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Abstract The SIR epidemic model for disease dynamics considers recovered
individuals to be permanently immune, while the SIS epidemic model considers
recovered individuals to be immediately resusceptible. We study the case of tempo-
rary immunity in an SIR-based model with delayed coupling between the susceptible
and removed classes, which results in a coupled set of delay differential equations.
We find conditions for which the endemic steady state becomes unstable to periodic
outbreaks. We then use analytical and numerical bifurcation analysis to describe how
the severity and period of the outbreaks depend on the model parameters.
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1 Introduction

Compartmental models for viral and bacterial diseases separate a population into var-
ious classes based on the stages of infection (Anderson and May 1991). It is typical
in the simpler compartmental models for the disease to either die out or approach an
endemic, non-zero equilibrium. More complex temporal behavior can result from the
inclusion of various pathological effects or other environmental factors; for exam-
ple, the addition of seasonal forcing in the contact rate can cause the disease to
exhibit recurrent epidemics or even become chaotic. In this paper, we consider the role
that temporary immunity plays in the spread of diseases such as cholera, pertussis,
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influenza and malaria. We construct a system of delay differential equations (DDEs)
as a model for diseases that exhibit temporary immunity for a fraction of the recovered
individuals. When the fraction of individuals who become resusceptible is small, the
system will evolve to either the disease-free steady state or the endemic state depend-
ing upon the other system parameters. For higher values of the resusceptible fraction,
there is a Hopf bifurcation to oscillatory solutions that indicates recurrent epidemics
of the diseased population. In this paper, we identify the specific conditions required
for oscillatory solutions and use asymptotic methods to explicitly construct and then
investigate the recurring epidemics.

One of the most fundamental compartment models based on differential equa-
tions is the SIR model described by Eqs. 1 below (Anderson and May 1991). This
model classifies individuals to be susceptible (S), infectious (I ), or removed (R) and
permanently immune, and is appropriate for diseases such as measles and mumps.
Individuals are born into the susceptible class, and after having the disease, become
part of the removed class. At the population level, there are disease-free and endemic
steady states, where the parameters determine which is stable:

d S

dt
= b − βSI − µS,

d I

dt
= βSI − (µ + γ )I, (1)

d R

dt
= γ I − µR.

The total population size has been normalized to one and S, I and R represent the
fraction of the total population in each compartment. b and µ are birth and death rates,
respectively, and β is the transmission coefficient related to the number of contacts
that successfully transmit disease. γ is the recovery rate such that 1/γ is the mean
time of infection; d R/dt ∼ +γ I is the rate at which individuals recover and become
immune.

Other compartment combinations may more accurately model other diseases. For
example, an SI model describes a disease with two stages such as herpes or HIV, where
individuals are infectious for life and never removed. An SIS model describes the case
when individuals recover from the disease but there is no immunity, and they return
to the susceptible class. Examples include sexually transmitted diseases, plague and
meningitis. Finally, an SEIR model includes an “exposed” class of individuals who are
not yet infectious, and is appropriate for yellow fever. Additional “forces” that may be
included in the model are disease-related death, vaccination, and seasonal variations
in infectiousness, to name just a few.

In this paper we will use an SIRS model to investigate the effect of temporary
immunity on the prevalence of a disease in a population; that is, when the removed
individuals eventually return to the susceptible class (see Eqs. 2). As mentioned above,
temporary immunity plays a role in the spread of many human diseases. In cholera and
pertussis, for example, immunity weakens over time such that a fraction of recovered
individuals becomes resusceptible to infection, typically after a year or longer. Influ-
enza and malaria are characterized by multiple strains and high mutability within each
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strain. As a result, individuals recover with effectively temporary immunity, resistant
to reinfection from a specific strain but susceptible to infection from other strains. We
will consider temporary immunity to have a fixed duration of time, and modeled by a
delay term in the susceptible and recovered population equations; the SIRS equations
then become a system of DDEs.

We will find that the duration of temporary immunity or delay time plays a critical
role in determining both the onset and properties of recurrent epidemics. For example,
there is a minimum delay time such that if the duration of temporary immunity is
less than the required minimum time, then sustained epidemics will not occur. For
some intervals of the delay time, the resusceptible fraction required to generate recur-
rent oscillations is very small. The delay time determines whether the appearance of
recurrent epidemics will be via a supercritical Hopf bifurcation and hence the popu-
lation will exhibit small epidemics, or if the Hopf bifurcation will be subcritical and
the population will experience large pulsating epidemics. In general, our analysis and
numerical simulations will describe how the amplitude and period of recurrent epi-
demics depend upon the resusceptible fraction and the delay time, as well as the other
system parameters.

In the remainder of the introduction, we provide an overview of how DDEs have
been used to model other disease characteristics; we also discuss other alternatives
for modeling temporary immunity. Later sections are generally either focused on epi-
demiological considerations and results, or on mathematical analysis. Thus, readers
whose interests are geared more towards modeling and the general effects of model-
ing temporary immunity using DDEs will want to focus on the next two sections and
then proceed to the final discussion section. More specifically, in Sect. 2 we introduce
the specific model that we will analyze and derive a non-dimensionalized form that
will serve as the basis for our analysis. In Sect. 3.1 we derive the conditions for the
appearance of recurrent epidemics (i.e., oscillations). We follow that with the results
of numerical simulations that provide an overview of the type of behavior the model
can exhibit under different parameter conditions. In the final discussion section we
summarize the mathematical results and analysis and conclude by returning to discuss
the biological interpretation and ramifications of our results.

Readers who are interested in the application of singular perturbation methods to
DDEs will want to look at the analysis in Sects. 4–6. In the first two, we use the method
of multiple scales, modified to account for delay, to analyze small amplitude epidemics
local to a Hopf bifurcation point. In the third, we derive an iterated map to describe
large-amplitude pulsating epidemics that occur for high resusceptibility.

1.1 Epidemic models with temporary immunity and delays

Differential equations with delays have been used to examine the effect of disease char-
acteristics such as a fixed latency or infectious period (Cooke and Van Den Driessche
1996) and a period of temporary immunity (Hethcote et al. 1981). Delays have also
been used to account for characteristics of the host population such as maturation time
(Cooke et al. 1999) or newborn immunity (Hethcote 2000). In this section, we briefly
review some of these uses of delays in various disease models.
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Upon infection, it is often the case that an individual is not immediately infectious.
During this latency period, the host remains part of the exposed class; that is, no longer
in the susceptible class but not yet in the infectious class. For diseases with a constant
latency period, incorporating a delay represents the constant period of latency more
accurately than a separate exposed class. A fixed recovery or infectious time may be
modeled similarly. For an SEIRS model with fixed latent and recovery times, Cooke
and Van Den Driessche (1996) introduced two delays. The first delay, representing
a fixed latency period, appears in the transmission term of the infectious population
equation:

d I

dt
= βS(t)I (t) becomes

d I

dt
= βS(t − τ̂ )I (t − τ̂ )e−µτ̂ .

The change in the number of infectious individuals at time t is due to those who were
exposed at a prior time (t − τ̂ ). Similarly, the second delay is used to account for a
fixed recovery time.

In humans, a newborn inherits its mother’s antibodies, which help to provide addi-
tional protection while the infant’s immune system continues to develop. A separate
class can be added for newborns with passive immunity from maternal antibodies
(Hethcote 2000). Alternatively, the model may incorporate a delay representing the
time separating birth from the initial vaccinations.

