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Abstract A theoretical framework is presented for describing blood flow through
the irregular vasculature of a solid tumor. The tumor capillary bed is modeled as a
capillary tree of bifurcating segments whose geometrical construction involves deter-
ministic and random parameters. Blood flow along the individual capillaries accounts
for plasma leakage through the capillary walls due to the transmural pressure according
to Sterling’s law. The extravasation flow into the interstitium is described by Darcy’s
law for a biological porous medium. The pressure field developing in the interstitium
is computed by solving Laplace’s equation subject to derived boundary conditions at
the capillary vessel walls. Given the arterial, venous, and tumor surface pressures, the
problem is formulated as a coupled system of integral and differential equations arising
from the interstitium and capillary flow transport equations. Numerical discretization
yields a system of linear algebraic equations for the interstitial and capillary segment
pressures whose solution is found by iterative methods. Results of numerical com-
putations document the effect of the interstitial hydraulic and vascular permeability
on the fractional plasma leakage. Given the material properties, the fractional leakage
reaches a maximum at a particular grade of the bifurcating vascular tree.
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76 C. Pozrikidis

1 Introduction

The capillary bed of normal tissue exhibits a high degree of geometrical regularity
that helps minimize the resistance to blood flow and promotes the uniform transport
of oxygen, nutrients, and metabolites. In contrast, the neoplastic vasculature of a solid
tumor is dilated and strikingly disorganized, to the extent that it is often difficult to
distinguish between venules and arterioles. Tortuous vessels, curved and spiral loops,
shunts, avascular and poorly vascularized regions, and low vascular density contribute
to the complexity of the malignant microstructure. The process of tumor angiogenesis
has received considerable attention in the medical and engineering literature. Elemen-
tary and advanced mathematical models of tumor growth and blood vessel proliferation
driven by chemotaxis are available (e.g., Chaplain et al. 2006).

Less et al. (1991) studied the microvascular architecture of the mammary adeno-
carcinoma and found that the arterial network consists of vessels with mean segment
length Lc ∼ 67µm, mean radius ac ∼ 5µm, and minimum distance between any two
non-adjacent pairs of capillary segments (inter-capillary distance) 49µm. The venous
vasculature consists of capillary vessels whose diameter ranges from 20 to 650µm.
Due to its pronounced randomness, the vascular architecture can be characterized
using diagnostics of fractal geometry. Studies have shown that the fractal dimension
of the tumor vasculature is intermediate between that of the normal arterial tree and
of the subcateneous capillary network (e.g., Baish and Jain 2000; Chung and Chung
2001; Gazit and Baish 1997). Because of the highly irregular geometrical microstruc-
ture, reduced oxygen concentration, and altered chemical environment, blood flow
through the neoplastic vasculature significantly differs from that through a healthy
capillary bed. Some tumor vessels do not carry red blood cells and are thus deficient
in oxygen and nutrients. Other vessels, including shunt vessels with large diameter,
carry an abundance of red blood cells. Low oxygen concentration causes red blood
cell stiffening and agglomeration, and this increases the effective viscosity of blood
and may effectively stop the flow.

Investigations of flow through the neoplastic vasculature and interstitium of solid
tumors has been motivated by the urgent need to understand and improve the role of
fluid convection in the treatment of cancer by therapeutic macromolecules. In drug
therapy, monoclonal antibodies (MAbs) are delivered intravenously in the hope that
they will reach the tumor cancer cells as they travel through the circulation. The mac-
romolecules are transported by convection along the capillaries and by convection and
diffusion into the tumor interstitium. The success of this treatment has been limited
because of low transport rates into the main body of the tumor across the vasculature,
and also because of the small diffusivity of the therapeutic macromolecules (Vaughan
et al. 1987). External beam radiation, hyperthermia, and deliberate inflammation have
been attempted to overcome these limitations, albeit with moderate only success. Con-
vection induced by elevating the systemic blood pressure or by intratumoral infusion
has been shown to improve drug delivery, respectively, by 40% and by several orders
of magnitude (Zhang et al. 2000). Similar difficulties are encountered in the case of
immunotherapy where altered white blood cells migrate across the tumor vasculature
to destroy specifically targeted malignant cells. A considerable body of clinical, lab-
oratory, and theoretical investigations have been conducted on the realization that an
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Numerical simulation of blood and interstitial flow through a solid tumor 77

improvement in the efficiency of drug therapy can be achieved only if a fundamental
understanding of the processes by which the macromolecules reach the tumor cancer
cells is gained (Dreher et al. 2006).

