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Abstract Geometric singular perturbation theory is a useful tool in the analysis of
problems with a clear separation in time scales. It uses invariant manifolds in phase
space in order to understand the global structure of the phase space or to construct
orbits with desired properties. This paper explains and explores geometric singular
perturbation theory and its use in (biological) practice. The three main theorems due
to Fenichel are the fundamental tools in the analysis, so the strategy is to state these
theorems and explain their significance and applications. The theory is illustrated by
many examples.
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1 Introduction

Systems in nature often evolve on time scales differing several orders of magnitude, or
take place on various length scales. When studying such systems, simplifying assump-
tions may be of great help; if not to understand the full system, then at least to get a
first insight in the system’s behaviour. In particular, one can make assumptions with
respect to processes that have much slower or faster time scales than those of inter-
est. A simplifying assumption may be to assume slow processes to stand still, or fast
processes to adjust instantaneously to changing circumstances. The phase space may
as well be adjusted to the analysis’ needs, for example by ‘blowing up’ parts in phase
space where small length scales are of importance.

The well-known Hodgkin–Huxley equations (Hodgkin and Huxley 1952) serve as
an important example. The typical spiking behaviour of its stable periodic orbit has
been analysed and understood through simplifications of the types sketched here, see
Keener and Sneyd (1998), Rinzel (1985) and Carpenter (1979).
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If a natural system is modelled by differential equations, such simplifications are
often the results of various different scalings, and the different approximations will
all have limited validity in space or time. Especially if one is interested in solutions or
orbits that themselves depend on more than one time or length scale, matching between
the various (partial) solutions is then a next step towards a global understanding.

Around 1980, geometric singular perturbation theory was introduced. This is a
geometric approach to problems with a clear separation in time scales. It uses invari-
ant manifolds in phase space in order to understand the global structure of the phase
space or to construct orbits with desired properties. For the slow–fast systems of con-
cern in this paper, the foundation of this approach was given by Fenichel (1979). The
ideas are based on previous work by Fenichel (1971, 1974, 1977) and, independently,
by Hirsch et al. (1977). Since then, the methods have evolved and found their way
towards applications, of which many have a biological background. Recent work on the
Hodgkin–Huxley equations (Moehlis 2006; Rubin and Wechselberger 2007) again
serves as an example.

However, there are several reasons to write an introduction to these methods for a
more or less biologically inclined public: (i) in applications, authors often only use
part of the theory, (ii) it is not always clear why and how the methods are applied, and
(iii) by nature, biological systems involve many time scales and since the complexity
of models increases, this kind of approaches can be more and more useful. The goal
of this paper is to explain and explore the full geometric singular perturbation theory
and its use in (biological) practice. The three main theorems due to Fenichel are the
fundamental tools in the analysis, so the strategy will mainly be to explain these the-
orems and their significance to applications. For a more mathematical introduction,
including proofs of the theorems and many references, we refer to the surveys of Jones
(1995) and Kaper (1999); for an extensive exposition and proofs to Wiggins (1994).

1.1 Basic set-up and ideas

The basic equations we consider are singularly perturbed systems of ODEs with two
different time-scales, that are of the form

u̇ = f (u, v, ε),

v̇ = εg(u, v, ε),
(1.1)

where ˙= d
dt , u ∈ Rk and v ∈ Rl with k, l ≥ 1 in general. Our examples are restricted

to the cases k = 1, 2 and l = 1, 2. The parameter ε is a small parameter (0 < ε � 1),
which gives the system a singular character. The functions f and g are assumed to
be sufficiently smooth. ‘Sufficiently smooth’ here means at least C1 in u, v and ε.
In general, to obtain Cr invariant manifolds, f and g should be Cr+1 functions of u,
v, ε, and the subset M0 of { f (u, v, 0) = 0} we consider below should be a Cr+1

submanifold of the phase space Rk+l ; see Fenichel (1979).
With a change of time scale, system (1.1) can be reformulated as

εu′ = f (u, v, ε),

v′ = g(u, v, ε),
(1.2)
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with ′ = d
dτ

and τ = εt . The time scale given by t is said to be fast whereas that for
τ is slow. Thus (1.1) is called the fast system and (1.2) the slow system. Both systems
are equivalent as long as ε �= 0. Each of the scalings is naturally associated with a
limit as ε → 0. These limits are respectively given by

u̇ = f (u, v, 0),

v̇ = 0,
(1.3)

and

0 = f (u, v, 0),

v′ = g(u, v, 0).
(1.4)

The latter is called the reduced system. It is a differential algebraic system, that
describes the evolution of the slow variable constrained to the set f (u, v, 0) = 0.
That set is exactly the set of critical points for (1.3). The two limits are two differ-
ent approximations of the full ε > 0 system, but in either formulation one pays a
price. Under (1.3) the flow is defined in Rk+l , but is in fact an l-parameter family
of k-dimensional systems. Moreover, the flow under (1.3) on the l-dimensional set
f (u, v, 0) = 0 is trivial. On the other hand, (1.4) does prescribe a nontrivial flow on
f (u, v, 0) = 0, but at the same time its validity is limited to only this set. The goal of
geometric singular perturbation theory is now to analyse the dynamics of system (1.1)
with ε nonzero but small by suitably combining the dynamics of these two limits.

The basic ingredient is illustrated in Fig. 1 and is as follows. Suppose we are given
an l-dimensional manifold M0, possibly with boundary, which is contained in the set
f (u, v, 0)= 0. Suppose it is compact and normally hyperbolic, that is, the eigenvalues

λ of the Jacobian ∂ f
∂u (u, v, 0)|M0 are uniformly bounded away from the imaginary

axis. Then this so-called critical manifold persists as a locally invariant slow manifold
Mε of the full problem (1.1) that is O(ε) close to M0. The restriction of the flow
(1.1) to Mε is a small perturbation of the flow of the limiting problem (1.4). Moreover,
the stable and unstable manifolds W s(M0) and W u(M0) of M0 (that correspond to
eigenvalues λ of ∂ f

∂u (u, v, 0)|M0 with respectively Re(λ) < 0 and Re(λ) > 0) persist
as manifolds W s(Mε) and W u(Mε) too. They lie within O(ε) distance of, and are
diffeomorphic to, W s(M0) and W u(M0) respectively.

Fig. 1 Unperturbed critical manifolds M0 consisting of saddle-type fixed points and their local stable and
unstable manifolds W s,u(M0). The manifolds persist for 0 < ε � 1 as perturbed manifolds Mε with a
slow flow on them, and W s,u(Mε)
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The problems (1.3) and (1.4) are lower dimensional and can often be analysed in suf-
ficient detail. By ‘gluing’ together fast and slow pieces of orbits, respectively obtained
in the fast and slow limits, one can formally construct global singular structures, such
as singular periodic orbits, and singular homoclinic orbits. Under appropriate condi-
tions one can verify the persistence of these global structures for small ε �= 0, and
reveal their bifurcations as parameters in the system vary. The essential idea behind
geometric singular perturbation theory is that this persistence can be established by
showing that these singular structures correspond to transversal intersections of a pair
of stable and unstable manifolds.

We will pay special attention to a subclass of (1.1) that is often met in the literature,
and for which geometric singular perturbation theory can be particularly useful. It is
the class of nearly integrable systems

ẋ = ∂ H(x, y, v

∂y
+ εg1(x, y, v),

ẏ = −∂ H(x, y, v)

∂x
+ εg2(x, y, v),

v̇ = εh(x, y, v),

(1.5)

in which the variable v ∈ Rn , n ≥ 1, may be seen as a slowly varying coefficient in
the equations for x and y. For ε = 0 this coefficient is fixed to some v0, and (1.5) pos-
sesses an integral or Hamiltonian H(x, y, v0). The almost integrable structure serves
as a skeleton on which solutions with certain properties can be constructed. Biological
examples of this type of work are, e.g. found in activator-inhibitor (Gierer–Meinhardt
type) models (Doelman et al. 2001b; Doelman and van der Ploeg 2002; Doelman and
Kaper 2003) or models for mixed mode oscillations in neurons (Krupa et al. 2008a,b).
Other examples include models derived from Ginzburg–Landau equations (Doelman
and Holmes 1996; Doelman 1996) or nonlinear Schrödinger equations (Rottschäfer
and Kaper 2003), models in optics (Kapitula 1998), for gas discharge dynamics
(Doelman et al. 2009) or for Josephson junctions (Derks et al. 2003), to name but
a few.

Although classical singular perturbation techniques only aim at two different time-
scales, in biological literature one also meets systems with three different time-scales.
These are in general written in the form

εu′ = f (u, v, w, ε, δ),

v′ = g(u, v, w, ε, δ),

w′ = δh(u, v, w, ε, δ),

(1.6)

where δ is a second parameter that may or may not depend on ε. To allow straight-
forward application of singular perturbation techniques, it is very important that ε

and δ are two independent small parameters (0 < ε, δ � 1). Examples of this type
are for instance found in food chain models with a third class of so-called super or
top-predators (Muratori and Rinaldi 1992; Deng 2001; Deng and Hines 2002) or in
hormone secretion models (Kunpasuruang et al. 2002). Models with three or more
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time-scales are also used to study neuronal behaviour, in particular to explain firing of
neurons or so-called mixed mode oscillations. Various papers in this field show differ-
ent ways to deal with, or even to benefit from the time-scale structure. In Medvedev
and Cisternas (2004) and Krupa et al. (2008a,b) the three time-scales are related, but
geometric singular perturbation theory could still be applied after (local) rescalings
that brought the system into a new one with only two time-scales. And the classical
example of Hodgkin–Huxley was analysed in Moehlis (2006) using that a particularly
fast gating variable may be assumed to always be at its saturation value, so that only
two time-scales are left.

Remark 1 Although this overview is written for a biological inclined public, it is nec-
essarily mostly of a mathematical nature. However, in every section, the theory is
illustrated with examples, of which some are biologically inspired. Others are just
chosen because of their mathematical features. In several examples, the biological
motivation and interpretation of the results is explicitly clarified and discussed. This
is the case in the illustrative Example 1.1 below, as well as in Examples 2.1 and 3.3.
In other examples, some of the biological background of the model is described.

Example 1.1 The Hydra, a type of fresh-water polyp, is considered as a model organ-
ism for morphogenesis. Small pieces of Hydra can regenerate to a complete new
animal: after removing the original head, a new head will be formed, but the orienta-
tion of the animal will always be preserved. Gierer and Meinhardt (1972) introduced
a mathematical model in order to better understand its growth and regeneration. They
realised that the local formation of a head was in fact an example of pattern formation,
and they identified the crucial conditions for such pattern formation: local self-activa-
tion and long-range inhibition. Hence they modelled the growth of a new head on a
piece of Hydra using an activator-inhibitor model; see, e.g. Murray (1989). A slowly
diffusing activator stimulates growth of a new head, whereas a rapidly diffusing inhib-
itor is produced by the activator and prevents the formation of a second head. At a
position with a peak in activator concentration, a head will be formed.

In Doelman et al. (2001a,b) and van der Ploeg (2005) a generalised or ‘normal
form’ version that no longer models the orientation-preservation is presented:

{
ε2Ut = Uxx − ε2µU + Uα1 V β1 ,

Vt = ε2Vxx − V + Uα2 V β2 .
(1.7)

Here U (x, t) and V (x, t) represent inhibitor and activator concentrations, respectively.
Although in biological systems the domain is necessarily bounded by dimensions of
the tissue, here an unbounded domain is considered: x ∈ R. This is reflecting the
choice to study patterns with a much smaller spatial scale than the length scales of
the domain. Apart from this, the scaling of the equations should be mentioned, too:
it is suitable for finding large pulse solutions. Such solutions correspond to very high
activator concentrations on very narrow regions, and almost zero activator concentra-
tions elsewhere. The small parameter 0 < ε2 � 1 expresses the ratio of the diffusion
rates. Here we will describe the case (α1, α2, β1, β2) = (0,−1, 2, 2), corresponding
to the classical Gierer–Meinhardt model.
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Since the two components have completely different diffusion rates, they also have
different natural length scales, which makes the problem suitable for Fenichel theory.
Here we focus on the use of Fenichel’s methods to construct a periodic, stationary pulse
solution to (1.7). In terms of the polyp, such solution would be an infinite sequence
of Hydra, each with a single head being formed (or perhaps more realistically, a sin-
gle Hydra with periodic boundary conditions). For proofs and a detailed construction
and stability analysis of this and other periodic and aperiodic patterns we refer to
Doelman et al. (2001b). Alternative methods to study similar solutions are presented
in Iron et al. (2001) and Ward and Wei (2002, 2003).