Another characteristic of many species is a maturation period prior to reproductive
adulthood. In humans, children become mature and capable of reproduction in their
early to mid-teens. A constant time prior to maturation can lead to a delayed model
as discussed in Cooke et al. (1999). In fact, one could separate the human maturation
process into several stages of development including infancy, childhood, and ado-
lescence. As long as each stage has equal survival rates, Cooke’s model allows for
several stages of growth preceding reproductive adulthood to be treated as one long
maturation delay.

Temporary immunity occurs in a number of diseases, as mentioned in the intro-
duction. The fixed recovery time and corresponding delay in Cooke and Van Den
Driessche (1996) represent temporary immunity. Hethcote et al. (1981) incorporates a
delay term into an integro-differential SIRS model to represent temporary immunity.
The resulting system reduces to a single first-order integro-differential equation as the
S class decouples (S(t) = 1 − I (t)) and the R(t) population gets absorbed by the
delay term. As an alternate approach, Hethcote also suggests an SI R1 R2, . . . , Rn − S
model to delay the return of individuals to the susceptible class. In other words, rather
than solving a delayed system, he looks at a system with multiple recovered classes
and finds that n ≥ 3 has qualitatively the same dynamics as the delayed system.

We will consider the time for temporary immunity to be a fixed non-zero con-
stant that is the same throughout the population, which we will model using DDEs.
As described above, an alternative is to use multicompartment ODE-based models.
An even more general approach is to allow for a distribution of delay times such
that the model becomes an integro-differential equation, where a kernel function may
be designed to model a specific distribution of immune times (Brauer and Castillo-
Chavez 2001). For example, Diekmann and Montijn (1982) (see also Chow et al. 1985)
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considered a fixed period of temporary immunity as part of an age-structured integral
equation with a time-dependent force of infection. They obtain a transcendental char-
acteristic equation for the stability of the endemic disease state that is similar to the
one we study in Sect. 3.1. Similar to our model, the endemic state becomes unstable
to periodic oscillations corresponding to recurrent epidemics in the population (Chow
et al. 1985). Broadly speaking, using fixed delays can be considered more general
than the ordinary differential equation approach in that we do not allow anyone to be
immediately resusceptible. However, while less general than an integro-differential
model, using DDEs with fixed delays will often be easier to analyze.

2 SIR epidemic model with partial-temporary immunity

2.1 SIR model

A simple model that accounts for temporary immunity is the SIRS model given by:

d S

dt
= b − βSI − µS + σ R,

d I

dt
= βSI − (µ + γ )I, (2)

d R

dt
= γ I − (µ + σ)R.

The coefficient 1/σ is the mean time of immunity and d S/dt ∼ +σ R is the rate at
which individuals again become susceptible. More specifically, immunity times for
individuals range from zero (i.e., no immunity and immediately resusceptible) to infi-
nite (i.e., permanent immunity) according to an exponential distribution of immunity
times, where the mean immunity time is 1/σ (Brauer and Castillo-Chavez 2001).

Our goal is to investigate the effect of a fixed duration of immunity; that is, when an
individual recovers they are immune for a fixed duration τ̂ , at which time they become
resusceptible. Thus, we start with an SIR model and couple the R class and S class as
in the SIRS model. However, the coupling term will contain a fixed delay such that
d R/dt ∼ −γ I (t − τ̂ ) and d S/dt ∼ +γ I (t − τ̂ ). This indicates that individuals who
become resusceptible at time t had entered the R class at time t − τ̂ . Thus, they have
been immune for a duration τ̂ .

We must also take into account the survival rate of recovered individuals. For
example, consider a population N (t) with only a death process,

d N (t)

dt
= −µN (t).

Solving for N (t) gives,

N (t) = N (0)e−µt , for t ≥ 0.
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Thus, the fraction of the original population who survive from time t = 0 to time t is
e−µt . In our model, e−µτ̂ is the fraction of individuals who recover at time t − τ̂ who
survive to time t (Brauer and Castillo-Chavez 2001).

Finally, we allow that only a fraction rγ of the population might become resus-
ceptible, while the remaining fraction, 1 − rγ , remain permanently immune; we shall
refer to rγ as the “resusceptible fraction”. The model we consider is then given by:

d S

dt
= µ[1 − S(t)] − β I (t)S(t) + rγ γ e−µτ̂ I (t − τ̂ ), (3)

d I

dt
= β I (t)S(t) − (µ + γ )I (t), (4)

d R

dt
= γ I (t) − µR(t) − rγ γ e−µτ̂ I (t − τ̂ ). (5)

To simplify calculations, our model considers equal birth and death rates (b = µ).
Thus, the population size is fixed and normalized to N = 1 so that by summing the
three equations we have R(t) = 1 − S(t) − I (t). In further analysis it then suffices to
consider only Eqs. 3 and 4, where R is determined by the above constraint. Finally, we
note that our model is similar to that considered in Brauer and Castillo-Chavez (2001)
(see Sect. 7.7) except that we include the partial population immunity with 0 ≤ rγ ≤ 1
and our analysis will retain the effects of the birth and death terms.

2.2 Steady states and non-dimensionalization

Equations 3 and 4 have two steady states, a disease-free steady state (Sc = 1, Ic = 0)
valid for all parameter values and an endemic steady state:

Sc = 1

R0
, Ic =

µ
β
(R0 − 1)

1 − rγ γ

µ+γ
e−µτ̂

, where R0 = β

µ + γ
. (6)

R0 is the basic reproductive number (Anderson and May 1991) and determines
whether the disease dies out or persists in a population. Specifically, from a linear
stability analysis of Eqs. 3 and 4, we find that for R0 < 1 the disease-free steady state
is stable, while for R0 > 1 the disease-free steady state is unstable. The endemic
steady state exists only if Ic > 0 and hence R0 > 1; its stability will depend upon rγ

as we will describe in the next section. In addition, using energy arguments similar to
those in Pieroux and Erneux (1996); Carr et al. (2000) applied to the rescaled system
Eqs. 9 (derived below), it is possible to show that for small values of rγ the endemic
state is globally stable for R0 > 1.

To simplify further analysis, we define new variables for the deviations from the
non-zero endemic state and rescale time:

I = Ic(1 + y), S = Sc

(
1 +

√
Ic

Sc
x

)
, (7)

and s = β
√

Sc Ic t, then let s → t (8)
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Substituting Eqs. 7 and 8 into Eqs. 3 and 4 results in:

dx

dt
= −y − εx(a + by) + r y(t − τ),

(9)
dy

dt
= x(1 + y),

where:

ε =
√

µβ

γ 2 � 1. (10)

εa = µ + β Ic

β
√

Sc Ic
, εb =

√
Ic

Sc
, r = rγ γ

µ + γ
e−µτ̂ , τ = β

√
Sc Ic τ̂ (11)

and where a and b are taken to be O(1). Recall that 1/µ is the mean lifetime of indi-
viduals who die a natural death; thus, to have ε � 1 we require that individuals be long
lived, µ � 1, relative to the disease rate constants β and γ . Additional understanding
can be gained by considering ε rewritten as

ε =
√√√√( 1

γ

1
µ

)(
β

1

γ

)
� 1. (12)

The second term, (β 1
γ
), is effectively R0 (see Eq. 6 with µ � 1) and is the number of

infections per infected individual. The first term is the mean infectious time divided
by the mean lifetime. Thus, ε is related to the number of infections per infected mul-
tiplied by the fraction of an individual’s lifetime during which they will be infectious.
Smaller ε implies a shorter and/or weaker infection.