Efforts have been made to describe fluid flow and species transport in solid tumors
by macroscopic theoretical analysis and phenomenological descriptions. Jain and
coworkers (Jain and Baxter 1988; Baxter and Jain 1989, 1990) developed a model
consisting of a spherical tumor with a necrotic concentric core and a continuously
distributed vasculature in the presence of lymphatics. The pressure distribution in the
interstitium was described by Helmholtz’s equation derived from Darcy’s law under
the assumption that the net flow into the interstitium is balanced by the efflux from
the vasculature due to convection and the influx into the lymphatics. The transport
of macromolecules was described by a convection–diffusion equation accounting for
the capillary exchange. El-Kareh and Secomb (1995) adopted this model to study the
effect of tumor shape, and concluded that increasing the vascular permeability does
not always improve the convective transport of antibodies.

Other authors recognized the importance of describing fluid flow and species trans-
port on the level of the capillaries, and developed models that explicitly take into con-
sideration the geometry of the vascular microstructure. Netti et al. (1996) modeled the
tumor vasculature as an equivalent permeable vessel embedded in a uniform-pressure
medium, and carried out simulations to study the effect of vessel leakiness, vessel
compliance, and interstitial fluid pressure on the pressure-flow relationship, arterial-
venous pressure relationship, and pressure profile along the vessel. Baish et al. (1997)
described the fluid flow through the microcirculatory network and interstitium using
a network model that consists of a regular mesh of permeable vessels or a pair of
counter-current vessels embedded in an isotropic porous medium. Milosevic et al.
(1999) modified the single-capillary model of Netti et al. (1996) by computing the
interstitial fluid pressure on the outer surface of the capillary based on a global mass
balance applied to an idealized spherical tumor encapsulating the capillary. More
recently, Pozrikidis and Farrow (2003) developed an integrated model that couples
blood flow through the capillaries, the extravasation flux, and the flow in the interstit-
ium, and performed computations for a simple model consisting of a single capillary
to demonstrate the feasibility of this approach.

The present paper extends the single-tube model of Pozrikidis and Farrow (2003)
into a network model, where the vasculature is represented by a branching tree con-
sisting of a cascade of straight bifurcating capillary segments. The geometrical con-
struction involves deterministic and random parameters causing deviations from a
perfectly ordered structure. Fluid escapes from the capillary walls according to the
local transmural pressure generating an extravasation flow in the interstitium accord-
ing to Darcy’s law. The problem is formulated as a coupled system of integral and
differential equations, subject to a specified arterial, venous, and tumor exterior sur-
face pressures. Numerical discretization in the spirit of the boundary-element method
yields systems of linear algebraic equations for the interstitial and capillary segment
pressures whose solution is found by iteration. Results of numerical computations
illustrate the structure of the vascular and interstitial pressure fields and document the
effect of the interstitial hydraulic and vascular permeability on the fractional leak-
age associated with perfusion. Extensions and refinements of the basic model and
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consideration of different vascular geometries are possible, as discussed in the con-
cluding section.

2 Theoretical model

We consider blood flow through a model capillary network embedded in tumor tissue,
as shown in Fig. 1a. The arterial entrance point coincides with the first end-point of
the first capillary segment in the xy plane with specified length Lc1 and radius ac1 .
A sequence of bifurcations is then introduced to produce a branching network resem-
bling a fractal tree. The length of the projection of each capillary segment in the xy
plane is Lc = ω L ′

c [1 + εL(r − 0.5)], where L ′
c is the length of the parent segment,

ω is a specified contraction ratio, εL is a specified dimensionless parameter, and r is
a uniform deviate. The bifurcation angle in the xy plane is θ = ±θ0 + εθ (r − 0.5)π ,
where θ0 is a specified mean semi-angle, εθ is a specified dimensionless parameter,
and r is another uniform deviate.

After a capillary bifurcation has been generated parallel to the xy plane, the second
end point of each newly created capillary segment is displaced normal to the xy plane
by the positive or negative distance z = Lc1 εz(r − 0.5), where εz is another specified
dimensionless parameters. The radius of each generated capillary segment is reduced
geometrically with respect to that of the parent segment, so that the last bifurcation
yields a specified minimum radius, acmin . The geometrical construction is consistent
with the flattened annular-shell shape of the tumor vasculature surrounding a necrotic
core (e.g., Tsafnat et al. 2004). A similar construction was used by Karshafian et al.
(2003) in their study of blood flow through a fractal-like vascular network.

Figure 1b schematically illustrates flow through the vascular network of a solid
tumor originating from an arterial entrance point. Because the walls of the blood ves-
sels are permeable, plasma escapes by convection into the interstitium and is either
removed by lymphatic vessels or exits into the surrounding tissue across the tumor
surface, as indicated by the arrows. The arterial vascular network is connected to an
attached venous network, drawn with the dashed lines in Fig. 1b. Since the pressure
drop across the venules is small, the venous pressure is assumed to be constant at the
terminal branches of the bifurcating tree, and the flow rate is computed as part of the
solution.