For stationary solutions, we set Ut = Vt = 0. In (1.7) one then observes that
V varies over O(ε) length scales, so that its natural spatial coordinate is ξ = x/ε. The
inhibitor U varies over much longer scales. Although the independent variables are
spatial rather than temporal variables, it is still common to use the terminology ‘fast’
and ‘slow’: V is called the ‘fast component’ and U the ‘slow component’. In terms of
ξ , (1.7) is written as

{
Uξξ = ε4µU − ε2V 2,

Vξξ = V − V 2

U .

By taking ε → 0, the equation for U reduces to Uξξ = 0, with U = const. as the only
possible bounded (and therefore biologically relevant) solutions. Thus we take

U (ξ) = U0 = const. and Vξξ = V − V 2

U0
. (1.8)

as the fast reduced limit. For any fixed inhibitor concentration U0, the V -equation now
has a homoclinic solution

Vh(ξ ; U0) = 3

2
U0sech

(
ξ

2

)
, (1.9)

a local peak in activator concentration that decays exponentially to V = 0 as ξ → ±∞.
At O ( 1

ε

)
-distances in ξ (so O(1) in x) from the centre of the pulse, Vh is exponentially

small in ε, so that it can be approximated by V = 0. In these regions the slow reduced
limit, describing the limiting inhibitor behaviour,

V (x) = 0 and Uxx = ε2µU (1.10)

gives a leading order approximation for the pulse solution. The idea is now to construct
a singular periodic pulse solution as an alternate concatenation of two parts. The first
part is approximated by a slow solution V (x) = 0, U (x) = Aeε

√
µx + Be−ε

√
µx to

(1.10) that tends to U = U0 as x tends to some x0. The second part is a connecting
narrow pulse described by (1.8), with suitably chosen A, B, U0.
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System (1.7) with Ut = Vt = 0 is written as a system of ODEs of the form (1.2)
(with reverse roles for u and v though) so that it is suitable for direct application of
Fenichel’s theory:

u′ = p,

p′ = −v2 + ε2µu,

εv′ = q,

εq ′ = v − v2

u

(1.11)

with ′ = d
dx . The set {v = q = 0, u > 0} being a set of normally hyperbolic

fixed points of the fast (v, q) subsystem, one can take a compact critical manifold
M0 ⊂ {v = q = 0, u > 0}, as large as one wishes. It is invariant under the ε = 0
and the ε > 0 flow, so that the persisting slow manifold Mε is in fact equal to M0.
Since for ε = 0 every saddle point in M0 has 1-dimensional stable and unstable
manifolds, the 2-parameter collection of all saddle-points in M0 together have a 3D
stable manifold W s(M0) and unstable manifold W u(M0). Fenichel’s second theorem
now guarantees that these manifolds persist for small nonzero ε, see Sect. 3; the third
theorem gives an idea about how individual orbits in these manifolds tend to Mε as
x → ±∞, see Sect. 6.

The individual stable and unstable manifolds with u, v > 0 of each saddle point
in M0 coincide in a homoclinic orbit (v = Vh(ξ), q = dv

dξ
), so that the complete

unperturbed manifolds W s(M0) and W u(M0) coincide for u, v > 0. A question
now is, whether this is still true for small nonzero ε. Melnikov-type integrals give the
answer, as explained in Sect. 5. The intersection W s(Mε) ∩ W u(Mε) turns out to be
a 2D set, which is in fact a 1-parameter family of orbits that are biasymptotic to Mε.
This is what one would generically expect as the intersection of two 3D manifolds in
a 4D phase space. The intersection must consist of orbits, since it is a subset of two
manifolds that are both invariant under the flow (1.11).

For ε > 0, the flow on Mε = M0 is described by (1.10), or u′ = p, p′ = ε2µu,
and clearly has a saddle structure for µ > 0. The last question is now, whether or not
one of the orbits in Mε can be connected to one of the ’surviving’ biasymptotic orbits
to Mε, to form a skeleton for a one-pulse periodic pattern as in Fig. 2. The take-off
and touch-down points of the ε > 0 biasymptotic orbits should be calculated to find
the answer, which is yes (see Corollary 9 and Example 6.2).

The big advantage of the geometrical approach sketched here, is that it allows to
determine the basic geometrical features leading to certain orbits or patterns. Only
using the geometry of the limiting pulse solution (1.9) and of the curves of possible
take-off and touch-down points within the slow manifold Mε, it was possible to con-
struct a whole plethora of periodic and aperiodic patterns to (1.7) (see Doelman et al.
(2001b)). This is not unique for this example: especially in existence proofs for arbi-
trary periodic and aperiodic solutions, or for chaotic behaviour, the key ingredients are
mostly of a geometrical nature. See, e.g. Carpenter (1979) for a classical example in
exitable membranes and Deng and Hines (2002) for an example of food chain model
chaos.
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(a) (b)

Fig. 2 a Schematic illustration of the constructed periodic orbit and the singular skeleton structure on
which it is based (dashed lines). A single arrow means slow flow, a double arrow means fast flow. Note that
Mε = M0 can be chosen as large as one wishes, so that it will contain the orbit in {v = q = 0} ⊃ Mε

that is part of the singular orbit. b Sketch of the corresponding periodic pattern (U (x), V (x))

We end this example with a remark that the point (U, V ) = (0, 0) is a singular-
ity of the nonlinearities in (1.7). This being fairly nonbiological, it may be seen as a
modelling mistake. But anyway, it is possible to control these singularities and extend
M, so that amongst others a pulse-solution that is homoclinic to (U, V ) = (0, 0)

can be constructed, similar to the one in Example 6.2. See Doelman et al. (2001a)
for the details, or Doelman and van der Ploeg (2002) for constructions in two spatial
dimensions.

2 Fenichel’s first theorem

In general it is natural to expect that the set f (u, v, 0) = 0 of critical points of (1.3)
is, at least locally, an l-dimensional manifold in Rk+l , since it is obtained by solv-
ing k equations and f was assumed to be sufficiently smooth. If indeed M0 is an
l-dimensional manifold contained in f (u, v, 0) = 0, and M0 is normally hyperbolic,
then Fenichel’s first theorem says that this manifold persists for small nonzero ε as a
manifold Mε with a slow flow on it. The theorem is as follows.

Theorem 2 (Fenichel) Suppose M0 ⊂ { f (u, v, 0) = 0} is compact, possibly with
boundary, and normally hyperbolic, that is, the eigenvalues λ of the Jacobian ∂ f

∂u
(u, v, 0)|M0 all satisfy Re(λ) �= 0. Suppose f and g are smooth. Then for ε > 0 and
sufficiently small, there exists a manifold Mε, O(ε) close and diffeomorphic to M0,
that is locally invariant under the flow of the full problem (1.1).

The statement that Mε is locally invariant means in practice that it is ‘invari-
ant’ in the sense that one wishes: orbits on Mε can only leave this manifold in the
slow direction, via the boundary of Mε, and not via the directions ‘perpendicular’ to
Mε.

Theorem 2 implies that the restriction of the flow (1.1) to Mε is a small perturbation
of the flow of the limiting problem (1.4). This can be easily seen in the case that M0 is
given by a graph of a function p0(v) (which is at least locally true since the Jacobian
∂ f
∂u (u, v, 0)|M0 is invertible by the normal hyperbolicity assumption). If
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M0 = {(u, v) ∈ Rk+l |u = p0(v)}

with v ∈ C , C ⊂ Rl compact, then the perturbed manifold Mε is described by a
perturbation pε of p0:

Mε = {(u, v) ∈ Rk+l |u = pε(v)}.

Substituting this into the slow scaling (1.2), one sees that the flow on Mε is given by

v′ = g(pε(v), v, ε). (2.1)

This is a slow flow, since it is O(1) with respect to the slow time τ . Moreover, if ε → 0
this flow indeed has the limit v′ = g(p0(v), v, ε).

For more precise statements about the smoothness of Mε and pε and about local
invariance we refer to Fenichel (1979) and Jones (1995).

2.1 Application of Fenichel’s first theorem

A 2-dimensional predator–prey model, that can easily be analysed by standard phase
plane analysis, serves as a first illustration of Theorem 2.

Example 2.1 Consider a classical Rosenzweig–MacArthur predator–prey model (May
1972; Shimazu et al. 1972) as in Rinaldi and Muratori (1992) that is in a rescaled form
given by

u̇ = u

(
1 − u − av

u + d

)
,

v̇ = εv

(
au

u + d
− 1

)
.

(2.2)

Here the numbers of prey u and predators v are both non-negative. They are scaled
with the constant predator-free carrying capacity of the prey. The parameter ε > 0 is
the ratio between the linear death rate of the predator and the linear growth rate of the
prey, and the positive parameters a and d determine the impact of predation on the
prey.

If the prey reproduce much faster than the predators, and the predator is rather
aggressive but is in comparison not so efficient, then the ratio ε becomes a small
parameter, see Rinaldi and Muratori (1992). This means that (2.2) is of the form

(1.1), with f (u, v, ε) = u(1 − u) − auv
u+d and g(u, v, ε) = v

(
u

u+d − 1
)

. Note that

g is not well-defined in u = −d. Although u = −d is a nonbiological value this
is illustrative: g does not satisfy the smoothness assumptions in Theorem 2. In the
ε = 0 limit, the nullcline {(u, v)| f (u, v, 0) = 0, u ≥ 0, v ≥ 0} consists of the parts
M0

0 := {(u, v)|u = 0, v ≥ 0} and M1
0 := {

(u, v)|v = 1
a (1 − u)(u + d), u, v ≥ 0

}
.

These critical manifolds consist of all possible prey equilibria in case of a constant,
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Fig. 3 Configuration of the slow manifolds for system (2.2) with 0 < d < 1 and a > (1+d)/(1−d). The
periodic orbit is the one constructed in Rinaldi and Muratori (1992): the touch down point Td is determined
by the v-coordinate of the fold (ū, v̄) and the take off point To is calculated in Rinaldi and Muratori (1992);
see Sect. 4

but arbitrary predator population. The manifolds are normally hyperbolic everywhere

but in
(
0, d

a

) ∈ M0
0 ∩ M1

0 and (ū, v̄) =
(

1−d
2 ,

(1+d)2

4a

)
∈ M1

0 for d < 1.

On M1
0 the flow with respect to time τ = εt can be obtained by writing M1

0 as
a graph of a function in the slow variable v. If 0 < d < 1, this cannot be done in a
global way, so we write M1

0 as the union of two hyperbolic parts and a third, small
part around the nonhyperbolic fold point (ū, v̄), i.e. as M1

0 = M+
0 ∪ M−

0 ∪ B(v̄, δ).
Here 0 < δ � 1,

M±
0 :=

{
(u, v)|u = u±(v) := 1

2
(1−d ±

√
(1 + d)2−4av), u ≥ 0, 0 ≤ v ≤ v̄− δ

2

}

and B(v̄, δ) is an open δ-neighbourhood within M1
0 of (ū, v̄). If d ≥ 1 we write

M1
0 = M+

0 , so that the flow can for all d > 0 be written as v′ = v
(

u(a−1)−d
u±(v)+d

)
on

M±
0 .
The flow on M1

0 has critical points v = 0 (repelling, on the branch M+
0 ) and

v = d(a−1−d)

(a−1)2 , which is a repeller on M−
0 if a > 1+d

1−d and an attractor on M+
0 if

1 < a < 1+d
1−d (see Fig. 3).

The biological meaning of this flow is the following. Assume that for a constant
predator population v1 �= v̄ the prey is in an equilibrium state (u1, v1) ∈ M±

0 . If
the size of the predator population now starts to change slowly to a new value v2, a
new equilibrium (u2, v2) ∈ M±

0 will form, according to the predator–prey interaction
on the nullcline M0±. Only if v passes the value v̄, this will not be a continuous
process.

Theorem 2 now assures that for sufficiently small ε �= 0 the critical manifolds M±
0

persist as perturbed manifolds M±
ε that are invariant for the flow with ε �= 0. The slow

flow on M±
ε is approximated by the limiting slow flow v′ = v

(
u(a−1)−d
u±(v)+d

)
. In terms
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of biology, if the predator population is not constant but varies slowly, the dynamics
for 0 < ε � 1 is still predominantly determined by the predator–prey interaction on
the perturbed versions M±

ε of nullclines M±
0 .