The rescaled resusceptible fraction r will be the primary control parameter that
we use to study the effect of temporary immunity. Its physical interpretation is as
follows: exp(−µτ̂) is the fraction of those who recover who survive to time τ̂ . Thus,
rγ exp(−µτ̂) is the faction of those who recover who ultimately become resuscepti-
ble. γ /(µ + γ ) can be considered to be the fraction of those individuals who become
infectious and then recover, the others leaving the population via natural death. Thus,
taken altogether, r represents the fraction of those in the susceptible class who return
to the susceptible class after being infectious.

If all individuals who recover become resusceptible, then the original, unscaled,
resusceptible fraction is rγ = 1. From Eq. 11 we then have that 0 ≤ r ≤ rmax < 1,
where:

rmax = γ

µ + γ
e−µτ̂ . (13)

The reason that rmax < 1 is, as described in the previous paragraph, because some
individuals leave the population due to natural death (µ �= 0). For the scaling assump-
tions given above with γ � µ and µ � 1, then for τ̂ = O(1), rmax is slightly less
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than one. However, for delays that are on the order of the lifetime of the individual
such that τ̂ = O(1/µ), then rmax ≈ 1/e.

Finally, we note that for r = 0, Eqs. (9) are a weakly damped conservative sys-
tem that has been studied both as a model for disease transmission and also lasers
(Schwartz and Smith 1983; Schwartz and Erneux 1994; Kim et al. 2005). Indeed, in the
context of laser systems under the influence of delay, Eqs. 9 have been studied exten-
sively in Pieroux et al. (1994, 2000); Pieroux and Erneux (1996); Bestehorn et al.
(2000). We will be able to adopt results from these previous works on lasers to under-
stand some of the dynamics that we observe for disease transmission. However, there
is an important difference between our work and the previous work on lasers. Spe-
cifically, our feedback parameter r is positive and can be O(1), whereas in the laser
studies, the feedback is negative and small. For weak feedback when, as we shall
see, the delay induces small-harmonic oscillations, the sign on r is not consequential,
and this is the regime where we can borrow results from the earlier works. How-
ever, if r = O(1), then the delay term is larger than the O(ε) dissipation such that
dx/dt ≈ −y + r y(t − τ). This is when we will need new analysis to describe the
harmonic and pulsating oscillations that are observed.

3 Periodic outbreaks due to delay

3.1 Linear stability of the endemic state

In this section we analyze the stability of the non-zero endemic state, which in the
new variables is given by (x, y) = (0, 0). For R0 > 1, the dynamics of the system
near the endemic steady state can be approximated by linearizing the system near
x = y = 0. As with constant-coefficient ordinary differential equations, we look for
solutions proportional to eλt , which results in the following characteristic equation
for λ:

λ2 + εaλ + 1 − re−λτ = 0. (14)

For the equilibrium to be asymptotically stable, all of the eigenvalues must have neg-
ative real parts. Unlike a system of ODEs with a polynomial characteristic equation,
the characteristic equation for this system of DDEs is a transcendental equation in λ,
whose solution presents both analytical and numerical challenges. Before solving for
λ in general, we consider two limiting cases that lend insight into the linear stability
of the non-zero steady state.

Permanent immunity When r = 0 the delay term is removed from the model so that
hosts recover with permanent immunity. Equations 9 are then a scaled version of the
SIR model, Eqs. 1, and the endemic steady state, given by (x, y) = (0, 0), is stable
for R0 > 1.

No delay When τ = 0 there is no delay between recovery and reentering the suscep-
tible class; this is equivalent to an SIS model. However, for r < 1 only a fraction of

123



An SIR epidemic model with partial temporary immunity modeled with delay 849

the population becomes resusceptible, while the remaining are permanently immune.
We find that for τ = 0 and r < 1 the endemic state is stable.

We now return to analyzing Eq. 14 in general. When hosts recover with partial
temporary immunity (r �= 0, τ �= 0) we find that the non-zero endemic state becomes
unstable to periodic solutions through a Hopf bifurcation. To determine when the Hopf
bifurcation occurs, we let λ = iω in Eq. 14 and obtain

0 = (1 − ω2) tan ωτ + εaω, (15)

r2
h = ε2a2ω2 + (1 − ω2)2, (16)

where r = rh is the value of r at the Hopf bifurcation point. Equation 15 is a tran-
scendental equation for the frequency, ω, of the periodic solutions that emerge from
the Hopf bifurcation. Given ω, the value of rh at the Hopf bifurcation point can be
determined by Eq. 16.

In general, Eq. 15 must be solved numerically. However, because ε � 1 then we
expect solutions ω ≈ 1 or ωτ ≈ mπ , m an integer. For the case ω ≈ 1 we let
ω = 1 + εω1 + O(ε2), substitute into Eq. 15 and find that

ω = 1 + ε
1

2
a cot τ + O(ε2). (17)

Using this result in Eq. 16 we find

rh = −ε
a

sin τ
+ O(ε2). (18)

So that rh is positive we require that sin τ < 0, which implies that this approximation
is valid for values of the delay in the intervals τ ∈ (π, 2π), (3π, 4π), . . .. We shall
refer to the oscillations that appear via the Hopf bifurcation with ω ≈ 1 as the natu-
ral mode because ω ≈ 1 is the natural quasifrequency of the system without delay;
that is, without delay, perturbations from the endemic state oscillate and decay with
quasifrequency ω ≈ 1.

For the case ω ≈ mπ/τ we let ω = mπ/τ + εω1 + O(ε2) and find that

ω = mπ

τ
− ε

amπ

τ 2 − (mπ)2 + O(ε2), (19)

and for r we have that

rh = ±
([

1 −
(mπ

τ

)2
]

+ ε
2a(mπ)2

τ(τ 2 − (mπ)2)

)
+ O(ε2), (20)

where the positive solution is used if m is even and the negative solution is used if
m is odd [the sign is determined by examining the original real and imaginary parts
of Eq. 14 expressed in terms of cos(ωτ) and sin(ωτ)]. We shall refer to the oscilla-
tions that appear with ω given by Eq. 19 as delay modes because their frequency is
determined by the delay time.
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We note that Eqs. 15 and 16 are essentially equivalent to Eqs. 3.1 and 3.2 of Pieroux
et al. (1994). Thus, Eqs. 17 and 18 for the natural mode also appear and are studied in
Pieroux et al. (1994). However, because Pieroux et al. restrict themselves to r � 1,
they do not consider the delay modes described by Eqs. 19 and 20.

In Fig. 1 we plot rh(τ ) and ω(τ) as a function of the delay τ . The (+) are the result of
numerically evaluating Eqs. 15 and 16, while the solid curves are the analytical approxi-
mations derived above. In Fig. 1b we see that in the intervals τ ∈ (π, 2π), (3π, 4π), . . .

the largest value of r such that the endemic state remains stable is given by Eq. 18
such that rh = O(ε), the frequency of the resulting oscillations is ω ∼ 1.