We set up the theoretical model by regarding the interstitium as an isotropic and
homogeneous biological porous material. Flow through the interstitium is described
by Darcy’s law relating the average fluid velocity, u, to the gradient of the interstitial
pressure, p,

u = −κ ∇ p, (2.1)

where κ = λ/µi is the hydraulic permeability, λ is the interstitium permeability, and
µi is the interstitium fluid viscosity. The dependence of κ on the tumor tissue compo-
sition and environment has been discussed by Jain (1987). The hydraulic permeability
of the dog squamous cell tissue was estimated to be on the order of 10−9 cm4/(dyn s),
and the hydraulic conductivity of the Hepatoma 5,123 tissue was estimated to be on the
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(b)

Fig. 1 a A model tree-like capillary network exhibiting random bifurcations and terminating after a spec-
ified number of bifurcations. The capillary radius decreases geometrically by a constant factor from the
arterial entrance point to the exit points of the smallest capillaries. b Schematic illustration of blood flow
through the vasculature of a solid tumor originating from an arterial entrance point, A, and ending at a
venous exit point, V . The solid lines trace arterial vessels, and the broken lines trace venous vessels

order of 10−12 cm4/(dyn s). For comparison, we note that the hydraulic permeability
of normal tissue varies in the range 10−12–10−10 cm4/(dyn s) (e.g., Fleischman et al.
1986a).

Mass conservation in the absence of consumption due to lymphatics requires that
the average velocity field inside the tumor is solenoidal. Taking the divergence of
Darcy’s law expressed by (2.1) we find that the interstitial pressure satisfies Laplace’s
equation,

∇2 p = 0. (2.2)

The solution must satisfy a Dirichlet boundary condition stating that p is equal to the
ambient pressure at the tumor surface, denoted as p∞.
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In the physiologically relevant range of pressure drops across the vascular
network, the Reynolds number of the flow along the capillaries is much less than unity
(Sevick and Jain 1989a,b). Assuming that the radius of the capillaries, a, is a suffi-
ciently smooth function of distance along the centerline, l, and the rate of fluid transport
through the vascular walls is small compared to the axial flow rate, we describe the
axial flow rate through a capillary by Poiseuille’s law,

Qc = −πa4(l)

8µ

dpc

dl
, (2.3)

where µ is the blood viscosity and pc(l) is the position-dependent pressure inside the
capillary. In the case of tumor capillary flow, the Poiseuille law should be regarded
as an approximation, essentially implementing functional dependencies on the fluid
viscosity and blood vessel radius. Improvements can be made to incorporate capillary
wall curvature, waviness, and tapering.

Next, we describe the extravasation flux of plasma fluid across the vasculature into
the surrounding interstitium by Starling’s law

qe(l) = L p [pc(l) − p(l)], (2.4)

where L p is the vascular permeability of the tube wall. In Starling’s law, the interstitial
pressure, p(l), is evaluated on the exterior side of the vascular wall and is assumed
to be nearly independent of angular position around the centerline due to the small
size of the capillaries (e.g., Fleischman et al. 1986a,b). It is known that the tumor
vascular permeability is higher by a factor of ten than that in nonmalignant tissue
due to the coarse and irregular structure of the neoplastic endothelium (e.g., Baish
et al. 1997; Baxter and Jain 1989; Sands et al. 1988). Baish et al. (1997) provide the
estimate L p � 10−9 cm3/(dyn s). Because of the high vascular permeability and lack
of functional lymphatics, the concentration of plasma proteins is higher in tumor than
in normal tissue (retention effect.) The accumulation of macromolecules injected by
intravenous administration makes them desirable in tumor diagnosis and therapy as
drug carriers (Dreher et al. 2006).

Mass conservation for the fluid transported along a capillary requires

dQc

dl
+ 2πa(l) qe(l) = 0. (2.5)

Substituting (2.3) and (2.4) in (2.5) and rearranging, we derive the second-order dif-
ferential equation

d2 pc

dl2 + 4

a(l)

da

dl

dpc

dl
= 16µL p

a3(l)
[pc(l) − p(l)] . (2.6)

Only if p(l) is constant the capillary flow is decoupled from the interstitial flow
and can be solved in isolation. However, unlike in healthy tissue, the pressure inside a
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solid tumor exhibit pronounced variation and a sharp decline across an outer annular
shell.

To complete the mathematical formulation, we set the flux given by Darcy’s law at
the tube surface equal to that given by Starling’s law to derive an expression for the
normal derivative of the tumor pressure,

∂p

∂ln
≡ n(x) · ∇ p(x) � −qe

κ
= − L p

κ
[pc(l) − p(l)], (2.7)

where n is the unit vector normal to the vasculature pointing into the interstitium, and
ln is the normal arc length.