Remark 3 A fold, like (ū, v̄) in the above example, is nonhyperbolic and therefore
needs special attention. In many applications it is not mentioned that Theorem 2 does
not apply in such points. Often without any consequences since in general fold points
that are important for the dynamics are jump points. There the flow jumps off the slow
manifold and starts to follow the fast vector field. Such jumping behaviour is part
of the mechanics behind the classical relaxation oscillations (see, e.g. Murray 1989).
However, it must not be overlooked that less-intuitive behaviour can occur as soon
as the slow flow (1.4) on { f = 0} has a critical point at or very close to the fold:
so-called canards can exist. For a thorough understanding of the (sometimes rather
nonintuitive) flow for small nonzero ε, geometric singular perturbation theory can be
extended using blow-up or geometric desingularisation techniques, which have been
applied successfully in various situations where hyperbolicity is lost. See Dumortier
(1993), Dumortier and Roussarie (1996), Krupa and Szmolyan (2001), Popović and
Szmolyan (2004), Huber and Szmolyan (2005) and references therein. Clear expla-
nations, including an application to the Hodgkin–Huxley based FitzHugh–Nagumo
model (FitzHugh 1960; Nagumo et al. 1962) (see also Murray 1989), are provided
in Wechselberger (2005). Earlier successful attempts to understand this behaviour
used nonstandard analysis (Bénoît et al. 1981; Diener 1984) or matched asymptotic
expansions (Eckhaus 1983).

Example 2.2 If the parameter a in (2.2) is also small and of order O(ε), the influence
of predation on the prey is small and the system becomes

u̇ = u(1 − u) − ε
ãuv

u + d
,

v̇ = εv

(
au

u + d
− 1

)
.

(2.3)

In the ε = 0 limit the set {(u, v)| f (u, v, 0) = 0, u ≥ 0, v ≥ 0} consists of the parts
M0

0 := {(u, v)|u = 0, v ≥ 0} and M1
0 := {(u, v)|u = 1, v ≥ 0}. Both critical

manifolds are normally hyperbolic and all conditions in Theorem 2 are satisfied. Thus
for 0 < ε � 1 there are locally invariant slow manifolds M0

ε and M1
ε that are O(ε)

close and diffeomorphic to M0
0 and M1

0, respectively.
Informally, it is immediately clear that M0

ε = M0
0, since the set {u = 0, v ≥ 0}

is still locally invariant for ε > 0 (in fact invariant under the forward flow). However,
the set {u = 1} is no longer invariant for ε > 0, so that M1

ε �= M1
0. Using its invari-

ance, the perturbed manifold M1
ε can be approximated by asymptotic expansions as

follows.
Under the assumption that the perturbed manifold M1

ε can be described as a
graph {(u, v)|u = pε(v), u ≥ 0, v ≥ 0}, this manifold is invariant under the flow
of (2.3) if

dpε

dv
v̇ = pε(v)(1 − pε(v)) − ε

ãvpε(v)

pε(v) + d
,
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so, by filling in v̇, if ε
dpε

dv
v

(
pε(v)

pε(v) + d
− 1

)
= pε(v)(1 − pε(v)) − ε

ãvpε(v)

pε(v) + d
.

Now expand

pε(v) = p0(v) + εp1(v) + ε2 p2(v) + · · · ,

where p0(v) = 1 describes M1
0. Then gathering orders of ε results in

O(1) : 0 = p0(1 − p0)

O(ε) : 0 = −p0 p1 − ãvp0

p0 + d

O(ε2) : dp1

dv
v

(
ap0

p0 + d
− 1

)
= −p0 p2 − p2

1 − ãvp1

p0 + d
+ ãvp0 p1

(p0 + d)2 , etc.

This yields the approximation

pε(v) = 1 − ε
ãv

1 + d
+ ε2

(
ã(a − 1 − d)v

(1 + d)2 − ã2v2

(1 + d)3

)
+ · · ·. (2.4)

Clearly, this approximation is only valid for v < O(1/ε), since otherwise the per-
turbation terms become of order O(1). Following this same procedure for M0, one
would indeed find M0

ε = M0
0 up to any order in ε. For ε = 0 the limit (1.4) prescribes

a the singular slow flow on M1
0: v′ = v(a−1−d)

1+d . For sufficiently small nonzero ε,
the flow on M1

ε is a perturbation of this flow, that can be approximated by inserting
u = pε(v) with pε(v) given by (2.4) into the equation for v′.

The above example is very simple, so that the benefit of an expansion like (2.4) is
not immediately clear. For many (biological) problems, the dynamics on M is how-
ever of great importance. Already when the dimensions are slightly higher, e.g. with
a 2 or 3-dimensional slow manifold, it can be very useful to describe Mε as a graph
{(u, v)|u = pε(v), u ≥ 0, v ≥ 0} and find an approximation as in (2.4). In Beck
et al. (2006) for instance, a travelling wave is sought as a solution to a bioremediation
model. This wave corresponds to the motion of a biologically active zone in which
microorganisms consume contaminated soil and an added nutrient. The corresponding
phase space is 5-dimensional and comprises a 3-dimensional slow manifold, within
which even slower behaviour occurs. For the construction of the wave, it was necessary
to find an expansion for Mε and even to apply Fenichel theory a second time within
Mε.

On the other hand, in many cases the ε = 0 limiting flow (1.4) on M0 combined
with global geometrical properties of the fast limiting system (1.3) suffice to draw
conclusions about orbits for 0 < ε � 1.

2.2 More general notion of slow manifold

It is worth mentioning here, that Fenichel’s original work (Fenichel 1971) covered
more general invariant manifolds than only critical manifolds of fixed points of (1.3).
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The theory for instance also applies to continuous families of periodic orbits of (1.3),
parameterised by the slow variable or parameter v. Such family is often also called
a slow manifold. In practice it may be a cylindrical manifold P0 filled with periodic
orbits, that perturbs for 0 < ε � 1 to a nearby manifold Pε with a still almost periodic
flow on it, now with a slow drift determined by (2.1).

Bursting phenomena in excitable media (Keener and Sneyd 1998; Rubin and
Terman 2002; Terman 1991) are important examples in which this is heavily used: the
spiking behaviour results from a solution that winds several times around such man-
ifold Pε. The fast ‘jumps’ are inherited from the ε = 0 fast periodic orbits, whereas
the slow drift along Pε causes the spikes to be separated.

See, e.g. Best et al. (2005) for an application to a pacemaker network, or Higuera
et al. (2005) for an application to Faraday waves.

3 Fenichel’s second theorem: stable and unstable manifolds

Fenichel’s first theorem only gives a very local picture of the system (1.1) for small
nonzero ε. It guarantees under some conditions the existence of the slow manifold,
and gives an approximation for the flow on this slow manifold. We however aim
for a more global picture, that in particular addresses the interplay between the slow
manifold and the surrounding phase space. In general, such interplay takes place via
stable and unstable manifolds. Those are the objects of concern in Fenichel’s second
theorem.

It is well-known (see for instance Guckenheimer and Holmes 1983, sec. 1.7 or
Wiggins 1990, sec 1.2C) that hyperbolic fixed points of ODEs persist under small
perturbations, together with their stable and unstable manifolds.The theorem below
states that, likewise, a normally hyperbolic critical manifold M0 also persists under
a small perturbation together with its stable and unstable manifolds.

Consider the Eq. (1.1). Suppose that for ε = 0 the normally hyperbolic critical
manifold M0 ⊂ { f (u, v, 0) = 0} has an l +m-dimensional stable manifold W s(M0)

and an l + n-dimensional unstable manifold W u(M0), with m + n = k. In other
words, suppose that the Jacobian ∂ f

∂u (u, v, 0)|M0 has m eigenvalues λ with Re(λ) < 0
and n eigenvalues with Re(λ) > 0. Then the following holds:

Theorem 4 (Fenichel) Suppose M0 ⊂ { f (u, v, 0) = 0} is compact, possibly with
boundary, and normally hyperbolic, and suppose f and g are smooth. Then for ε > 0
and sufficiently small, there exist manifolds W s(Mε) and W u(Mε), that are O(ε)

close and diffeomorphic to W s(M0) and W u(M0), respectively, and that are locally
invariant under the flow of (1.1).

The manifolds W s(Mε) and W u(Mε) are still ‘stable’ and ‘unstable’ manifolds, as
the notation already suggests, but in a different sense, as Mε is no longer a set of
fixed points. They have the property that solutions in W s(Mε) decay to Mε at an
exponential rate in forward time, and solutions in W u(Mε) decay to Mε at an expo-
nential rate in backward time (see Sect. 6). However, one should be careful here, since
again the local invariance implies that the solutions only decay to Mε as long as they
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stay in a neighbourhood of the compact, possibly bounded Mε. We refer to the precise
formulation and proof of decay estimates by Jones (1995).

The manifolds W s(Mε) and W u(Mε) have respective dimensions l +m and l +n,
so that indeed the stability properties of M0 are inherited by Mε. When mn > 0,
Theorem 2 can be concluded from this theorem by taking the intersections of W s(Mε)

and W u(Mε); see Jones (1995).

3.1 Application of Fenichel’s second theorem

In the 2-dimensional Examples 2.1 and 2.2, Theorem 4 in fact only gives information
that could as well be deduced by simply looking at the sign of f at either side of
the curves f = 0. For d < 1, ε = 0 the 1-dimensional critical manifolds M+

0 is
attracting, with 2-dimensional stable manifold W s(M+

0 ), and M−
0 is repelling, with

2-dimensional unstable manifold W u(M−
0 ). By Theorems 2 and 4 a normally hyper-

bolic, attracting (repelling) manifold is perturbed to an attracting (repelling) manifold
invariant for the flow with ε > 0. More precisely, Theorem 4 states that, for ε > 0
and sufficiently small, the manifolds W u,s(M±

0 ) persist as O(ε) perturbed manifolds
W s(M+

ε ) and W u(M−
ε ).

However, since the phase space is also 2-dimensional, the manifolds are of codi-
mension-0 and can therefore not really change position: the dimensions guarantee that
for ε > 0 the stable and unstable manifolds W s(M+

ε ) and W u(M−
ε ) still coincide for

b
a < v < v̄, as was the case for ε = 0.

In higher dimensions there is of course more freedom. In the sequel we sketch what
can be concluded by Theorems 2 and 4 about manifolds with nonzero codimension,
and address some questions that remain open.

The first two examples are not directly modelling a (biological) system, but are
however related to the Ginzburg–Landau equation that is used in a whole plethora
of applications; see Aranson and Kramer (2002) and Mielke (2002). As described in
Doelman and Holmes (1996), use of a travelling wave Ansatz in seeking solutions to
that equation, followed by a reduction based on SO(2) (phase) equivariance, leads to
the study of the following 3-dimensional ODEs.

Example 3.1 Consider the 3-dimensional problem

ẋ = y,

ẏ = x − x2 + fi (x, y, z; ε, µ),

ż = εg(x, y, z; ε, µ),

(3.1)

where µ denotes a vector of O(1) parameters and 0 ≤ ε � 1. We make the explicit
choices µ = (a, d) with d > 0 and g = 1 − d2z2 with either f1 = y(ε + az) or
f2 = y(z2 + εz − a) and are interested in what happens in the part of the phase
space that is bounded by the invariant planes z = ± 1

d . The system is of the form (1.1)
with u = (x, y), v = z. For ε = 0 both systems contain two manifolds of equilibria,
M0 = {

x = y = 0, |z| ≤ 1
d

}
and N0 = {

x = 1, y = 0, |z| ≤ 1
d

}
. We focus on M0,

which is normally hyperbolic. According to Theorem 2 the compact M0 persists as
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(a) (b) (c)

Fig. 4 Phase portraits illustrating Examples 3.1, 3.2 and 5.1, with M = M0 or M = Mε as appropriate.
The distances 	 are O(1) for system (3.1), whereas they are O(ε) for system (3.2) or (5.6)

a normally hyperbolic slow manifold Mε that is invariant under the flow of (3.1). In
theory this manifold is O(ε) close to M1

0, but again the set
{

x = y = 0, |z| ≤ 1
d

}
is

still invariant under the flow of (3.1) for nonzero ε, so that Mε = M0. The flow on
Mε is given by ż = ε(1 − d2z2). The matrix ∂ f

∂u (u, v, ε = 0)|M0 has eigenvalues
λ±(z, a) that satisfy λ− < 0 < λ+, so M0 has 2-dimensional stable and unstable
manifolds W s(M0) and W u(M0).