In the intervals τ ∈ (0, π), (2π, 3π), . . . the first instability is one of the delay
modes with rh given by Eq. 20; these are indicated by the light solid curves in Fig. 1.
In these intervals, the delay time determines the critical value of the resusceptible
fraction for a Hopf bifurcation. Similarly, the frequency is locked to some multiple of
the inverse delay time, as described by Eq. 19.

For any value of the delay, as r is increased beyond the least value of rh , additional
delay modes bifurcate when rh satisfies Eq. 20. These bifurcations will not be observed
directly because the steady state has already become unstable. However, because they
indicate that more oscillatory modes are unstable, they contribute to more complex
system behavior when r = O(1). In addition, they are the origin of the multi-stability
of oscillatory solutions that is described in Pieroux et al. (1994).

In the left-most interval of delay times when τ ∈ (0, π), the value of m is 1 so
that r ≈ −1 + (π/τ)2. Because we have the restriction r < rmax, there is a minimum

2 4 6 8 10 12 14

10
−1

10
0

τ

r

(b)

m=1

m=2 m=3
m=4

2 4 6 8 10 12 14
0

0.5

1

1.5

2

τ

ω

(a)

m=1

m=2

m=3

m=2

m=4

m=5

m=7

Fig. 1 Analytical and numerical solutions (for ω and r ) of the characteristic equation (Eq. 14) with ε =
0.014 and a = 1.41. In a and b, solid dark and light lines are analytical approximations for ω ≈ 1 and
ω ≈ mπ/τ respectively. Crosses are for numerical approximations
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value of the delay such that a Hopf bifurcation will be observed. Specifically, there
will only be a physically realizable Hopf bifurcation if τ > τmin, where τmin satisfies

rmax(τmin) = −1 +
(

π

τmin

)2

, (21)

and rmax is given by Eq. 13. A weaker but simpler estimate can be obtained by setting
rmax = 1

τmin ≈
√

π

2
. (22)

For the parameter values used to generate Fig. 1, we have found that Eq. 22 is a good
estimate for the minimum value of the delay needed to result in a Hopf bifurcation of
the endemic state. In terms of the original variables we have that to first approximation

τ̂min ≈
√

π

2

1

µγ

(
1 − rγ

R0 − 1

)
. (23)

We see that τ̂min decreases as rγ → 1 or as R0 increases. Thus, the higher the resus-
ceptible fraction or the more virulent the disease, the more sensitive the population is
to oscillations due to delays.

As can be seen in Fig. 1, the analytical approximations are singular when τ = mπ .
A more refined perturbation series expansion should resolve the singularities. How-
ever, we will not pursue that at this time and instead proceed to examine the peri-
odic outbreaks that occur following the Hopf bifurcation of the natural mode when
ω ≈ 1.

3.2 Numerical simulations of periodic outbreaks

In this section we present numerical and analytical results for the effect of temporary
immunity. We will organize our discussion of the results by considering the delay time
τ fixed, and observing the system’s output as the resusceptible fraction r is increased
from 0 to rmax. We will present analytical approximations to the numerical results but
postpone their derivation until later sections. To begin, we first summarize the system’s
behavior. We assume that R0 ∼ β/γ > 1 such that the endemic steady state is stable;
thus, Eqs. 9 exhibit damped oscillations to the endemic steady state (x, y) = (0, 0).
As the resusceptible fraction r is increased there is a Hopf bifurcation such that the
endemic state becomes unstable. After the Hopf bifurcation, as r is increased towards
rmax, the system exhibits periodic oscillations corresponding to recurrent epidemics,
which increase from being small amplitude and nearly harmonic to large amplitude
and pulsating.
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3.2.1 Parameter values

For most of our simulations the chosen parameter values (a = 1.41, b = 0.71, and
ε = 0.014) correspond to γ ≈ 100, β ≈ 200, and µ = 0.01. If time is measured in
years, these parameters correspond to a mean lifetime of 100 years, a mean recovery
time on the order of a week, and an R0 ∼ β/γ of approximately 2. These values
are roughly appropriate for a wide variety of human diseases (see Anderson and May
1991, Tables 3.1 and 4.1). More generally, our results maintain fidelity under the cri-
teria ε � 1. Thus, we will also show results for higher values of the transmission
coefficient β corresponding to R0 ≈ 8 and R0 ≈ 14.

For most of our simulations we use a delay τ = 3π/2, which in real-time units
corresponds to a temporary immunity time in the range of 5–10 years. (the inter-
val in the real-time delay is due to the scaling in Eq. 8 that depends on the bifur-
cation parameter). We will also consider immunity times that are both longer and
shorter.

3.2.2 Time evolution

Using the numerical routine DDE_SOLVER (Thompson and Shampine 2006), we
have computed solutions to Eq. 9 for various values of r . The results are shown in
Fig. 2 for r = 0.005, 0.02, 0.03, and 0.9. In Fig. 2a the fraction of recovered individu-
als that become resusceptible is very small (r � 1) and the system exhibits oscillations
that decay to the endemic state (x, y) = (0, 0). When r ≈ 0.03 the endemic state
becomes unstable via a Hopf bifurcation. Increasing r corresponds to increasing the
fraction of recovered individuals that are re-injected into the susceptible population.
For r > rh the greater influx of susceptible individuals sustains recurring outbreaks as
seen by the harmonic oscillations in Fig. 2b. Further increases in the fraction of indi-
viduals who become resusceptible drive the system to generate pulsating epidemics,
Fig. 2c and d.

3.2.3 Bifurcation diagrams

Figure 3 are numerical bifurcation diagrams generated using Matlab routine DDE_
BIFTOOL (Engelborghs et al. 2001; Luzyanina et al. 2005). They illustrate the rela-
tion between the resusceptible fraction and the period and amplitude of solutions.
Specifically, we see two important regions of change. The first is immediately fol-
lowing the Hopf bifurcation, where the amplitude and frequency of the oscillatory
solutions increase sharply. In this regime the oscillatory solutions are nearly harmonic
as in Fig. 2b. The second region is for values of r greater than approximately 0.2, where
the amplitude and period increase more gradually. In this latter regime the oscillations
become pulsating as shown in Fig. 2c and d. Each of these regions will be described by
separate asymptotic approximations in later sections. Finally, the oscillatory solutions
are stable throughout the full range of the parameter r .

In Fig. 4 we focus on the vicinity of the Hopf bifurcation point for three different
values of the delay. In each case, the delay is in the interval τ ∈ (π, 2π) such that the
Hopf bifurcation is the natural mode described by Eqs. 17 and 18. When the delay is
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Fig. 2 Periodic solutions from DDE_SOLVER with a = 1.41, b = 0.71, and ε = 0.014, and τ = 3π/2.
a r = 0.005, b r = 0.02, c r = 0.03, and d r = 0.9. Periodic solutions appear as r increases beyond the
Hopf bifurcation point r = rh . As r increases towards 1, y(t) becomes pulsating, while x(t) transitions
from b harmonic to c triangular waves then d square waves. The dashed curve corresponds to y(t − τ)

τ = 3π/2, this corresponds to the minimum of the neutral stability curve in Fig. 1. For
values of the delay to the left of the minimum, the bifurcation is supercritical. However,
for values of the delay greater than the minimum when τ > 3π/2, the bifurcation is
subcritical; in this case, there is a region of bistability between the endemic state and
oscillatory (and pulsating) solutions.