A central task is the numerical solution of Laplace’s equation (2.2) for the interstitial
pressure, p, subject to boundary conditions at the tumor surface and over the exterior
surface of the vasculature. The boundary-integral formulation provides us with an
expression for the interstitial pressure at a field point, x0, in terms of combination of
a single- and a double-layer potential defined over the surface of the vasculature, SV ,

p(x0) = p∞ −
∫ ∫

SV

G(x, x0) [n(x) · ∇ p(x)] dS(x)

+
∫ ∫

SV

(p(x) − p∞) [n(x) · ∇G(x, x0)] dS(x), (2.8)

where G(x, x0) is the Green’s function of Laplace’s equation corresponding to the
tumor shape. The difference p(x) − p∞ expresses the disturbance pressure field due
to extravasation. By definition, G(x, x0) = 0 when either x or x0 lies at the tumor sur-
face (e.g., Pozrikidis 1997). In the case of a large, virtually infinite tumor, G(x, x0)=
1/(4π |x − x0|) is the free-space Green’s function. Substituting the boundary condi-
tion (2.7) in the first integral on the right-hand side of (2.8) and invoking our earlier
approximation that the interstitial pressure is nearly independent of angular position
around the capillaries, we obtain

p(x0) = p∞ + 1

κ

∫ ∫

SV

L p [pc(l) − p(l)] G(x, x0) dS(x)

+
∫ ∫

SV

(p(l) − p∞) [n(x) · ∇G(x, x0)] dS(x), (2.9)

which provides us with a representation of the interstitial pressure in terms of the
vascular distribution of the interstitium and capillary pressures.

Next, we take the limit as the point x0 approaches the surface of the vasculature
from the outside. The limit of the double-layer potential differs from the value of the
double-layer potential computed when the point x0 lies precisely on the vasculature,
termed the principal value. Expressing the limit in terms of its principal value, denoted
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by PV , we derive the integral equation

1

2
(p(x0) − p∞) = 1

κ

∫ ∫

SV

L p [pc(l) − p(l)] G(x, x0) dS(x)

+
∫ PV∫

SV

(p(l) − p∞) [n(x) · ∇G(x, x0)] dS(x). (2.10)

The problem has been reduced to simultaneously solving the differential equation (2.6)
and the integral equation (2.10), subject to specified values for the arterial inlet pressure
pa , venous outlet pressure, pv , and tumor surface pressure, p∞.

3 Numerical method

The interstitial and vascular pressures are now approximated with constant func-
tions over the j th capillary segment denoted, respectively, by p( j) and p( j)

c , for
j = 1, . . . , Ns , where Ns is the total number of segments. Subject to this approx-
imation, the integral equation (2.10) takes the form

1

2
(p(l0) − p∞) = L p

κ

Ns∑
j=1

(p( j)
c − p( j)) A j (l0) +

Ns∑
j=1

(p( j) − p∞) B j (l0), (3.1)

where

A j (l0) ≡
∫ ∫

E j

G(x, x0) dS(x), B j (l0) ≡
∫ PV∫

E j

n(x) · ∇G(x, x0) dS(x), (3.2)

are influence coefficients for the single-layer and double-layer potential, and E j

denotes the cylindrical surface of the j th segment.
Placing the evaluation point corresponding to arc-length, l0, at the mid-point of the

nth segment corresponding to arc length lm
n , we derive a system

1

2
(p(n) − p∞) = L p

κ

Ns∑
j=1

(p( j)
c − p( j))A j (l

m
n ) +

Ns∑
i=1

(p( j) − p∞) B j (l
m
n ), (3.3)

where n = 1, . . . , Ns . Now transferring the interstitial pressures to the left-hand side
and rearranging, we obtain

Ns∑
j=1

[
1

2
δnj − B j (l

m
n ) + L p

κ
A j (l

m
n )

]
p( j)

= L p

κ

Ns∑
j=1

p( j)
c A j (l

m
n ) + p∞

⎡
⎣1

2
−

Ns∑
j=1

B j (l
m
n )

⎤
⎦ , (3.4)
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where δnj is Kronecker’s delta. An integral identity states that the integral whose
approximate representation is given by the second sum on the right-hand side of (3.4) is
equal to− 1

2 . In the discrete formulation of the problem, this identity is satisfied up to the
numerical error due to the spatial discretization and numerical integration. To ensure
that, when pa = pv = p∞, the segment pressures arising from the solution of (3.4)
are equal to p∞ to machine precision, we retain the second sum on the right-hand side.

