47 is negative close to c = c3.
We thus demand that

τ,c(c)K (c)+ K,c(c)(σ0 − τ(c)) < 0. (103)
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for 0 ≤ |c − c3| ≤ r , r > 0. This time for sufficiently small |ε| we can obtain the
estimation h′(ξ0) ≥ ρLc′(ξ0) for some constant L independent of ρ and ε. This allows
us to repeat the analysis of inequality (102) leading to the obtaining the monotonicity
result on the interval (0,∞).
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