In Fig. 5a we examine values of the delay to the left of the minimum at τ = 3π/2.
When τ = 4.2 the Hopf bifurcation point is given by Eq. 18; the dashed curve is the
analytical prediction, derived in Sect. 4, given by

r = − εa

sin τ

[
1 + B2

(
1

6
τ cot τ + 5

18
− 4

9
cos τ

)]
, (24)

where B is proportional to the amplitude of the oscillations. More generally, by solv-
ing for the amplitude we have an explicit expression B = B(r, εa, τ ) for how the
amplitude of the epidemics depends upon the diseases parameters. Notice that the
direction of the bifurcation is determined by the term 1/ sin τ and, hence, controlled
by the time duration that individuals are temporarily immune.

When τ = 2.8 the bifurcation is that of the delay mode with m = 1, with the bifur-
cation point given by Eq. 20. The dashed curve is our analytical prediction, derived in
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Fig. 3 The maximum of the a susceptible max(x) and c infectious max(y) as well as the b period as a
function of feedback from the fraction of individuals who become resusceptible, r . rmax ≈ 0.95 (a = 1.41,
b = 0.71, ε = 0.014, and τ = 3π/2)

Sect. 5, given by

B2 = ± 1

ωc
(r − rh), (25)

where ω, the constant c and the choice of sign depend upon the delay time τ . Thus,
the time duration that individuals are temporarily immune again determines whether
the bifurcation is supercritical or subcritical.

For τ < π the branch of bifurcations is always supercritical, and as the delay is
decreased the value of rh increases. Thus, shorter delay times require a larger resuscep-
tible fraction to initiate oscillations. As described in the previous section, for τ < τmin
the endemic state is stable for all physically valid values of r and no oscillations will
occur. Finally, we note that for the shorter values of delay that occur for τ < 3π/2,
there is not a secondary bifurcation of a delay mode for r < rmax. Thus, the oscillations
that initially bifurcate remain stable throughout the range of r , and there are no other
stable solutions.

In Fig. 5b we examine values of the delay to the right of the minimum at τ = 3π/2
but less than 5π/2. When τ = 5.2 the Hopf bifurcation point is given by Eq. 18,
the dashed curve is the analytical prediction given by Eq. 24. When τ = 6.7 the
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Fig. 4 The maximum values of the susceptible max(x) and infectious population max(y) as well as the
period local to the Hopf bifurcation point rh for different values of the delay τ (a = 1.41, b = 0.71, and
ε = 0.014)

bifurcation is that of the delay mode with m = 1 with bifurcation point given by
Eq. 20, the dashed curve is our analytical prediction given by Eq. 25. For these val-
ues of the delay the bifurcation is always subcritical and the solutions are stable on
the upper part of the branch of periodic solutions. Thus, there is bistability in the
interval from the value of r at the left limit point to the Hopf bifurcation point at rh ;
depending upon the initial conditions, the disease may be at the endemic steady state
or experiencing sizable epidemics.

In Fig. 5c we examine the transition of the primary bifurcation from the m = 2
delay mode to the m = 3 delay mode, which occurs for τ ≈ 5π/2. The transition
occurs for the value of τ at the intersection m = 2 and m = 3 neutral stability curves
in Fig. 1. τ = 7.2 and 7.9 correspond to the m = 2 delay mode so that the primary
bifurcation is subcritical. τ = 8.15 and 8.5 correspond to the m = 3 delay mode and
are supercritical. In Sect. 5 we show that delay modes with m even are subcritical and
delay modes with m odd are supercritical.

As the delay is increased, the general pattern described in the previous paragraphs
repeats. Natural modes corresponding to delays that are left of the minimum of the
neutral stability curve are supercritical, while to the right they are subcritical. As τ

is varied through the minimum, there is a continuous deformation of the bifurcation
curve from supercritical to subcritical. On the other hand, near the intersection of the
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Fig. 5 The maximum value of the susceptible population for different values of the delay (a = 1.41,
b = 0.71, and ε = 0.014). The τ = π is unable to be described by our bifurcation results for either the
natural or delay modes. Solid curves correspond to the numerically computed bifurcation diagrams, while
the dashed solid were computed numerically. There are no analytical predictions for τ = nπ because these
values represent singular points of the analysis

branches of the neutral stability curve for the delay modes, the primary bifurcation
discontinuously switches from subcritical to supercritical; this is because it is not a
continuous deformation of the same branch of solutions, but instead corresponds to
switching from the m even to the m odd branch. However, when the supercritical
bifurcation for m odd becomes primary, it is followed for only a slightly larger value
of r by the subcritical branch for m even, whose upper branch still describes stable
oscillations. In this case there can be multi-stability between the small amplitude oscil-
lations of the m-odd oscillations and the larger amplitude oscillations of the m-even
oscillations. This multi-stability was described in detail by Pieroux et al. (1994).

3.2.4 Biological mechanisms

In Fig. 6 we consider larger values of the resusceptible parameter r when the oscilla-
tions are pulsating solutions. The dashed curves for the amplitude are given by

x f = 2τ − d1(1 − r)

2 + d2(1 − r)
− ετ 2

6r
[(2 + r)(a − b) + 2(1 − r)b] , (26)
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Fig. 6 a–c The maximum of the susceptibles x f , the period P f , and the maximum of the infectious y f , as
a function of the resusceptible fraction for several values of the transmission coefficient β and τ = 3π/2.
β = 200 corresponds to ε = 0.014, a = 1.41 and b = 0.71, β = 800 to ε = 0.028, a = 1.07 and b = 0.94,
and β = 1,400 to ε = 0.037, a = 1.04 and b = 0.96. d–f x f , the period P f , and y f for several values of
the delay τ with ε = 0.014, a = 1.41 and b = 0.71. Solid curves correspond to the analytical predictions
of the map, while the dashed curves were computed numerically

where x f represents the amplitude of the oscillation of the susceptible class (the con-
stants d j and results for the period and the the oscillation amplitudes of the infectious
class are all given in Sect. 6). Note that to leading order the delay time and the resus-
ceptible fraction have the strongest affect on determining the amplitude (and period)
of the pulsating epidemics. The effect of the biological parameters via ε, a and b are
a smaller effect.

In Fig. 6a–c we show the effect of changing β. We see that as the transmission rate
β is increased, both the severity of the epidemics and the period between epidemics
decrease. Increasing β increases both of the dissipation coefficients a and b. With
greater dissipation, the system exhibits smaller oscillations. Epidemiologically, this
can be understood as follows. From Eq. 6 we see that the basic reproductive number
R0 is directly proportional to β such that as β increases, so will R0. As R0 increases,
the steady-state number of susceptible individuals decreases because more individuals
are in the infectious class. With fewer individuals available to become ill, the epidemic
spike will be smaller. If there is a smaller reduction in the susceptible individuals, then
this allows that compartment to regenerate faster, leading to a subsequent epidemic
spike occurring sooner.

In Fig. 6d–f we show the effect of changing the delay τ and the phenomena of
period or frequency locking. This refers to when the period is fixed to some multiple
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or fraction of the delay and is a generic property of delay systems. Large increases or
decreases in the delay will change the integer relationship between the delay and the
period. In the righthand panels of Fig. 6, the system is locked to approximately twice
the delay time. Slightly increasing or decreasing the delay time leads to an increase or
decrease in the period of the pulsating epidemics. For the system to support a longer
period of time before the next epidemic, the supply of susceptible individuals must
be depleted to a greater degree in the previous epidemic. This in turn requires larger
epidemics. Thus, longer delays lead to longer periods via locking and hence larger
amplitudes. Similarly, reducing the delay reduces the amplitude of the epidemics.