The surface integrals in (3.2) are computed by first performing the integration
with respect to the meridional angle around each cylindrical segment to obtain a one-
dimensional integral along the generator involving complete elliptic integrals of the
first and second kind, and then integrating with respect to distance along the seg-
ment axis using the six-point Gauss-Legendre quadrature (e.g., Pozrikidis 1997). The
complete elliptical integrals are evaluated using an accurate iterative method (e.g.,
Pozrikidis 2008). When the evaluation point lies at the host segment, the influence
coefficient of the single-layer potential, A j , exhibits a logarithmic singularity. For
improved accuracy, this singularity is subtracted off and then integrated analytically
by elementary methods. The principal value of the influence coefficient of the double-
layer potential, B j , is computed using an integral identity that replaces the integral
over the cylindrical surface of a segment with integrals over the disk-like segment
ends.

3.1 Capillary flow

Next, we apply the capillary flow Eq. (2.6) for constant tube radius at the midpoint of
the j th capillary segment to obtain

d2 pc

dl2 = 16µL p

a3 (pc − p), (3.5)

where the segment label ( j) has been omitted for clarity. Introducing segment end- and
mid-point values indicated by the subscripts −1, 0, 1 and approximating the second
derivative with a central difference, we find

p1 − 2p0 + p−1

	l2 = 16µL p

a3 (p0 − p), (3.6)

where 	l = Lc/2, and Lc is the capillary segment length. Rearranging, we derive an
expression for the midpoint value in terms of the end point values,

p0 = p1 + p−1 + β p

2 + β
, (3.7)

where

β = 16µL p	l2

a3 = 4µL p L2
c

a3 (3.8)

123



84 C. Pozrikidis

is a dimensionless parameter. Now using (3.7), we find the transmural pressure

p0 − p = p1 − 2p + p−1

2 + β
. (3.9)

This expression is used to compute the extravasation flux in the discretized boundary
integral formulation.

Using a second-order difference approximation, we compute the pressure gradient
at the segment end nodes,

(
dpc

dl

)
−1

� −3 p−1 + 4 p0 − p1

2	l
,

(
dpc

dl

)
1

� p−1 − 4 p0 + 3 p1

2	l
. (3.10)

Eliminating the mid-node pressure, p0, using (3.7), we find

(
dpc

dl

)
−1

� −(3β + 2) p−1 + 4β p + (2 − β) p1

(2 + β) 2	l
,

(
dpc

dl

)
1

� −(2 − β) p−1 − 4β p + (3β + 2) p1

(2 + β) 2	l
.

(3.11)

The flow rates at the two ends of the capillary segment are

Q−1 = −
(

dpc

dl

)
−1

πa4

8µ
� (cA p−1 − cC p − cB p1)

πa4

8Lcµ
,

Q1 = −
(

dpc

dl

)
1

πa4

8µ
� (cB p−1 + cC p − cA p1)

πa4

8Lcµ
,

(3.12)

where

cB = 2 − β

2 + β
, cC = 4β

2 + β
, cA = 2 + 3β

2 + β
. (3.13)

In the absence of extravasation, β = 0, we obtain the expected result, cB = 1, cC = 0,
and cA = 1. The rate of fluid extravasating through the capillary wall is

Qe = Q1 − Q−1 � −[(cA − cB) p−1 − 2 cC p + (cA − cB) p1] πa4

8Lcµ
, (3.14)

which is consistent with (3.9) and the definition of β.
To examine the error associated with the finite-difference approximation, we express

the differential equation (3.5) in the form

d2 pc

dx̂2 = 4β (pc − p), (3.15)
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where x̂ = l/Lc. Next, we consider a capillary segment beginning at the arterial
entrance point, x = 0, where pc = pa , and ending at the venous entrance point, x = Lc,
where pv = 0. For constant interstitial pressure, p, the solution for the capillary pres-
sure distribution can be found readily by elementary analytical methods,

pc(x̂) = pa[cosh(2
√

β x̂) − sinh(2
√

β x̂) coth(2
√

β) ]
+ p

[
1 − 1 − cosh(2

√
β)

sinh(2
√

β)
sinh(2

√
β x̂) − cosh(2

√
β x̂)

]
. (3.16)

The midpoint value is pc(x̂ = 1/2) = pa �(β) + p �(β), where

�(β) = cosh(
√

β) − sinh(
√

β) coth(2
√

β) ],
�(β) = 1 − 1 − cosh(2

√
β)

sinh(2
√

β)
sinh(

√
β) − cosh(

√
β).

(3.17)

The finite-difference method predicts the approximate values � � 1/(2 + β) and
� � β/(2+β). The predictions are compared in Fig. 2a, b in a range of β encompass-
ing the physiological values considered in the numerical computations, as discussed
in Sect. 4. For example, setting λ = 4 cp, L p = 10−6 cm3/(dyn s), Lc = 0.01 cm,
and a = 6 × 10−4 cm, we find β = 0.0741. The comparison lends credence to the
finite-difference approximation.