The simple form of (3.1) permits to analyse the global behaviour of W s(M0) and
W u(M0) by studying the ε = 0 planar subsystems in planes {z = z̄} with |z̄| ≤ 1

d .
We are interested in those pieces of W s(M0) and W u(M0) that lie within the region
x > 0.

Depending on the sign of fi (x, y, z̄; 0, a), a planar subsystem is damped or forced.
When fi (x, y, z̄; 0, a) = 0, the subsystem contains a homoclinic orbit connecting the
point (0, 0, z̄) to itself. In terms of the manifolds W s(M0) and W u(M0) this yields
the following.

1. For f1 = y(ε + az), ε = 0 and a �= 0 the manifolds W s(M0) and W u(M0)

intersect in the plane z = 0 and do not intersect outside this plane. The relative
positions of W s(M0) and W u(M0) depend on the sign of a, and manifolds inter-
sect in a transversal way (the angle between them can for instance be measured
in the plane 
 := {x > 1, y = 0}; see Fig. 4b). If a = 0, then the manifolds
coincide, as in Fig. 4a.

2. For f2 = y(z2 + εz − a), ε = 0 and 0 < a < 1
d2 the manifolds W s(M0)

and W u(M0) intersect transversally in the planes z = ±√
a and do not intersect

outside these planes. For a < 0 the manifolds do not intersect and W u(M0) winds
around W s(M0). Finally, for a = 0 the manifolds are tangent in the plane z = 0.

By Theorem 4 the manifolds W s(M0) and W u(M0) persist as perturbed manifolds
W s(Mε) and W u(Mε), that are O(ε) close and diffeomorphic (but not equal) to
W s(M0) and W u(M0). Taking the flow on Mε into consideration, we see that all
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orbits in W s(Mε), except the one in the plane z = − 1
d , lie in fact in the stable manifold

W s
(
0, 0, 1

d

)
, and all orbits in W u(Mε) expect the one in z = 1

d lie in W u
(
0, 0,− 1

d

)
.

The two remaining orbits are the (strong) stable manifold of
(
0, 0,− 1

d

)
and unsta-

ble manifold of
(
0, 0, 1

d

)
. Concerning the intersections of W s(Mε) and W u(Mε) we

conclude:

1. Since the intersection for a �= 0 between W s(M0) and W u(M0) at z = 0 was
transversal and the perturbed manifolds W s(Mε) and W u(Mε) are O(ε) close
and diffeomorphic to W s(M0) and W u(M0), one can use the implicit function
theorem to conclude that the manifolds W s(Mε) and W u(Mε) still intersect
precisely once, in a transversal way, for small enough nonzero ε. The intersec-
tion must necessarily be a heteroclinic orbit γ (t) connecting the fixed points
s± := (0, 0,± 1

d ). If a = 0, no conclusions can be drawn solely from Fenichel’s
theorem.

2. For a = O(ε2) > 0, the zeroes of the unperturbed function f2 are only O(ε) apart,
so the implicit function theorem cannot guarantee persistence of the intersections
W s(M0) ∩ W u(M0) under O(ε) perturbations of f2. For a = O(ε2) < 0, one
can neither conclude that there are no intersections W s(Mε)∩W u(Mε) for small
ε > 0.
For larger 0 < a < 1

d2 , persistence can however be concluded for sufficiently
small ε > 0: there are two transversal intersections W s(Mε) ∩ W u(Mε) that
are both heteroclinic orbits γ ±(t) connecting the fixed points s±, as illustrated in
Fig. 4c. For larger negative a there are still no intersections. Somewhere between
these cases there must necessarily be a transitional situation at some a = a∗, for
which the manifolds are tangent in one single heteroclinic orbit.

Example 3.2 Consider again (3.1), but now with a function fi that is of order O(ε),
which makes it in a sense even simpler:

ẋ = y,

ẏ = x − x2 + ε f (x, y, z;µ),

ż = εg(x, y, z;µ),

(3.2)

with µ again a vector of O(1) parameters. It is of the form (1.5): for ε = 0 Eq. (3.2) is
completely integrable, and solutions lie on the intersections of planes z = z0 = const.
with level sets of the function

H(x, y) = y2

2
− x2

2
+ x3

3
, (3.3)

which is the Hamiltonian for the first two components of (3.2) with ε = 0; see Fig. 4a.
Independent of the choice of f and g, (3.2) has for ε = 0 a 1-parameter family of

homoclinic orbits

x0(t) = 3

2
sech2

(
t

2

)
, y0(t) = ẋ0(t), z = z0 (3.4)
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to fixed (saddle) points on M0 = {x = y = 0}. This normally hyperbolic invariant
manifold persists for sufficiently small ε, along with its stable and unstable manifolds
W s,u(M0), by Theorems 2 and 4. The structure of (3.2) again implies that Mε = M0.
However, no matter what choices for f and g are made, nothing may be concluded
about the structure of W s,u(Mε) and possible intersections solely by application of
Fenichel’s second theorem. Conclusions can be drawn via adiabatic Melnikov theory
(Robinson 1983; Wiggins 1990; Guckenheimer and Holmes 1983), see Sect. 5.

Example 3.3 Consider a tritrophic variant of the Rosenzweig–MacArthur food chain
model (Rosenzweig and MacArthur 1963) as proposed by Deng (2001). The food
chain model is of the type (1.6) and comprises a logistic prey x , a Holling type II
predator y and a Holling type II top-predator z (Holling 1959).

ε
dx

dτ1
= x

(
1 − x − y

β1 + x

)
:= x f (x, y),

dy

dτ1
= y

(
x

β1 + x
− δ1 − z

β2 + y

)
:= yg(x, y, z),

dz

dτ1
= δz

(
y

β2 + y
− δ2

)
:= δzh(y),

(3.5)

where ε and δ are two independent small parameters (0 < ε, δ � 1), reflecting a
drastic trophic time diversification. We do not intend to study this system thoroughly,
but only to demonstrate the use of Fenichel’s first two theorems in this example. For
a much completer analysis, including existence proofs for various types of chaotic
behaviour in both the 0 < ε, δ � 1 regime and in a regime with larger δ, we refer to
Deng (2001) and Deng and Hines (2002, 2003). Muratori and Rinaldi (1992) essen-
tially studied the same model, but they imposed the three time-scales by inserting
small parameters in appropriate places, whereas Deng really rescaled the system so
that it is clear what the assumption 0 < ε, δ � 1 means for the original parameters in
Rosenzweig and MacArthur (1963).

Dynamics in system (3.5) occur at three different time-scales t , τ1 = εt and τ2 =
εδt . The system (3.5) is written with respect to the intermediate time-scale τ1. Evolu-
tion on time-scales t and τ2 is respectively called fast and slow.

Without any predefined relation between ε and δ, it is a priori clear that 0 < εδ < ε,
so that x is the fast variable, y the intermediate one, and z the slow one. But one can-
not analyse the system (3.5) by asymptotic expansions in the small parameters. For
example, one does not know whether δ2 < ε or not. The system is however suitable
for application of geometric singular perturbation techniques. The system above may
as long as ε, δ �= 0 equivalently be written as a fast or a slow system:

dx

dt
= x f (x, y), εδ

dx

dτ2
= x f (x, y),

dy

dt
= εyg(x, y, z), (fast) and δ

dy

dτ2
= yg(x, y, z), (slow)

dz

dt
= εδzh(y),

dz

dτ2
= zh(y).

(3.6)

123



364 G. Hek

Putting either one of the small parameters equal to zero, while keeping the other
fixed but nonzero, two different sets of limiting equations are obtained, both fitting
immediately in the framework of Theorems 2 and 4. The systems

dx

dt
= x f (x, y), 0 = x f (x, y),

ε = 0 : dy

dt
= 0, (fast) and

dy

dτ1
= yg(x, y, z), (interm.)

dz

dt
= 0,

dz

dτ1
= δzh(y),

(3.7)

respectively, describe the limiting fast flow towards or away from the equilibrium sur-
face {x f (x, y) = 0} and the limiting interaction between top-predators and predators
on this surface. The systems

ε
dx

dτ1
= x f (x, y), 0 = x f (x, y),

δ = 0 : dy

dτ1
= yg(x, y, z), (interm.) and 0 = yg(x, y, z), (slow)

dz

dτ1
= 0,

dz

dτ2
= zh(y)

(3.8)

describe the predator–prey interaction for a constant top-predator population, with
equilibrium curves {x f (x, y) = 0, yg(x, y, z) = 0}, and the limiting dynamics of
the top-predator on these curves. When both ε, δ → 0, the two intermediate limits
become the same limit that is naturally associated to the intermediate scaling in (3.5).

The dynamics of (3.5) is predominantly determined by the interaction of predators
and top-predators on the (attracting parts) of the nullclines {x = 0} and { f = 0}.
The ε = 0 limits (3.7) are most suitable to study both the fast motion to (or from)
these nullclines and the interaction on them. Therefore we start our analysis with
the ε = 0 fast limiting system, in which the sets {x = 0} and { f = 0} are 2-
dimensional critical manifolds. Both are normally hyperbolic everywhere but in their

intersection line {x = 0, y = β1} and in the fold
{

x = 1−β1
2 , y = (1+β1)

2

4

}
on

{ f = 0}.
To study the dynamics in the positive octant, Theorems 2 and 4 can be applied

to compact pieces M±
0 ⊂ { f = 0} and N±

0 ⊂ {x = 0}, that avoid the non-
hyperbolic lines above, and can be taken as large as one wants. Take for instance
M−

0 := { f = 0,	 ≤ x ≤ 1−β1
2 − 	, 0 ≤ z ≤ M}, M+

0 := { f = 0,
1−β1

2 + 	 ≤
x ≤ 1, 0 ≤ z ≤ M} and N−

0 := {x = 0, 0 ≤ y ≤ β1 − 	, 0 ≤ z ≤ M},
N+

0 := {x = 0, β1 +	 ≤ y ≤ M, 0 ≤ z ≤ M}, where 	 is a small arbitrary constant
and M a large one, independent of ε (see Fig. 5a).

The intermediate manifolds M+
0 and N+

0 are attracting with 3D stable mani-
folds, and M−

0 and N−
0 are repelling with 3D unstable manifolds. Theorems 2 and

4 imply that for small ε > 0 there exist manifolds M±
ε and N±

ε , O(ε) close to
M±

0 and N±
0 , again with 3D (un)stable manifolds. This gives the opportunity to
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(a) (b)

Fig. 5 The configuration of equilibrium manifolds determines the flow in two systems with three time-
scales. Three arrows indicate a fast trajectory, two arrows an intermediate one, and a single arrow means
a slow trajectory. a The situation for (3.5) for certain parameter regions. The orbit γ2 keeps following the
intermediate manifold {x = 0} after it loses stability at y = β1. The jump position y = yP is calculated
using Pontryagin’s delayed loss of stability. b The configuration for (1.6) in Kunpasuruang et al. (2002),
with a limit cycle that is totally determined by the three manifolds and their stability types

construct singular orbits for ε = 0, consisting of fast parts off M±
0 , N ±

0 , and slow
or intermediate parts on M±

0 , N ±
0 . The fast parts are described by the fast limit

in (3.7), the parts on M±
0 , N±

0 by the intermediate limit in (3.7), which is again
a singularly perturbed system since 0 < δ � 1. As soon as an ε = 0 fast orbit
reaches M+

0 or N+
0 , the intermediate dynamics on either one of these manifolds,

determined by the equilibrium states y = 0 and g = 0, comes into play. To pro-
ceed with the construction of a singular orbit, now the limit δ = 0 can be con-
sidered, and Fenichel’s theorems can be applied to the flow restricted to M+

0 or
N+

0 . Everywhere but in their intersection point, the curves { f = 0, g = 0} and
{ f = 0, y = 0} are normally hyperbolic for the δ = 0 flow restricted to { f = 0}.
For this restricted flow, { f = 0, g = 0} is repelling and { f = 0, y = 0} is attract-
ing.

Now, if an orbit of interest hits M+
0 , it will either tend to { f = 0, y = 0} and

then follow the slow flow along that line, or to the fold line
{

x = 1−β1
2 , y = (1+β1)

2

4

}
,

where M+
0 loses its normal hyperbolicity. See orbits γ1 and γ2 in Fig. 5a, respectively.