In the next three sections we present the mathematical analysis used to derive
Eqs. 24–26. The bifurcation equations for the small-amplitude oscillations of the inter-
nal and external modes when r ≈ rh are derived using the method of multiple scales,
modified to account for the delay. The pulsating oscillations that occur when r = O(1)

are described by deriving a map that describes the amplitude and period from one pulse
to the next. Readers who are not interested in the mathematical analysis can proceed
to the final discussion section, Sect. 7, where we summarize and discuss the results of
the paper.

4 Small-amplitude oscillations of the natural modes

Just after the Hopf bifurcation for r > rh = O(ε), the periodic outbreaks have small
amplitude and are nearly harmonic. Typically, a weakly nonlinear perturbation method
such as multiple scales (Kevorkian and Cole 1996) is used to analyze oscillations local
to a Hopf bifurcation point. In the next section, we will do just that to analyze the delay
modes. However, in the case of the natural modes, the leading-order bifurcation equa-
tion turns out to be “vertical” in that we do not obtain a relationship between the
amplitude of the oscillations and the bifurcation parameter r . Pieroux et al. (1994)
have resolved this difficulty by instead looking for O(1) amplitude solutions and find-
ing an equation for the slow evolution of the energy to the ε = 0 system. Their final
result, given by their Eq. A9, which when written in terms of the parameters of our
problem, is

r = − εa

sin τ

[
1 + B2

(
1

6
τ cot τ + 5

18
− 4

9
cos τ

)]
, (27)

where B ≈ max(x)/2. Note that for B = 0 we recover the linear stability
result r = rh of Eq. 18. As discussed in the linear-stability analysis, r must be
non-negative such that sin τ < 0, and the result is valid for delay times in the intervals
τ ∈ (π, 2π), (3π, 4π), . . ..

In Fig. 5a and b we compare the prediction of Eq. 27 with numerical simula-
tions for the case of τ = 4.2 and τ = 5.2, respectively; as first demonstrated by Pieroux
et al. (1994), the fit is quite good. When τ = 4.2 the bifurcation is supercritical and the
coefficient of B2 in Eq. 27 is positive. On the other hand, when τ = 5.2 the bifurcation
is subcritical and the coefficient of B2 is negative. The critical value of τ that separates
super from subcritical bifurcations is when the coefficient of B2 = 0, which is approx-
imately the minimum of the neutral stability curve when τ = nπ/2, n = 3, 7, 11, . . ..
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5 Small-amplitude oscillations of the delay modes

In this section, we will use the method of multiple scales (Kevorkian and Cole 1996),
modified to take into account the delay term, to describe the delay modes that emerge
via Hopf bifurcations when r = O(1), as given by Eq. 20. The calculation is sim-
ilar to one that we used when analyzing two coupled lasers in Carr et al. (2006).
Without delay, the oscillations decay on an O(ε) time scale, which motivates us to
introduce the slow time T = εt ; time derivatives then become d

dt = ∂
∂t + ε ∂

∂T . We
analyze the nonlinear problem using perturbation expansions in powers of ε1/2, e.g.,
x(t) = ε1/2x1(t, T ) + εx2(t, T ) + · · · , while the bifurcation parameter is expanded
as r = r0 + εr1 + · · · .

We must also consider the effect of the two-time scale assumption on the delay
term. With the additional slow time the delay term becomes

y(t − τ) → y(t − τ, T − ετ). (28)

If r � 1 then the delay term is small and not part of the leading-order problem. In this
case, its effect will be recovered at a higher order as part of a solvability condition for
the slowly varying amplitude (Pieroux et al. 2000). The multiple-scale analysis for the
delay modes is more complicated because r = O(1), which results in a leading-order
problem that contains the delay terms. To make analytical progress we need to remove
the slow delay from the leading-order problem (Pieroux et al. 2000). Specifically, we
assume that ετ � 1 such that the slow argument can be expanded as

y(t − τ) = y(t − τ, T ) − ετ
∂

∂T
y(t − τ, T ) + · · · . (29)

The leading-order problem will still contain the delay on the fast time, but the effect
of the delay on the slow time is postponed to higher order. The restriction that ετ � 1
implies that our results are applicable when τ = o(1/ε). Thus, we find that our results
fit well when τ = O(1) but become less accurate for longer delays.

It should be noted that care must be taken when using a series expansion of a delay
term in a differential equation. The Taylor series may itself be justified, but using
the series expansion can change the stability of limit sets of the differential equation.
A simple example is given in Driver (1977), while (Driver et al. 1973; El’sgol’ts and
Norkin 1973) provide more theoretical discussions concerning restrictions on the size
of the delay. In our presentation we will check the validity of our approximations by
comparing our analytical and numerical results.

5.1 Leading order

The leading order O(ε1/2) problem is

∂

∂t
X1(t, T ) = L · X1(t, T ) + D · X1(t − τ, T ), (30)
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where

X1(t, T ) =
(

x1(t, T )

y1(t, T )

)
, L =

(
0 −1
1 0

)
, and D =

(
0 r0
0 0

)
. (31)

We look for oscillatory solutions of the form X1(t, T ) = U1 A(T ) exp(iωt)+c.c., (c.c.
represents the complex conjugate) where A(T ) is a slowly varying scalar amplitude
[to be determined from a solvability condition at O(ε3/2)]. To find ω and the vector
U1 we substitute our ansatz into Eq. 30 to obtain

0 = J · U1 where J =
(−iω −1 + r0e−iωτ

1 −iω

)
. (32)

For a non zero solution U1, we require det J = 0. This results in the same condition
obtained from the leading-order linear-stability problem, and we find that

ω = mπ

τ
, m = an integer. (33)

and

r0 = ±(1 − ω2), (34)

where, as in Sect. 3.1, the positive solution is taken if m is even and the negative
solution is taken if m is odd. Finally, we find that

U1 =
(

iω
1

)
. (35)

5.2 Second order

At O(ε) the problem is

∂

∂t
X2(t, T ) = L · X2(t, T ) + D · X2(t − τ, T ) + F2, where F2 =

(
0

x1 y1

)
(36)

Because the homogeneous problem is the same as the O(ε1/2), problem we can,
without loss of generality, set the homogeneous solution to 0. The inhomogeneous
term F2 is proportional to exp(i2ωt) so that the solution is

X2(t, T ) = A(T )2U2ei2ωt + c.c., (37)

where

U2 = 1

(1 − 4ω2) − r0

(
iω(r0 − 1)

−2ω2

)
. (38)

123



An SIR epidemic model with partial temporary immunity modeled with delay 861

5.3 Third order

At O(ε3/2) we find the solvability condition that determines the slow-evolution equa-
tion for B(T ). The O(ε3/2) problem is

∂

∂t
X3(t, T ) = L · X3(t, T ) + D · X3(t − τ, T ) + F3, (39)

where

F3 =
(−ax1 + r0 y3(t − τ, T ) − r0τ

∂
∂T y1(t − τ, T ) − ∂

∂T x1

x1 y2 + x2 y1 − ∂
∂T y1

)
. (40)