As a further test, we consider the end-point pressure gradients,

(
dpc

dx

)
x̂=0

= − pa

Lc
0 + p

Lc
,

(
dpc

dx

)
x̂=1

= − pa

Lc
1 − p

Lc
, (3.18)

and use the analytical solution to find

0 = 2
√

β coth(2
√

β),  = 2
√

β
cosh(2

√
β) − 1

sinh(2
√

β)
,

1 = 2
√

β [− sinh(2
√

β) + cosh(2
√

β) coth(2
√

β)],
(3.19)

where  = 0 − 1. The finite-difference method predicts the approximate expres-
sions 0 � cA = (2 + 3β)/(2 + β),  � cC = 4β/(2 + β), and 1 � cB =
(2 − β)/(2 + β). The predictions for the function  representing the rate of extrava-
sation are compared in Fig. 2c. The good agreement for values of β roughly less than
0.5 suggests that the finite-difference approximation provides us with good estimates
for the rate of fluid escaping through the capillary walls.

It is of interest to examine the rate of extravasation when all physical and geomet-
rical parameters and the end pressures are held fixed, and the length of the capillary
tube increases. We note that the parameter β is proportional to the square of the tube
length, L2

c , and are led to considering the function /
√

β plotted in Fig. 2d. The results
reveal that the finite-difference approximation represented by the dotted line errone-
ously predicts a maximum. This dichotomy raises a warning flag for the interpretation
of the results presented in Sect. 4.
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Fig. 2 Analytical (solid lines) and approximate (dashed lines) predictions for a, b the midpoint pressure
in a single capillary tube, c the difference in the pressure gradient at the end points representing the rate
of extravasation, and d the modified difference illustrating the effect of the tube length. The interstitial
pressure is assumed to be constant over the outer surface of the capillary

3.2 Network nodal pressures

Next, we consider a bifurcation node where one parental capillary segment bifurcates
into two segments in three-dimensional space. The local configuration involves four
pressure nodes representing network junctions, as shown in Fig. 3. To develop an
iterative solution scheme for the computation of the junction pressures, we write a
mass balance for the blood flow at the bifurcation node, involving four pressure nodes
multiplied by coefficients playing the role of transfer functions, solve for the pressure
value at the bifurcation node, and iterate based on the derived expression. The result
is the counterpart of the point Gauss-Seidel method (PGS) for solving sparse systems
of linear equations. The mass balance requires

(
c(1)

A p0 − c(1)
C p(1) − c(1)

B P1

) a4
1

µL1
+

(
c(2)

A p0 − c(2)
C p(2) − c(2)

B P2

) a4
2

µL2

+
(

c(3)
A p0 − c(3)

C p(3) − c(3)
B P3

) a4
3

µL3
= 0. (3.20)

Solving for p0 provides us with an expression that serves as a basis for the iterations.
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Fig. 3 Illustration of a capillary
bifurcation. A mass balance
yields a relation between the
pressures at the four segment
nodes
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3.3 Iterative solution

The solution procedure is based on the following algorithm:

1. Generate the vascular geometry in terms of capillary segments, and assign values
to the capillary network inlet and outlet capillary pressures, pa and pv , in lieu of
boundary conditions.

2. Make guesses for the nodal capillary segment pressures. In the present numerical
simulations, these pressures are set to pv .

3. Make guesses for the interstitial capillary segment pressures. In the numerical
simulations, these pressures are set to p∞.

4. Solve for the pressure at the nodes of the capillary segments by point Gauss-Seidel
or SOR iterations pivoted on mass conservation at bifurcations.

5. Update the segment interstitial pressures through the influence matrix arising from
the boundary-integral formulation.

6. Return to step 4 and repeat until convergence.

In practice, only a few iterations are necessary for accuracy on the order of 10−6.
When the boundary conditions at the exit points of the network prescribe zero flow
rate due to occlusion, the computations correctly predict that all entering fluid perfuses
through the tumor, except when L p = 0 where a singular behavior is encountered.

4 Results and discussion

A summary of variables and parameters introduced in the theoretical model is shown in
Table 1. In this section, we present and discuss results in physical dimensional variables
corresponding to the physiological range of conditions. In the numerical simulations,
the blood viscosity is set to µ = 4.0 cp = 4.0 × 10−2 g/(cm s), the radius of the inlet
capillary segment is set to ac1 = 6 µm, the length of the inlet capillary segment is set
to Lc1 = 100 µm, and the radius of the outermost capillary segments at the periphery
of the network is set to 3.4µm. The chosen aspect ratio of the capillaries is typical of
that encountered in the neoplastic vasculature of solid tumors, which is much smaller
than that encountered in normal tissue (e.g., Less et al. (1991)). The linear size of
vasculature is comparable to L � (1−ωm+1)Lc1/(1−ω), where m is the order of the
bifurcated tree. The arterial to venous pressure difference is set to pa − pv = 10 mm
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Table 1 Summary of variables and parameters involved in the theoretical model

a Capillary radius

ac1 Radius of the first capillary segment

acmin Radius of the capillary segments at the end of the network

G Green’s function

l Arc length along the centerline of a capillary

Lc Length of a capillary segment

Lc1 Length of the first capillary segment

Ns Number of capillary segments in vascular tree

n Normal vector

p Tumor pressure

qe Extravasation flux

p∞ Ambient tumor pressure

pc Capillary tube pressure

Qc Flow rate along a capillary

L p Vascular permeability

SV Surface of the vasculature

β Dimensionless parameter defined in (3.8)