Likewise, if an orbit hits N+
0 , it will tend to {x = 0, y = β1} where N+

0 loses its
normal hyperbolicity.

From a biological modelling and analysis point of view, the following can be con-
cluded from this example. Firstly, it shows that Fenichel’s Theorems 2 and 4 provide a
solid basis for the nullcline analysis that is commonly used to understand the dynamics
in this kind of systems. Secondly, the normal-hyperbolicity criterium tells when and
where such analysis should not be used. But thirdly, it becomes clear that for most
(biologically interesting) orbits, more than just Theorems 2 and 4 is needed to know

their fate: Unless the parameters in (3.5) are such that h
(

y = (1+β1)
2

4

)
= 0, the fold

of { f = 0} consists of jump points only, so that the flow jumps off M+
0 as soon as it

reaches the fold, and starts to follow the fast vector field until it hits N+
0 . See Remark 3.

When the intermediate part of an orbit reaches the intersection (or transcritical) line
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{x = 0, y = β1}, it will keep following {x = 0} although that manifold has become
unstable as soon as y < β1. See again orbit γ2 in Fig. 5a. This is related to Pontryagin’s
delayed loss of stability and will be shortly discussed in Sect. 4.3.

Remark 5 In Kunpasuruang et al. (2002) a hormone secretion model of the type (1.6)
is presented. Is is proved that in some parameter regimes the configuration of the
equilibrium manifolds f = 0, g = 0 and h = 0 is as in Fig. 5b. The manifold f = 0
is bistable, g = 0 is attracting, and h = 0 is repelling, so that a construction as above
in Example 3.3 immediately yields the illustrated limit cycle.

Remark 6 In Muratori and Rinaldi (1992) many figures illustrate possible singular
orbits that can be constructed for (3.5), depending on the parameters and initial con-
ditions. Although they are very clear, it may be confusing that in that paper { f = 0}
is called the fast manifold and {g = 0} is called the intermediate manifold. The names
chosen above in Example 3.3 better reflect the standard name ‘slow manifold’: on
{ f = 0} the intermediate time-scale is dominating, hence the name intermediate
manifold; on {g = 0} the flow is slow, hence its name slow manifold.

4 Construction of global orbits

As we saw, Fenichel’s first two theorems give information about the nature and position
of certain lower-dimensional submanifolds of the phase space. In certain situations
this information in itself is very useful to understand the dynamics of systems of type
(1.1). This is for instance the case if the critical manifold M is attracting so that the
dynamics will after a certain transition time settle on M. Especially when the dimen-
sions are high, one can imagine that such knowledge can help to reduce the number of
‘important’ dimensions tremendously: the system can be understood by just studying
the flow on M (Gear et al. 2005). In general however, the orbits that are of (biologi-
cal) interest are of a different nature. One can think of periodic solutions to (1.1) that
consist of repeated fast ‘spikes’ with slow rest phases in between. The corresponding
orbits in (u, v)-phase space do not live solely on a single slow manifolds M and its
stable and unstable manifolds, but can however often be constructed using Fenichel’s
theorems together with additional information. The next two sections are dedicated to
two useful tools to gain such additional knowledge: (i) Melnikov methods to compute
intersections of manifolds, and (ii) Fenichel’s third theorem to compute so-called base
points on a slow manifold.

Here we briefly mention a couple of other geometrical and analytical tools that are
related to Fenichel’s theory and to the examples we present. Some other important
methods are discussed in Sect. 7.

4.1 Fenichel normal form

The Fenichel normal form is particularly useful when estimates of the flow near a
slow manifold M are needed. If one for instance aims to construct a Poincaré map-
ping for the flow in order to prove existence of a periodic orbit that passes close to
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M, then this mapping will probably be a composition of two or more maps: one
that describes the essentially linear flow near M and one that describes the global
return behaviour imposed by, e.g. an ε = 0 periodic orbit. See various constructions
in Guckenheimer and Holmes (1983), Kuznetsov (1995), or Terman (1991) for an
example.

The flow near a normally hyperbolic manifold M is necessarily almost linear, and
can within a certain neighbourhood be linearised by straightening out M and its stable
and unstable manifolds. The manifolds can then be transformed to coordinate planes.
The stable and unstable manifolds consist of Fenichel fibers (see Sect. 6) which in
turn may be ‘normalised’ in some sense, too. See Jones (1995) for a very clear expla-
nation.

4.2 Transversally intersecting manifolds

Suppose that one aims to construct a solution to (1.1) of which the corresponding ε = 0
limiting singular orbit consists of several slow and fast pieces, as in Example 1.1. One
says that such singular orbit persists for small nonzero ε, if there is an ε0 such that
the construction is valid for any 0 < ε < ε0. Transversality will often be part of a
persistence proof: whenever intersecting manifolds are used in the construction, it is
necessary that their mutual intersections are transversal, so that the Implicit Function
Theorem implies persistence of the intersections under small perturbations. Intuitively
it is clear why this is important: the manifolds used are only known up to O(ε) from
Fenichel’s theorems, and indeed one obtains validity of the construction for an open
ε-set and not just for a single small ε.

We will not discuss this issue in more detail here, but refer to Examples 5.1, 6.1
and 6.2 for applications. Another good example is the construction of the FitzHugh–
Nagumo pulse in Jones (1995). There the speed c of the pulse is considered as a
fourth variable, and this allows a completely geometrical construction that includes
the determination of jump positions at the slow manifolds. The validity of the con-
struction heavily builds on transversal intersections of manifolds.

4.3 Calculation of time spent near a slow manifold

If part of an orbit is a subset of the stable manifold W s(M) of a slow manifold
M, then in forward time, the orbit will either get exponentially close to the man-
ifold and never leave its neighbourhood again, or it will finally leave M via its
boundary or a nonhyperbolic subset. In predator–prey models with logistic prey,
the latter often occurs at the trivial ‘no prey’ equilibrium manifold. See the Exam-
ples 2.1 and 3.3 and the corresponding Figs. 3 and 5. In Example 2.1, the manifold
{u = 0} is stable above, and unstable below the intersection or transcritical point
v = d

a . In an ε-neighbourhood of (0, d
a ), the derivative u̇ of the fast variable u is

however O(ε), whereas the derivative v̇ of the slow variable is O(1), so that an orbit
that passes (0, d

a ) will first continue in a predominantly downward direction until u̇
becomes O(1) and v̇ becomes O(ε). This is called Pontryagin’s delayed loss of stabil-
ity. The singular limiting orbit jumps off {u = 0} at a take off point To that is closely
related to the touch down point Td : since the flow near {u = 0} is almost linear, both
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above and below v = d
a , the amount of time spent to get exponentially close to {u = 0}

determines the amount of time to leave the neighbourhood of {u = 0} again. To and
Td are related by an integral, see Rinaldi and Muratori (1992).

Similarly, in Example 3.3, the intermediate manifold {x = 0} loses stability at y =
β1. The orbit γ2 keeps following this intermediate manifold until the fast flow becomes
dominant again at y = yP . The Pontryagin value yP is calculated in Deng (2001).

In the above examples, the slow manifolds are either fully stable, or fully unstable,
so that the (local) phase space is completely covered by their stable or unstable man-
ifold. If a slow manifold M is of saddle type though, then most orbits in phase space
do not lie on its stable or unstable manifolds W s,u(M). Still, it is important to know
these manifolds, since any orbit that is O(ε) close to a stable manifold W s(M0) does
in general not limit on M, but will reach an O(ε) neighbourhood of M within finite
time. To know the fate of orbits and manifolds as they pass near such slow manifold,
geometric methods exist that do not depend on a calculation like Pontryagin’s one.
See the discussion in Sect. 7 and the FitzHugh–Nagumo example in Jones (1995).

5 Intersections of manifolds: Melnikov methods

Above we treated two examples in which the problem (1.1) of our interest is a small
perturbation of an integrable system that contains a homoclinic manifold in the limit-
ing case (1.3), consisting of a continuous family of homoclinic orbits. The perturbed
system (ε > 0) no longer contains such a manifold, but one or more homoclinic orbits
may ‘survive’ the perturbation. Melnikov introduced an integral to calculate whether
such surviving homoclinic orbits exist (Melnikov 1963). Classically, the ideas concern
2-dimensional systems

u̇ = f (u) + εg(u, t),

where ˙= d
dt and g is a periodic function in t with period 2π . With u = (x, y) ∈ R2,

a Hamiltonian f = ( ∂ H
∂y ,− ∂ H

∂x )T and g = (g1, g2)
T, the systems are of the specific

form

ẋ = ∂ H

∂y
+ εg1(x, y, t),

ẏ = −∂ H

∂x
+ εg2(x, y, t),

(5.1)

which may, with v ∈ S1, equivalently be written as

ẋ = ∂ H

∂y
+ εg1(x, y, v),

ẏ = −∂ H

∂x
+ εg2(x, y, v),

v̇ = 1.

(5.2)

123



Geometric singular perturbation theory in biological practice 369

Fig. 6 Melnikov method
in the plane {v = v0}

For ε = 0 the system (5.1) is integrable and is assumed to possess a homoclin-
ic orbit γ h(t) to a saddle p0 as in Fig. 6, filled with periodic orbits. For ε > 0,
the variable v may be seen as a periodically varying coefficient in the equation for
u = (x, y). This classical problem and its Melnikov integral are often associated
with the study of so-called homoclinic tangles for maps, and corresponding to it,
with chaos. See for instance Guckenheimer and Holmes (1983, Sect. 4.6–4.8) or
Wiggins (1990, Sect. 4.5–4.6).

However, in the setting of (1.1) the system (5.2) is of the form (1.5):

ẋ = ∂ H

∂y
+ εg1(x, y, v),

ẏ = −∂ H

∂x
+ εg2(x, y, v),

v̇ = εh(x, y, v),

(5.3)

in which the variable v ∈ R is no longer periodic, but may be seen as a slowly varying
coefficient in the equations for x and y. By the above assumption on (5.1), the ε = 0
limit of this system possesses a homoclinic orbit γ h(t; v0) filled with periodic orbits
in every plane {v = v0}. The homoclinic orbits form a 2-dimensional homoclinic
manifold to a curve M0; see Fig. 4a. This homoclinic manifold is part of both the
stable manifold W s(M0) and the unstable manifold W u(M0) of M0: the bounded
parts of W s(M0) and W u(M0) coincide. In other words, in this degenerate case the
distance between both manifolds is zero in every plane {v = v0}.

If H , gi and h are smooth enough and M0 is a compact, normally hyperbolic
manifold, Fenichel’s first and second theorems apply and guarantee existence of a
normally hyperbolic slow manifold Mε for 0 < ε � 1, and stable and unstable
manifolds W s(Mε) and W u(Mε), which in general no longer coincide but are O(ε)

apart. If an unperturbed orbit γ h(t; v0) survives as a biasymptotic orbit to Mε (for
example a heteroclinic orbit between to fixed points on Mε), it should be subset of
W s(Mε)∩W u(Mε), and thus the distance between W s(
ε) and W u(
ε) measured in
a certain cross-section 
v0 should be zero. The Melnikov method basically calculates
this distance.

In a fixed plane {v = v0} the situations for ε = 0 and ε > 0 are sketched in
Fig. 6. Here γ h(t) = (t; v0) is defined as the homoclinic solution in {v = v0}
to the ε = 0 system (5.3) with γ h(0) = (x0, y0, v0), and 
v0 is the line through
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u0 = (x0, y0) perpendicular to f (γ h(0; v0)). The solutions γ u
ε in W u(Mε) and γ s

ε in
W s(Mε) to the ε > 0 system (5.3) are determined by the initial condition γ u,s

ε (0) ∈

v0 . In {v = v0}, the separation of the manifolds W s(Mε)|v0 and W u(Mε)|v0

can be measured along 
v0 , or, equivalently, along the normal f ⊥(γ h(0; v0)) =(
∂ H
∂x (γ h(0; v0)),

∂ H
∂y (γ h(0; v0))

)T
. This yields a distance

d(t = 0, v0, ε) = f (γ h(0; v0)) ∧ [
γ u
ε (0; v0) − γ s

ε (0; v0)
]
,

where the wedge product is defined by a ∧ b = a1b2 − a2b1 and f ∧ [γ u
ε − γ s

ε ] is the
projection of γ u

ε − γ s
ε on f ⊥. The distance d(t = 0, v0, ε) however depends on 
v0 ;

we therefore take

	(0, v0) = ∂

∂ε
d(t = 0, v0, ε)|ε=0 = f (γ h(0; v0)) ∧

[
∂

∂ε
γ u
ε (0; v0)− ∂

∂ε
γ s
ε (0; v0)

]
,

(5.4)

which is uniquely defined and measures the O(ε) distance between the manifolds in
{v = v0}. By Robinson (1983) (or Wiggins 1990, sec. 4.5) this distance is equal to the
integral

	W (v0) =
∞∫

−∞
f (γ h(t; v0)) ∧

[
g(γ h(t; v0)) + ∂ f

∂v
(γ h(t; v0))

∂v

∂ε

]
dt, (5.5)

where ∂v
∂ε

satisfies d
dt

(
∂v
∂ε

) = h(γ h(0; v0)) and ∂v
∂ε

= 0 at t = 0. Simple zeroes v0
of this so-called adiabatic Melnikov integral correspond to transverse intersections
of W s(Mε) and W u(Mε), and hence to biasymptotic orbits to Mε. These orbits
that are traced by this integral make a single loop through phase space, before they
return to Mε.