The vector F3 has terms proportional to exp(iωt) and exp(i2ωt), and the former will
lead to solutions of the form (U3 + V3t) exp(iωt). The secular term V3t must be elim-
inated to prevent unbounded solutions for large t , which implies that a solvability
condition must be imposed on F3. The solvability condition is formulated as follows:
We look for a solution to Eq. 39 of the form X3 = U exp(iωt) and at the same time
identify the terms in F3 proportional to exp(iωt). We then obtain an algebraic system
of equations for the vector U as

0 = J · U + F, (41)

where

F =
(

(−iωa + r1e−iωτ )A − (iω + r0τe−iωτ ) ∂ A
∂T

ic|A|2 A − ∂ A
∂T

)
, (42)

and

c =
{

ω m even
ω(ω2+2)

5ω2−2
m odd

. (43)

For U to have a non-zero solution, the Fredholm alternative requires that V H · F = 0,
where V is the solution to J H · V = 0 (the superscript H refers to Hermitian). We
find that V H = (1, iω), and the resulting condition for the amplitude A(T ) is

(i2ω + r0τe−iωτ )
∂ A

∂T
= (−iωa + r1e−iωτ )A + iωcA|A|2, (44)

5.4 Bifurcation equation

To analyze the solvability condition given by Eq. 44, we let A(T ) = B(T )eiθ(T ).
The bifurcation equation is determined by considering steady-state solutions to the
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equation for B, and we find that

B2 = ± 1

ωc

(
r1 − 2ω2a

r0τ

)
(45)

where c is positive and the positive solution is taken if m is odd and the negative
solution is taken if m is even. Notice that the second term in the parentheses is the
correction to the Hopf bifurcation point as given in Eq. 20. Thus, we have that

B2 = ± 1

ωc
(r1 − r1h) (46)

and the signs indicate that the bifurcation is supercritical if m is odd and subcritical if
m is even.

We have used Eq. 44 to generate the dashed curves in Fig. 5a for τ = 2.8, in Fig. 5b
for τ = 6.7, and all the dashed curves shown in Fig. 5c; we obtain excellent results
for a wide range of values of the delay.

6 Pulsating outbreaks for high resusceptibility

In this section we describe the pulsating solutions that occur for r = O(1). During
the time interval from one pulse to the next, there are times when the terms y(t) and
y(t − τ) in Eq. 9 are either large or approximately −1 (see Fig. 7). We will use these
observations to find approximations to Eq. 9 that are easier to analyze. Similar to the
method of matched asymptotics (Kevorkian and Cole 1996), we solve approximations
of Eq. 9 on separate subintervals, defined by the relative scaling of y(t) and y(t − τ).
Specifically, we mark the beginning of a pulse where y(t0) = 0 and the end of the
pulse where y(t ′0) = 0. Over the short time interval (t0, t ′0) the infected population y(t)
is large, while y(t − τ) is approximately −1 and the susceptible population rapidly
decreases to its minimum. Following the pulse during a longer subinterval (t ′0, t0 +τ),
both y(t) and y(t−τ) are approximately−1, while the susceptible population increases
slowly. During the delayed pulse y(t) ≈ −1 and y(t − τ) is large. Finally, there is
another long subinterval following the delayed pulse where both y(t) and y(t − τ) are
approximately −1 and the susceptible population x(t) increases slowly to its maxi-
mum. The initial condition for each subinterval comes from the terminal condition of
the previous subinterval. The end result is a map describing the time and amplitude
of the next pulse, t1, x(t1) and y(t1) in terms of the present time and amplitude, t0,
x(t0) and y(t0). This technique has been used to analyze the pulsating output of lasers
(Schwartz and Erneux 1994; Carr 2003; Carr et al. 2000). Readers not interested in
these details may proceed directly to the analysis of the resulting map in Sect. 6.4.

6.1 Subinterval approximations

We now show the specific approximations and solutions in each subinterval. We first
consider the time intervals when the delay pulse is small or, y(t − τ) ≈ −1. With
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Fig. 7 The susceptible, x(t), and infected, y(t), populations for r = 0.9. The time-delayed pulse is shown
as a dashed line (a = 1.41, b = 0.71, ε = 0.014, and τ = 3π/2)

reference to Fig. 7, this is everywhere outside the interval t ∈ [t0 + τ, t ′0 + τ ]. Using
the change of variable y + r = Y , Eqs. 9 become

dx

dt
= −Y − εx(A + bY ),

(47)
dY

dt
= x(ρ + Y ),

where A = a − br and ρ = 1 − r . We now use Eqs. 47 to describe the system for
times when the delayed pulse is small (y(t − τ) ≈ −1).

Pulse when t ∈ [t0, t ′0] Define the times t = t0 and t = t ′0 = t0 + � as the beginning
and end of the present pulse, where � refers to the pulse width. More specifically, the
start of the pulse occurs when x is a maximum, dx/dt at t0 is zero. Similarly, the end
of the pulse occurs when x is a minimum.

During the pulse, Y � ρ and Y � A/b so Eqs. 47 are approximated by

dx

dt
= −Y − εbxY,

(48)
dY

dt
= xY.

These can be solved in the phase plane by determining the equation for dY
dx whose

solution is

Y (t) = − 1

εb

{
x(t) − x(t0) − 1

εb
[ln(1 + εbx(t)) − ln(1 + εbx(t0))]

}
, (49)
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where Y (t0) = 0 via Eq. 48 because we require dx/dt = 0 at t = t0. Similarly, at the
end of the pulse Y (t ′0) is also zero so that x(t ′0) satisfies

0 = x(t ′0) − x(t0) − 1

εb

[
ln(1 + εbx(t ′0)) − ln(1 + εbx(t0))

]
(50)

and after expanding for ε � 1, we obtain

x(t ′0) = −x(t0) + 2

3
εbx2(t0) + O(ε2) (51)

(expand the natural logs and x(t ′0) in powers of ε). The peak value of the pulse, which
corresponds to the peak in the infectious population, occurs when dY/dt = 0 and,
hence, from Eq. 48 when x(tp) = 0. Thus, from Eq. 49 we have:

Y (tp) = 1

εb

[
x(t0) − 1

εb
ln(1 + εbx(t0))

]
. (52)

First “outer” interval when t ∈ [t ′0, t0 + τ ]. In the next interval from t = t ′0 to
t = t0 + τ , Y (t) ≈ −ρ, and Eq. 47 are approximated by

dx

dt
= ρ − εηx,

(53)
dY

dt
= x(ρ + Y ),

where η = (a − b). The equation for x can be solved first and the result used to find
Y ; we obtain

x(t0 + τ) =
[

x(t ′0) − ρ

εη

]
e−εη(τ−�) + ρ

εη
,

(54)
Y (t0 + τ) = −ρ + [ρ + Y (t ′0)

]
eF(t0+τ,t ′0),

where � = t ′0 − t0 and

F(t, t ′0) = x(t ′0)(t − t ′0) + 1

2
ρ(t − t ′0)2

−1

2
εη

[
x(t ′0)(t − t ′0)2 + 1

3
ρ(t − t ′0)3

]
,

(55)

F(t0 + τ, t ′0) = x(t ′0)T1 + 1

2
ρT 2

1 − 1

2
εη

[
x(t ′0)T 2

1 + 1

3
ρT 3

1

]
,

T1 = τ − �.