εL Parameter determining the randomness of the capillary segment length

εθ Parameter determining the randomness of the branching angle

εz Parameter determining the displacement

of a capillary segment off the xy plane

θ0 Mean branching angle

κ Tumor hydraulic permeability

µi Interstitial fluid viscosity

µ Capillary blood flow viscosity

�, � Functions defined in (3.17)

0, 1,  Functions defined in (3.19)

ω Contraction ratio of capillary segments at a bifurcation

Hg, and the tumor surface pressure is set equal to the arterial pressure. Flow rates,
capillary and interstitial pressure distributions are then proportional to pa − pv .

Figure 4a–c illustrates three capillary networks studied with m = 2, 4, and 8
branching bifurcations. In all cases, the mean branching semi-angle is θ0 = π/10,
and the capillary segment contraction ratio is ω = 0.9. The three random amplitudes
determining the capillary tree are set to εL = 0.2, εθ = 0.1, and εz = 0.5. Of primary
interest is the percentage of blood escaping across the vascular walls into the inter-
stitium, termed the fractional leakage and denoted by φ. In the numerical method, the
inlet flow rate at the beginning of the entrance segments and the outlet flow rates at
the end of each outlet segment are computed from expressions (3.12). The individual
outlet flow rates are then summed to give the total outlet flow rate.

Figure 4d–f shows graphs of φ plotted against the tumor hydraulic permeability κ

in units of cm4/(dyn s) on a log-linear scale. The curves correspond to different values
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Fig. 4 a–c Capillary networks with m = 2, 4, and 8 generations of branching bifurcations. d–f Percent-
age of fluid escaping into the interstitium, φ, plotted against the interstitium hydraulic permeability for
vascular permeability L p = 10−9 (lowest line), 10−8, 5 × 10−8, 10−7, 2 × 10−7, 5 × 10−7, and 10−6

(squares) cm3/(dyn s)

of L p, ranging from L p = 10−9 (lowest line) to 10−6 (squares) cm3/(dyn s) (e.g.,
Baish et al. 1997; Baxter and Jain 1989; Sands et al. 1988). The results demonstrate
that, as κ increases, the fractional leakage φ tends to a limiting value determined by
the value of L p, corresponding to uniform interstitial pressure equal to the ambient
pressure, p∞. Thus, the pressure field developing inside the tumor due to extravasation
has a strong effect on the fractional leakage for values of κ in the physiological range
10−9 to 10−12 cm4/(dyn s); the lower limit corresponds to normal tissue (e.g., Jain
1987). Increasing the vascular permeability, L p, while holding the tumor hydraulic
permeability, κ , constant causes a monotonic increase in the fractional leakage up to
a limit determined by κ .

The graphs of the fractional leakage presented in Fig. 4d–f for vascular trees of
increasing length and complexity show similar qualitative behavior. As the order of
the bifurcating network is doubled from 2 to 4 and then to 8, the curves are shifted
to the right, and this appears to indicate that, as the geometrical index m increases
while κ and L p are kept constant, the fractional leakage monotonically decreases. To
precisely illustrate the effect of the order of the vascular tree, in Fig. 5a,b, we plot φ

against m for two sets of parameters corresponding to a moderate and a large fractional
leakage. Duplicate computations were carried out to document the extent of scattering
due to the partial randomness of the branching vascular tree. The data indicate that φ

reaches a maximum at a particular value of m for both sets of conditions considered.
However, in light of the results presented in Fig. 2d for a single straight capillary with
a constant interstitial pressure on the outer side, the occurrence of a maximum must
be carefully considered. The computations were repeated using the expressions for
0, 1, and  given in (3.19) in place of the coefficients cA, cB , and cC derived
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Fig. 5 a, b Dependence of the fractional leakage,φ, on the vasculature order, m, for aκ = 10−9 cm4/(dyn s),
L p = 5 × 10−8 cm3/(dyn s), and b κ = 10−7 cm4/(dyn s), L p = 10−6 cm3/(dyn s). Multiple data corre-
spond to duplicate computations. c, d Dependence of the fractional leakage on the length of a straight tube
for values of κ and L p corresponding to cases a and b

by the finite-difference approximation. The results displayed with crosses in Fig. 5
corroborate the occurrence of a maximum.