A very important feature of this measure for the distance between the two man-
ifolds W s(Mε) and W u(Mε) is, that it satisfies to explicitly know the unperturbed
ε = 0 homoclinic orbits to calculate the integral. Although it uses the perturbed ε �= 0
differential equations and describes the distance between the perturbed manifolds, the
integration is along solutions of the unperturbed system.

Remark 7 In fact this Melnikov method applies to more general systems than (5.3).
The backbone structure need not be Hamiltonian and the ‘slowly varying parameter’
v can be more-dimensional. In case of a Hamiltonian structure (5.3) the method is
equivalent to the following, more intuitive method if H is constant on the perturbed
manifold Mε. For ε = 0, H is by construction constant along orbits, but this is in
general no longer the case for ε > 0. A connecting orbit γ h(t) to Mε must however
satisfy limt→∞ H(γ h(t)) = limt→−∞ H(γ h(t)) if H is constant on Mε, so that in
fact 	H |γ h = ∫ ∞

−∞
d H
dt (γ h(t))dt = 0 must hold.
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Example 5.1 We return to Example 3.2, in which we treated the system

ẋ = y,

ẏ = x − x2 + ε f (x, y, z;µ),

ż = εg(x, y, z;µ),

(5.6)

We focus on the fate of the family of homoclinic loops to the vertical line M0 =
Mε = {x = y = 0} that exist for ε = 0. As we mentioned in Example 3.2, based
solely on Theorem 4 the fate of this family for small ε > 0 is still unclear. However,
since the bounded parts of W u(M0) and W s(M0) coincide, the distance between
the perturbed manifolds W u(Mε) and W s(Mε) is of order O(ε) and may thus be
computed via the adiabatic Melnikov integral.

It is convenient to measure this distance in the cross-section 
 = {y = 0, x > 1}.
The solutions γ u

ε = (xu
ε , yu

ε , zu
ε) in W u(Mε) and γ s

ε = (xs
ε, ys

ε, zs
ε) in W s(Mε) of

Eq. (5.6) are determined by their initial conditions in 
: γ u,s
ε (0) = (xu,s

ε , 0, z0). The
solution γ0(t) = (x0(t), y0(t), z0) is defined as the homoclinic solution to the unper-
turbed system (ε = 0) with γ0(0) = ( 3

2 , 0, z0
)
; see Eq. (3.4). The distance (5.4) is

then written as

	W (t, z0) =
(

y0(t)

x0(t) − x2
0 (t)

)
∧

(
∂
∂ε

[xu
ε (t) − xs

ε(t)] |ε=0
∂
∂ε

[yu
ε (t) − ys

ε(t)] |ε=0

)
,

and the resulting adiabatic Melnikov integral (5.5) is equal to

	W (z0) =
∞∫

−∞

(
y0(t)

x0(t) − x2
0 (t)

)
∧

(
0

f (x0(t), y0(t), z0;µ)

)
dt

=
∞∫

−∞
y0(t) f (x0(t), y0(t), z0;µ) dt. (5.7)

If this integral has a simple zero at z∗
0, then W s(Mε) and W u(Mε) intersect trans-

versally and a (transversal) homoclinic orbit to Mε persists, which makes a fast loop
near the plane z∗

0. No such intersections exist where 	W remains bounded away
from 0. For the specific cases f1 = y(b + cz), g1 = (ν + ρx + z2) and f2 =
y(z2 − a), g2 = (1 + bx − cz2), respectively treated in Doelman and Holmes (1996),
Doelman and Hek (2000) and Hek et al. (1998), the integral (5.7) is computed as

	W1(z0; b, c) = 6

5
(b + cz0); 	W2(z0; a) = 6

5
(z2

0 − a). (5.8)

Hence the following conclusions can be drawn.

1. The integral 	W1(z; b, c) has a single zero z = − b
c , corresponding to a transver-

sal homoclinic orbit to Mε. Depending on the parameters, this orbit may connect
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two fixed points on Mε as in Fig. 4b, may be a homoclinic orbit to a single fixed
point, or connect z = ±∞ to each other or to a fixed point; see Doelman and
Holmes (1996).
We remark that in this case one should be careful with the application of Fenichel’s
theorems, since these require a compact manifold Mε. If there are two fixed points(

0, 0,± 1√−ν

)
for ε > 0, the piece bounded by these fixed points can be taken

as M0 = Mε. The conclusions about homoclinic or heteroclinic orbits to fixed
points can then be drawn. For the orbits tending to z = ±∞ the flow should be
compactified in one way or another in order to conclude there existence. We refer
again to Doelman and Holmes (1996).

2. The integral 	W2(z; a) has zeroes z = ±√
a if a ≥ 0, while �W2(0, z) �= 0 for

all z if a < 0.
Since 	W (0; 0) = ∂

∂z 	W (0; 0) = 0 and ∂2

∂z2 	W (0; 0) �= 0, ∂
∂a 	W (0; 0) �= 0,

there is a unique value a = a∗ = 0 + O(ε), for which W u(Mε) and W s(Mε)

have quadratic contact (cf. Theorem 4.5.4 of Guckenheimer and Holmes 1983).
Therefore, for a > a∗ there are two orbits γ ±(t) that are biasymptotic to Mε ={

x = y = 0, |z| ≤ 1√
c

}
and make one fast loop through phase space, while for

a < a∗ there are none. Varying the parameter a thus gives a global saddle-node
bifurcation at a = a∗. See Fig. 4c and Doelman and Hek (2000) and Hek et al.
(1998).
The constructed orbits are heteroclinic orbits between the fixed points s± :=(

0, 0,± 1√
c

)
on Mε.

For ε ↓ 0, these orbits have a singular limiting structure, that consists of a fast
loop (the unperturbed homoclinic orbit (3.4) with z0 = − b

c or z0 = ±√
a), in general

concatenated to two slow pieces of orbit on M0. See the illustration in Fig. 4. In the
setting with f1, g1 it is possible that the fast loop leaves or enters a neighbourhood of
Mε via the strong stable or unstable manifold of either one of the saddle points. In
such case the limiting structure will have only one, or even no slow pieces.

6 Fenichel’s third theorem: fibering and base points

A normally hyperbolic critical manifold M0 is by definition filled with critical points
v0, each of which has its own stable and/or unstable manifolds W s(v0) and W u(v0).
Consider again the Eq. (1.1) and suppose that the ε = 0 Jacobian ∂ f

∂u (u, v, 0)|M0 has
m eigenvalues λ with Re(λ) < 0 and n eigenvalues with Re(λ) > 0, as in the setting
of Theorem 4. Then W s(v0) is m-dimensional and W u(v0) is n-dimensional, and the
manifolds W s(M0) and W u(M0) are the unions

W s(M0) =
⋃

v0∈M0

W s(v0), W u(M0) =
⋃

v0∈M0

W u(v0).

In other words, the manifolds W s(v0) and W u(v0) form collections of fibers for
W s(M0) and W u(M0), respectively, with base points v0 ∈ M0.
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In our study of (1.1) we have so far seen that a compact critical manifold M0
and its stable and unstable manifolds perturb to analogous objects Mε, W s(Mε) and
W u(Mε) when ε is sufficiently small. A natural question to ask now, is whether the
individual stable and unstable manifolds W s(v0) and W u(v0) also perturb to anal-
ogous objects. Fenichel’s third theorem answers this question. Before we state this
theorem we first treat an example to introduce the type of problems that may be solved
using it. This example is a real Ginzburg–Landau equation coupled to a reaction–dif-
fusion equation. A second, biological example is the 1-dimensional Gierer–Meinhardt
problem presented in Example 1.1.

Example 6.1 In Doelman et al. (2004) the following set of a Ginzburg–Landau equa-
tion coupled to a diffusion equation was proposed as a prototype equation for certain
systems with two competing instability mechanisms. Such a competition of insta-
bility mechanisms is a very natural phenomenon that for instance occurs in binary
fluid convection (Riecke 1992, 1996) or in biological models for the density of ion
channels embedded in a biomembrane (Peter and Zimmerman 2006). Other exam-
ples include biochemical systems (Dewel et al. 1995), geophysical morphodynamics
(Komarova and Newell 2000) and systems with symmetries (Coullet and Fauve 1985).
The equations considered are

{
At = Axx − A + A3 + µAB,

ε2τ Bt = ε−2 Bxx − αε2 B + ν A2 + β A2 B
(6.1)

with parametersµ, ν, α, β ∈ R, a small parameter 0 < ε � 1 and A(x, t) : R×R+ →
R, B(x, t) : R ×R+ → R real amplitudes. The subscripts t and x respectively denote
partial differentiation with respect to the time variable t and the spatial variable x .

The model was developed to study the influence of an additional (slow) diffusion
equation on both the existence and the stability of the pulse solutions of the Ginzburg–
Landau equation, see Doelman et al. (2004, 2007). Such pulse solutions represent in
case of (binary) fluid convection a localised convective pattern within an otherwise
quiet fluid. In the ion channel example (Peter and Zimmerman 2006) a pulse describes
the amplitude of an ion channel pattern within in otherwise homogeneous distribution
of such channels.

Here we focus on the existence question: “Does there exist a standing single-pulse
solution to (6.1)?”

In searching a standing pulse, the time derivatives At and Bt are set zero. With new
coordinates (a, v, b, d) = (A, Ax , B, Bx/ε) the system is rewritten as

⎧⎪⎪⎨
⎪⎪⎩

ȧ = v,

v̇ = a − a3 − µab,

ḃ = εd,

ḋ = ε[αε2b − νa2 − βba2],
(6.2)

where the dot represents differentiation with respect to x . Note that the system is of
the form (1.5). A physically relevant pulse solution satisfies limx→±∞ |A(x, t)| =
limx→±∞ |B(x, t)| = 0. Therefore, we look for homoclinic solutions γh(x) to (6.2)
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Fig. 7 The (a0, v0) phase space
of system (6.2) with ε = 0

that satisfy limx→±∞ γh(x) = (0, 0, 0, 0), where S = (0, 0, 0, 0) is a fixed point
of (6.2).

In system (6.2) the differentiation is with respect to the long length scale x . Alter-
natively, the short length scale ξ = εx can chosen as the independent variable, with
resulting system

⎧⎪⎪⎨
⎪⎪⎩

εa′ = v,

εv′ = a − a3 − µab,

b′ = d,

d ′ = ε2αb − νa2 − βba2.

(6.3)

where ′ = d
dξ

. We remark that, with some abuse of terminology, system (6.2) still
tends to be called the fast system, and system (6.3) the slow one. Putting ε = 0
in (6.2) hence yields the associated fast reduced system, which possesses 2-dimen-
sional invariant manifolds {a0 = 0, v0 = 0}, {a0 = −√

1 − µb0, v0 = 0} and
{a0 = +√

1 − µb0, v0 = 0}. Only part of the first one, M0 := {(a0, v0, b0, d0) |
a0 = v0 = 0, 1 − µb > 0}, is filled with hyperbolic equilibria. Thus M0 is a nor-
mally hyperbolic invariant manifold; it has 3-dimensional stable and unstable man-
ifolds W s(M0) and W u(M0), which are the unions of the two-parameter families
of 1-dimensional stable and unstable manifolds of the saddle points (a, v, b0, d0) =
(0, 0, b0, d0) ∈ M0. For each (b0, d0), M0 is connected to itself by two homoclinic
orbits (±a0(x; b0),±v0(x; b0)) with

a0(x; b0) = √
2(1 − µb0)sech(

√
1 − µb0x), (6.4)

v0(x; b0) = a′
0(x; b0). (6.5)

The 2-parameter families of homoclinic orbits form homoclinic manifolds H =
W s(M0) ∩ W u(M0), filled with periodic orbits (see Fig. 7). From now on, we focus
on the homoclinic orbits with positive a-coordinate. The orbits (a0(x; b0), v0(x; b0))

correspond to pulse solutions A(x, t) = a0(x; b0), with limx→±∞ A = 0, in the
uncoupled Ginzburg–Landau equation At = Axx − (1 − µb0)A + A3.

Let us return to the question whether (6.1) admits single-pulse solutions with
limx→±∞ |A(x, t)| = limx→±∞ |B(x, t)| = 0. Since the ODE system (6.2) is nearly
integrable, and the integrable limit possesses two families of homoclinic orbits that cor-
respond to pulse solutions to the unperturbed Ginzburg–Landau equation, one expects
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that possible pulse solutions to the full equation (6.1) have one of the unperturbed
pulses as ‘building block’. Therefore, the first question to answer is whether (6.1) still
has solutions that satisfy limx→±∞ A = 0, or, in terms of a and v, whether (6.2)
has solutions with limx→±∞(a, v) = (0, 0). We apply Fenichel’s theorems and the
Melnikov integral to deduce that of the 2-parameter family (6.4) a 1-parameter family
of orbits asymptotic to Mε remains.

If ε is sufficiently small, Theorem 2 guarantees that for any compact subset Mc
0

of M0 there exists a locally invariant manifold Mc
ε for the perturbed system (6.2)

which is diffeomorphic to and O(ε) C1-close to Mc
0. Clearly, Mc

ε = Mc
0 in the

current setting. In addition, Theorem 4 states that for 0 < ε � 1 the manifold Mc
ε has

3-dimensional stable and unstable manifolds W s(Mc
ε) and W u(Mc

ε) that are again
O(ε) close and diffeomorphic to their counterparts W s(Mc

0) and W u(Mc
0). Since this

is true for any compact subset of Mε, we will be somewhat sloppy and speak about
Mε in the sequel.

For 0 < ε � 1, the stable and unstable manifolds W s(Mε) and W u(Mε) will
no longer merge in a homoclinic manifold H, but may intersect in one or more 2-
dimensional surfaces. Since the system (6.2) is an O(ε) perturbation of an integrable
system with periodic orbits inside H, components of W u(Mε) and W s(Mε) inside
H wind around (a, v) = (

√
1 − µb0, 0) and intersect the hyperplane {v = 0} several

times.
Adiabatic Melnikov theory (see Sect. 5) now provides the measure (5.5) as a func-

tion of b0 and d0 that determines the O(ε) distance between the first intersections of
W u(Mε) and W s(Mε) with {v = 0}:

	(b0, d0) =
∞∫

−∞
µd0a0(x; b0)v0(x; b0)x dx . (6.6)

Zeroes of this measure 	(b0, d0) give the first intersections of W u(Mε) and W s(Mε)

in leading order, so assuming µ �= 0 and using that the integrand in (6.6) is and even
function of x , the intersections are located at

d0 = 0. (6.7)

A priori this is only a leading order result. Since system (6.1) is symmetric under
{x → −x}, a reversibility symmetry inherited by (6.2) as

x → −x, v → −v, d → −d (6.8)

the result is however exact:

W u(Mε) ∩ W s(Mε) ∩ {v = 0} ⊂ {d = 0}.

In other words, any orbit that is biasymptotic to Mε with initial conditions v(0) =
d(0) = 0 is reversible itself.
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This means, that there is a one-parameter family of orbits biasymptotic to Mε. As
pointed out in Sect. 3, solutions in W s(Mε) decay to Mε at an exponential rate as
x → ∞, solutions in W u(Mε) decay to Mε at an exponential rate as x → −∞.
Thus the slow segments of the biasymptotic orbits should be close to some orbit in
Mε. However, without further knowledge about the fate of the biasymptotic orbits in
a neighbourhood of Mε, one cannot conclude whether or not there is an orbit among
them that is homoclinic to the fixed point S. Fenichel’s third theorem will serve to
answer this question.

6.1 Fenichel’s third theorem

Although the critical points v0 ∈ M0 do in general not perturb to fixed points, the
answer to the above stated question is positive. Indeed, the individual stable and unsta-
ble manifolds W s(v0) and W u(v0) perturb to analogous objects, as is formulated in
the theorem below. Readers who find it too technical may want to read Corollary 9
first, as this is the useful consequence for applications.

Whereas the manifolds W u,s(v0) are invariant, their counterparts W u,s(vε) are not.
This is intuitively clear since their ‘base point’ vε itself is not invariant under the flow
of (1.1). However, the whole families {W u(vε)| vε ∈ Mε} and {W s(vε)| vε ∈ Mε}
are invariant in a certain sense.

To state this invariance we use the notation x · t to denote the application of a flow
after time t to an initial point x . Similarly, V · t denotes the application of the flow
after time t to a set V , and x · [t1, t2] is the resulting trajectory if the flow is applied
over the interval [t1, t2]. However, in order to avoid difficulties we restrict ourselves
to a neighbourhood 	 of Mε in which the linear terms of (1.1) are dominant, and
consider only trajectories in W u(Mε) that have not left 	 in forward time (yet), and
trajectories in W s(Mε) that have not left 	 in backward time. This is stated more
precisely following the definition from Jones (1995):

Definition The forward evolution of a set V ⊂ 	 restricted to 	 is given by the
set

V ·	 t := {x · t | x ∈ V and x · [0, t] ⊂ 	}.

We are now ready to state

Theorem 8 (Fenichel) Suppose M0 ⊂ { f (u, v, 0) = 0} is compact, possibly with
boundary, and normally hyperbolic, and suppose f and g are smooth. Then for every
vε ∈ Mε, ε > 0 and sufficiently small, there are an m-dimensional manifold W s(vε) ⊂
W s(Mε)and an n-dimensional manifold W u(vε) ⊂ W u(Mε), that areO(ε) close and
diffeomorphic to W s(v0) and W u(v0), respectively. The families {W u,s(vε)| vε ∈ Mε}
are invariant in the sense that

W s(vε) ·	 t ⊂ W s(vε · t)
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if vε · s ∈ 	 for all s ∈ [0, t], and

W u(vε) ·	 t ⊂ W u(vε · t)

if vε · s ∈ 	 for all s ∈ [t, 0].
The idea is, that the order in which the flow after time t is applied to a base point

and the fiber of a base point is constructed does not matter, as depicted in this diagram.

vε

fiber
��

flow �� vε · t

fiber

�������������

W s(vε)
flow �� W s(vε) · t

⊂
�� W s(vε · t)

In the unperturbed setting (1.1) with ε = 0, the decay in forward time of points in
W s(M0) to M0 is clearly to the base point v0 of their fiber, where the decay rate as
t → ∞ is exponential, since all associated eigenvalues have nonzero real part.

The Fenichel fibers of Theorem 8 offer an analogous matching between points in
W s(Mε) and Mε (and of course similarly between points in W u(Mε) and Mε). If
associated to a point x ∈ W s(Mε) there is a base point x+ ∈ Mε, i.e. x ∈ W s(x+),
then the exponential decay is inherited from the unperturbed case as follows, and as
illustrated in Fig. 8.

Corollary 9 There are constants κs, αs > 0 so that if x ∈ W s(x+) ∩ 	, then

‖x · t − x+ · t‖ ≤ κse−αs t

for all t ≥ 0 for which x · [0, t] ⊂ 	 and x+ · [0, t] ⊂ 	.
Similarly, there are constants κu, αu > 0 so that if x ∈ W u(x−) ∩ 	, then

‖x · t − x− · t‖ ≤ κueαu t

for all t ≤ 0 for which x · [t, 0] ⊂ 	 and x+ · [t, 0] ⊂ 	.

Although this is only formulated in the neighbourhood 	 of Mε where the linear
behaviour is dominant, this has of course a consequence for points ‘further away’ on

Fig. 8 Fibering of W s(M0) for ε = 0 (left panel) and W s(Mε) for small ε > 0 (right panel)
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W u(Mε) or W s(Mε). In general, if a point x ∈ W s(Mε) has base point x+ ∈ Mε,
then this corollary ensures that there are constants C1, C2, κ > 0 such that

‖x · T − x+ · T ‖ ≤ C1e−κ/ε ∀T ≥ C2

ε
.

Consequently, associated to an orbit γ (t; x) ⊂ W s(Mε) there is an orbit γ +(t; x+) ⊂
Mε, with γ (0; x) = x , γ +(0; x+) = x+, such that ‖γ (t; x)−γ +(t; x+)‖ ≤ C1e−κ/ε

for t ≥ C2
ε

(assuming that γ +(t; x+) stays in Mε for all t ≥ C2
ε

). We say that

‖γ (t; x) − γ +(t; x+)‖ is exponentially small in ε for t ≥ C2
ε

. Analogous statements
can be formulated for W u(Mε).

6.2 Application of Fenichel’s third theorem

The fact that any point in W u(Mε) or W s(Mε) now has a base point in Mε associated
to it, can be used to concatenate fast pieces of orbits to slow pieces of orbits that follow
an l-dimensional slow manifold with l > 1. If one has sufficient information about
the fast flow, one can construct so-called take-off and touch-down sets (often curves),
that are in fact sets of base points associated to sets of orbits in W u(Mε) or W s(Mε).
We will do so in the following example, which is a continuation of Example 6.1.

Example 6.2 Consider again Eq. (6.2). We are now in a position to decide whether or
not the slow and fast segments of one of the solutions with limx→±∞(a, v) = (0, 0)

can be concatenated to form a homoclinic orbit to S = (0, 0, 0, 0).
The (slow) flow on Mε for the full system (6.2) can be determined by substitut-

ing (a, v) = (0, 0). The resulting 2-dimensional system has one equilibrium point
(b, d) = (0, 0), which is S in the four-dimensional system. It is given by

ḃ = εd,

ḋ = ε3αb.
(6.9)

Note here, that the flow on Mε is in fact ‘superslow’ (with ḋ = O(ε3)), which is the
reason why we use (6.2) rather than the slow limiting problem (Eq. 6.3 with ε = 0)
to analyse it.

If the restriction of S = (0, 0, 0, 0) to Mε is a saddle point, there exist orbits within
Mε that satisfy limx→∞(b, d) = (0, 0) and orbits that satisfy limx→−∞(b, d) =
(0, 0). This is the case if α > 0, which is assumed for the remainder of this example.
The stable and unstable manifolds of S (restricted to Mε) are given by

lu,s = W u,s(0, 0) |Mε
= {(b, d) | d = ±ε

√
αb}. (6.10)

In Example 6.1 the distance between W u(Mε) and W s(Mε) was measured in
the hyperplane {v = 0}. This means that the biasymptotic orbits γ (x) to Mε found
there can be parameterised by their initial condition, that we can chose as y0 =
γ (0, y0) ∈ W u(Mε) ∩ W s(Mε) ∩ {v = 0}. For these orbits γ (x; y0), Theorem 8
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and Corollary 9 imply that there exist two orbits γ + = γ +(x; y+
0 ) ⊂ Mε and γ − =

γ −(x; y−
0 ) ⊂ Mε, such that ‖γ (x; y0) − γ +(x; y+

0 )‖ is exponentially small in ε

when x ≥ O ( 1
ε

)
and ‖γ (x; y0) − γ −(x; y−

0 )‖ is exponentially small in ε when
−x ≥ O ( 1

ε

)
. To be precise, this statement should be restricted to a compact sub-

set Mc
ε ⊂ Mε: the exponential closeness is only guaranteed as long as γ ±(x; y±

0 )

stays in Mc
ε. There are however two reasons why the compactness of Mε is not of

importance here. The first is, that we aim at constructing a homoclinic orbit, that has
by definition compact slow parts (bounded by the take off or touch down point and
the point S). The second is, that the existence of the saddle point S on Mε gives
this slow manifold sufficient structure to be uniquely defined (possible nonuniqueness
is the reason why the invariant manifold theorems are restricted to compact mani-
folds).