It is of interest to compare the present results for a vascular tree with those of the ear-
lier straight tube model (Pozrikidis and Farrow 2003). Computations were performed
for a cylindrical tube of radius a = ac1 = 6 µm and varying length, Lc. Figure 5c, d
shows results for the fractional leakage for values of κ and L p corresponding to the net-
work results shown in Fig. 5a, b. In both cases, as the length of the capillary increases,
the fractional leakage increases monotonically and tends to the maximum possible
value of unity. A possible explanation for the maxima seen in Fig. 5a, b is then that
branching capillary segments above a certain level elevate the interstitium pressure
and thereby reduce the extravasation flux.

Figure 6a, b illustrates the capillary and interstitial pressure distributions on the outer
side of the capillaries in the most advanced network, m = 8, for κ = 10−9 cm4/(dyn s)
and L p = 5 × 10−8 cm3/(dyn s). Under these conditions, the fractional leakage
is φ = 0.120. The graphs confirm that neglecting the developing interstitial pres-
sure field due to extravasation has an important effect on the predicted fractional
flow rates. Figure 6c,d shows corresponding results for κ = 10−7 cm4/(dyn s) and
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Fig. 6 a Capillary pressure, and b interstitial pressure distribution on the outer side of the capillaries
in a network with m = 8 bifurcations, for κ = 10−9 cm4/(dyn s) and L p = 5 × 10−8 cm3/(dyn s).
c, d Corresponding distributions for κ = 10−7 cm4/(dyn s) and L p = 5 × 10−6 cm3/(dyn s)

L p = 5 × 10−6 cm3/(dyn s). Under these conditions, the majority of fluid escapes
through the capillary walls, and the fractional leakage is φ = 0.898. The rise in the
interstitial pressure is lower than that seen in Fig. 6a,b. Comparison between the graphs
shown in Fig. 6 demonstrates that vascular leakage renders the capillary pressure pro-
file upward concave, especially near the entrance point.

The effect of the geometry of the vascular network was further examined by carrying
out computations for narrow and widespread vascular networks. Figure 7 illustrates
two capillary networks terminating after m = 8 bifurcations, one for a large branching
angle, θ0 = π/4, and the second for a small branching angle, θ0 = 0.02π . The rest of
the geometrical parameters are the same as those corresponding to the results shown
in Fig. 4. The graphs of the fractional leakage indicate that the mean branching angle
has a noticeable but not profound effect on the extravasation rate.

5 Discussion

We have presented an integrated theoretical framework for describing blood flow and
fluid motion through the neoplastic vasculature of a solid tumor, with the objective
of illustrating the pressure distribution and predicting the extravasation and fractional
flux. Computations were performed for a capillary network resembling a branching
tree consisting of straight bifurcating capillary segments. The results illustrated the
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Fig. 7 Capillary networks terminating after m = 8 bifurcations and associated graphs of fractional leakage
for mean branching angle a, b θ0 = π/4 and c, d 0.02π

effect of the interstitium hydraulic and vascular permeability and demonstrated the
effect of the length of the capillary tree.

The network structure considered in our simulations exhibits a high degree of
geometrical regularity. Although the lengths, branching angles, and elevations of the
segments are randomized, the resulting structure is more ordered than that observed
in the network structures of tumor and normal tissue. Improved capillary networks
with notably disordered geometry and topology can be generated by random walk,
invasion percolation, and computational angiogenesis methods (e.g., Tsafnat et al.
2004; Pindera et al. 2008). Flow through these more realistic networks can be handled
in a straightforward fashion using the theoretical framework developed in this work,
provided that the segment connectivity tables are available.

In an improved model, the straight capillary segments are assigned curved and
spiral shapes, and each segment is divided into a number of smaller cylindrical ele-
ments interacting through extravasation flow. Segment division into elements improves
the error incurred by the assumption of constant interstitial pressure over the outer sur-
face of each segment. The most computationally intensive part of the algorithm is the
evaluation of the dense element source and source-dipole hydrodynamic interaction
matrices. Direct computation requires N 2 floating point operations, where N is on the
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order of several thousand or even higher. The high cost of evaluating the surface inte-
grals places a heavy burden on the numerical method and requires the implementation
high performance algorithms. The computation of the induced interstitial pressure
field can be expedited by the use of adaptive tree code algorithms.

Further extensions and improvements of the theoretical model are possible. First, the
pressure dependence of the interstitium permeability can be taken into consideration.
Pressure-dependent permeability models of saturated porous media are discussed in
the geophysics literature. Because in this case the governing differential equations
become nonlinear, the solution must be found by iterative methods built on the com-
putational scheme discussed in this paper, using Kirchhoff’s transformation. Second,
the dependence of blood viscosity on the capillary radius and discharge hematocrit
can be incorporated using published correlations. These extensions will be considered
in future work.
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