We return to the homoclinic orbit. If a homoclinic orbit γh(x) to S exists, it must
either tend to S via a strong stable or unstable manifold, or via its stable and unstable
manifolds lu and ls within Mε. In the latter, generic case ||γh(x; y0) − lu,s || is expo-
nentially small in ε for |x | ≥ O ( 1

ε

)
. Whether such an orbit γh exists depends on the

positions of the base points y±
0 = γ ±(0; y±

0 ) ∈ Mε.
We define the curves To ⊂ Mε (take off) and Td ⊂ Mε (touch down) as

To :=
⋃
y0

{y−
0 = γ −(0; y−

0 )} and Td :=
⋃
y0

{y+
0 = γ +(0; y+

0 )},

where the unions are over all y0 ∈ W s(Mε)∩ W u(Mε)∩{v = 0}. The take off set To

represents the collection of base points of all of the Fenichel fibers in W u(Mε) that
are asymptotic to Mε as x → ∞. Similarly, Td represents the set of base points of
the fibers in W s(Mε) that are asymptotic to Mε as x → −∞.

Detailed information about the positions of To and Td is given by the relation
between y0 == (a0, 0, b0, d0) and its base points y−

0 = (a−
0 , v−

0 , b−
0 , d−

0 ) and y+
0 ,

respectively, or in fact by the relation between b0 and b±
0 , d0 and d±

0 . Thus we
determine the sets To and Td by measuring the change in b and d of γ (x, y0) ⊂
W u(Mε) ∩ W s(Mε) during half a circuit through the fast field. The accumulated
change in d during a circuit can be measured by integrating d ′ along the orbit γ (x, y0)

until the orbit settles down near Mε. It takes O(| log ε|) ‘time’ to leave an O(ε)

neighbourhood of Mε, make a fast loop and return to the neighbourhood of Mε; see
for instance Lemma 3.2 in Doelman and Hek (2000). We therefore integrate up to
O(| log ε|), and take for the positive and negative half circuits

	−d = −
0∫

k log ε

d ′|γ (x;y0) dx and 	+d =
−k log ε∫

0

d ′|γ (x;y0) dx,

respectively. Here k > 0 is some arbitrary constant independent of ε. For γ (x; y0)

with y0 = (a0, 0, b0, d0) we find, by (6.2),
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	d = 	+d − 	−d

=
−k log ε∫
k log ε

d ′|γ (x;y0) dx = −ε

−k log ε∫
k log ε

(ν + βb0)a
2
0(x; b0) dx + O(ε2| log ε|),

(6.11)

where we have used that γ (x, y0) can be approximated by the unperturbed homoclinic
orbit γ0(x, y0) = (a0(x; b0), v0(x; b0), b0, d0) (6.4) during the fast circuit. Since the
a0(x) and v0(x) terms of γ0 converge exponentially to zero as x → ±∞, this integral
is equal to

	d = −ε

∞∫
−∞

(ν + βb0)a
2
0(x; b0) dx + O(ε1+2K ) + O(ε2| log ε|), (6.12)

and the improper integral exists for the same reason. It follows from (6.4) that K =
k
√

1 − µb0 > 0. Note that the symmetry of γ0(x, y0) also implies that 	+d =
−	−d = 1

2	d. We conclude by (6.4), and by choosing k large enough, that

	d = −2ε(ν + βb0)
√

1 − µb0

∞∫
−∞

sech2(x) dx + O(ε2| log ε|)

= −4ε(ν + βb0)
√

1 − µb0 + O(ε2| log ε|). (6.13)

Similarly we could calculate 	b, but the reversibility symmetry (6.8 immediately gives
	b = 0 over a jump. Since correspondingly d0 = 0 at a jump, −	−b = 	+b =∫ ∞

0 b′|γ (x,y0) dx + O(ε2| log ε|) = O(ε2| log ε|).
The take off and touch down curves are now obtained by correcting (6.7) for the

change in b and d during half an excursion through the fast field. At leading order
only the highest order terms of 	+d and 	−d play a role:

To :=
{
(b−

0 , d−
0 ) = (b0, d0) | d0 = 2ε(ν + βb0)

√
1 − µb0

}
,

Td :=
{
(b+

0 , d+
0 ) = (b0, d0) | d0 = −2ε(ν + βb0)

√
1 − µb0

}

up to corrections of O(ε2| log ε|).
We recall that a generic homoclinic orbit to S satisfies ||γh(x, y0) − lu,s || =

O(e−κ/ε) for |x | > O(1/ε) and some κ > 0. Therefore, its take off and touch
down points y−

0 and y+
0 must lie on lu and ls , respectively, and thus in the inter-

sections To ∩ lu and Td ∩ ls (see Fig. 9). The leading order term b0 of the
homoclinic orbit hence has to fulfil the equation that is satisfied in To ∩ lu and
Td ∩ ls :

√
αb0 = 2(ν + βb0)

√
1 − µb0. (6.14)
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Fig. 9 Sketch of the homoclinic orbit with its take off point y−
0 ∈ To∩lu and touch down point y+

0 ∈ Td ∩ls .

The constructed singular orbit is concatenated in y±
0 . A single arrow indicates slow flow, a double arrow

fast flow

Note here that the reversibility symmetry (6.8) of system (6.2) maps lu to ls and To

to Td (and vice versa), so there is only one equation to satisfy here. In general, it is
however important that the size of 	b fits with the geometry of the problem, i.e. that
it supports a jump from lu to ls .

Depending on the parameters there are 0, 1, or 2 intersections To ∩ lu and Td ∩ ls

in this example. It can be shown that these intersections are generically transversal,
but there are codimension-1 manifolds in (α, β, µ, ν) on which the curves are tan-
gent.

The idea of the construction of a homoclinic orbit to S is to formally construct a
singular homoclinic orbit that consists of two slow parts in M0 (parts of lu and ls)
with a middle fast part given by the unperturbed homoclinic orbit (6.4) with d0 = 0
and b0 given by (6.14) (see Fig. 9). The essential idea behind singular perturba-
tion theory is that persistence of this singular orbit for small ε > 0 is guaranteed
if the singular structure corresponds to transversal intersections of pairs of mani-
folds.

In general one needs to check transversality of the intersections To ∩ lu and Td ∩ ls

and of the intersection W u(Mε) ∩ W s(Mε) (which follows in general from the
explicit O(ε) expression (6.6)), but here the symmetry (6.8) ensures that any transver-
sal intersection lu ∩ To automatically corresponds to a (symmetric) homoclinic orbit
γh ∈ W u(S) ∩ W s(S). For parameter values at which To ∩ lu and Td ∩ ls are tangent,
no precise conclusions can be drawn. However, close to these parameter values, the
full system (6.2) undergoes a saddle-node bifurcation of homoclinic orbits to S, as in
Example 5.1.

In the setting of system (6.1) the orbit γh(x) corresponds to a pulse solution
(Ah(x, t), Bh(x, t)) = (ah(x), bh(x)) that satisfies limx→±∞(Ah(x, t), Bh(x, t)) =
(0, 0).

To conclude, this means that after coupling of the Ginzburg–Landau equation with
the second B-equation, the resulting system (6.1) still admits a single-pulse solution.
In this specific example, the physical meaning of this mathematical conclusion is, that
the coupled system (6.1) may indeed explain the mechanisms in binary fluid convec-
tion or in similar experiments. For similar examples, such as the ion channel dynamics
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in Peter and Zimmerman (2006), similar analysis can predict or confirm existence of
localised patterns of ion channels within an otherwise homogeneous state. For more
details, and for a construction when the reversibility symmetry (6.8) is broken, we
refer to Doelman et al. (2004).

7 Discussion

This overview is of course not complete. It covers only a part of the literature on
geometric singular perturbation techniques, and it does not mention other widely
used methods to study singularly perturbed systems. Classically, many singularly per-
turbed problems were analysed by asymptotic analysis. Different scalings, asymptotic
expansions in the small parameter, and matching of the obtained different local approx-
imations formed the basic concepts of asymptotic analysis. We refer to the survey by
Eckhaus (1979) for an overview and rigourous proofs of different aspects of the theory.
A recent text covering a wide variety of the methods and their applications is Verhulst
(2005). This type of analysis often gives explicit expansions and validity results, and
is, by its nature, quite laborious. A group of French people developed a different
analytical approach that simplifies the study of multiple-time scale problems. Their
method uses nonstandard analysis (Robinson 1974; Robert 1988), as was first sug-
gested by Reeb. This analysis has a different axiomatic basis, that allows to consider
the small perturbation parameter ε as an infinitesimal number. Singularly perturbed
differential equations are then considered as infinitesimally small perturbations of
standard or limited expressions. Attached to these nonstandard methods is the rather
well-known terminology of ‘canards’, used to indicate certain types of ‘slow–fast’
solutions. The name ‘canard’ originates in the study of relaxation oscillations in the
Van der Pol equation and was introduced by Diener and Diener (1981). It refers to the
shape of transitional limit cycles that appear in an exponentially small neighbourhood
of a certain critical parameter value (Diener 1984; Eckhaus 1983; Braaksma 1993).

Other important issues to address here concern various instruments with a geomet-
ric flavour that can be combined with geometric singular perturbation theory to gain
insight in the behaviour of orbits passing near a slow manifold or to construct n-pulse
homoclinic orbits or n-periodic orbits.

Fenichel’s theorems only consider slow manifolds and their local stable and unsta-
ble manifolds. To unravel the global geometry of the stable and unstable manifolds
and to keep track of their intersections it is important to understand the behaviour
of orbits and manifolds as they pass near a slow manifold. The basic idea in study-
ing such behaviour in forward time, is to take a disk D that transversally intersects
the stable manifold W s(M) and use the fact that any point q = q(0) in the inter-
section W s(M) ∩ D satisfies limt→∞ ||q(t) − M|| = 0 by the definition of the
stable manifold. Conclusions about the fate of other points in D as t → ∞ can then
be drawn. Similarly, the fate of a disk intersecting W u(M) as t → −∞ can be
understood. Two well-known lemmas based on this idea are the Lambda Lemma
for maps (see for instance Guckenheimer and Holmes 1983, p. 247, Wiggins 1990,
p. 473) and the Exchange Lemma (Jones and Kopell 1994; Jones et al. 1996; Kaper
and Jones 2001) for flows. The Lambda Lemma can be applied by considering the
flow after time T as a map and concerns the accumulation of images of D on W u(M).
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The Exchange Lemma concerns the passage of invariant sets (manifolds or orbits)
near a slow manifold and has in a sense proven more suitable for the study of sin-
gularly perturbed systems. A series of applications, in which the disk D is a subset
of W u(M), can be found in Doelman and Holmes (1996), Doelman (1996) and Do-
elman and Hek (2000). In Doelman and Holmes (1996) both approaches were used,
in the other papers the more intricate behaviour was studied using the Exchange
Lemma.

In nearly integrable systems (1.5), there is often a region in phase space in which
the fast reduced problem contains a continuous family of periodic orbits. This means
that the flow in this region is still almost periodic for 0 < ε � 1, which may be
exploited to reduce the system (1.5) to another, lower dimensional problem.

The idea of reducing the study of continuous time systems to the study of an asso-
ciated discrete time system (map) is due to Poincaré (1899), who first utilised it in
his studies of the three body problem in celestial mechanics. The conceptually clear
construction of a Poincaré map involves the elimination of a variable of the prob-
lem, and hence offers dimensional reduction, see again Guckenheimer and Holmes
(1983, sec. 1.5) or Wiggins (1990, sec. 1.2). The explicit construction of a Poincaré
map P : 
 → 
, where 
 is a plane transversal to the flow, requires an extensive
knowledge of the geometrical structure of the phase space of the particular ODE one
wants to reduce. It is in general not possible, but in nearly integrable systems (1.5),
the periodicity in the limiting ε = 0 problem suffices to construct an approximation
of the map. This approximation can for instance be used to find n-periodic orbits with
slow/fast structure or successive images of W u(M)∩
 or W s(M)∩
. The latter can
in turn be used to construct higher order intersections W u(M) ∩ W s(M), or n-pulse
homoclinic orbits to M. See for instance (Doelman and Holmes 1996; Hek 2000;
Doelman et al. 2001a,b).

Apart from the above mentioned geometrical methods, higher order Melnikov meth-
ods have also successfully been used to find n-pulse homoclinic orbits. Examples can
for instance be found in Kaper and Kovačič (1996), Soto-Treviño and Kaper (1996)
and Camassa et al. (1998). Another strong, topological method to draw conclusions
about (higher order) orbits that connect M to itself uses the Conley index. See for
instance Kokubu et al. (1996), in which a system similar to (3.1) is treated.
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