T1 represents the duration of time in the first outer subinterval.
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Delayed pulse when t ∈ [t0 + τ, t ′0 + τ ]. The delayed pulse occurs in the interval
from t = t0 + τ to t = t ′0 + τ . During this interval we consider the model in original
variables with y instead of Y . y(t − τ) � 1 and y ≈ −1 and Eq. 9 are approximated
by

dx

dt
= 1 − εηx + r y(t − τ),

(56)
dy

dt
= 0.

To leading order y is unaffected by the delay term so that

y(t ′0 + τ) = y(t0 + τ). (57)

The equation for x is linear with y(t − τ) serving as a known forcing term and,
hence, can be solved with an integrating factor to obtain

x(t ′0 + τ) = x(t0 + τ)e−εη� + 1

εη
(1 − e−εη�)

+ re−εη(t ′0+τ)

t ′0+τ∫
t0+τ

eεηs y(s − τ)ds, (58)

where � = t ′0 − t0 is the width of the pulse. The effect of the delay term is to cause a
jump in x(t) proportional to the area of the original pulse in y(t). What remains is to
evaluate the integral.

With the change of variable s − τ → s we analyze

I1 = re−εηt ′0

t ′0∫
t0

eεηs y(s)ds, (59)

which requires the solution for y in the time interval of the original pulse. The latter
was described in terms of the variable Y = y + r so that the integral becomes

I1 = −r2e−εηt ′0

t ′0∫
t0

eεηsds + re−εηt ′0

t ′0∫
t0

eεηsY (s)ds. (60)

The first integral in I1 can be evaluated directly. For the second integral we first note
from Eqs. 48 that

Y = − dx
dt

1 + εbx
≈ −dx

dt
+ εbx

dx

dt
+ O(ε2), (61)
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to give

I1 = −r2 1

εη
(1 − e−εη�) + re−εηt ′0

t ′0∫
t0

eεηs
(

−dx

dt
+ εbx

dx

dt
+ O(ε2)

)
ds. (62)

Substituting the result for I1 into Eq. 58 for x at the end of delayed pulse we have

x(t ′0 + τ) = x(t0 + τ)e−εη� + 1

εη
(1 − r2)(1 − e−εη�)

+re−εηt ′0

t ′0∫
t0

eεηs
(

−dx

dt
+ εbx

dx

dt
+ O(ε2)

)
ds, (63)

We must now evaluate the integral

I2 = re−εηt ′0

t ′0∫
t0

eεηs
(

−dx

dt
+ εbx

dx

dt
+ O(ε2)

)
ds,

= re−εηt ′0

t ′0∫
t0

eεηs
(

−dx

dt
+ εb

1

2

d

dt
(x2) + O(ε2)

)
ds. (64)

Each of the integrals in I2 can be evaluated by parts to give

I2 = r

[
−x(t ′0) + e−εη�x(t0) + 1

2
εb
(

x(t ′0)2 − e−εη�x(t0)
2
)]

+ re−εηt ′0

⎡
⎢⎣εη

t ′0∫
t0

eεηs xds − ε2bη

t ′0∫
t0

eεηs x2ds + O(ε3)

⎤
⎥⎦ . (65)

The last integral with x2 is explicitly O(ε2) and will be ignored. It turns out that the
contribution of the first integral is also O(ε2). The exponential in the integrand can
be expanded as the following:

eεηs ≈ [1 + εηs + O(ε2)]x(s) ≈ x(s) + O(ε). (66)

The integral of the first term x(s) over the interval of the pulse is zero because x(s)
is odd to leading order (see Fig. 7 and Eq. 51). Thus, the first integral is O(ε) and
because it is multiplied by ε, its contribution is O(ε2). The result is that

I2 = r

[
−x(t ′0) + e−εη�x(t0) + 1

2
εb
(

x(t ′0)2 − e−εη�x(t0)
2
)]

+ O(ε2). (67)
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Finally, we use Eq. 51 to substitute for x(t ′0) to give

I2 = r

[
x(t0)

(
1 + e−εη�

)− 2

3
εbx(t0)

2 + 1

2
εbx(t0)

2 (1 − e−εη�
)]+ O(ε2). (68)

Thus, Eq. 63 for x at the end of the delayed pulse is

x(t ′0 + τ) = x(t0 + τ)e−εη� + 1

εη
(1 − r2)(1 − e−εη�)

+ r

[
x(t0)

(
1 + e−εη�

)− 2

3
εbx(t0)

2 + 1

2
εbx(t0)

2 (1 − e−εη�
)]

+O(ε2). (69)

The last step to determining a reasonably simple equation for x(t ′0 +τ) is to expand
the exponential functions for εη� = O(ε). Doing so we obtain

x(t ′0 + τ) = x(t0 + τ)(1 − εη�) + (1 − r2)�

(
1 − 1

2
εη�

)

+ r

[
x(t0)(2 − εη�) − 2

3
εbx(t0)

2
]

+ O(ε2). (70)

Second “outer” interval when t ∈ [t ′0 + τ, t1]. In the last time interval, both Y (t) and
Y (t − τ) are again approximately −ρ. The time t1 is defined when x again reaches a
maximum, which we can identify as occurring when Y (t1) = 0. We solve the same
equations as for t ∈ [t ′0, t0 + τ ], and find that

x(t1) =
[

x(t ′0 + τ) − ρ

εη

]
e−εη(P−(τ+�)) + ρ

εη
,

(71)
Y (t1) = −ρ + [ρ + Y (t ′0 + τ)

]
eF(t1,t ′0+τ),

where P = t1 − t0 is the total time between the initiation of two pulses. F(t1, t ′0 + τ)

is defined similarly to Eq. 55 so that here we have

F(t1, t ′0 + τ) = x(t ′0 + τ)T2 + 1

2
ρT 2

2 − 1

2
εη

[
x(t ′0 + τ)T 2

2 + 1

3
ρT 3

2

]
,

(72)
T2 = P − (τ + �),

and T2 is the total time in the second outer subinterval.

6.2 Pulse width �

The pulse width � = t ′0 − t0 is defined to be the short interval of time between the
extrema of x(t). Unfortunately, � is neither small nor constant and can not be ignored.
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To find an approximation for the pulse width, we consider the system when the delay
term is at its minimum with y(t − τ) ≈ −1. For the purposes of finding the pulse
width, we will also consider the damping terms to be negligible. Thus, we consider
the conservative system

dx

dt
= −Y,

(73)
dY

dt
= x(ρ + Y ),

To find � we need an explicit solution for x(t) in order to learn when the maximum
and minimum occur. Unfortunately, while Eqs. 73 has the first integral

C = 1

2
x2 + Y − ρ ln(ρ + Y ), (74)

there is no exact solution for x(t). However, Pieroux and Erneux (1996) have con-
structed a uniform asymptotic expansion for x(t) in the case when ρ = 1. We have
followed their analysis to derive a uniform solution for x(t) for general ρ, and it is
given by

x(t) ≈ ρt − eξ

ρtc
C0

+ 1
ρtc

eξ
, ξ = tcρ(t − tc). (75)

tc ≈
√

2C0

ρ

(
1 + 1

2

ρ

C0
ln C0

)
(76)

C0 = 1

2
x(t0)

2 − ρ ln ρ, Y (t0) = 0. (77)

Given x(t), we find when dx/dt = 0 and used those times to determine the pulse
width to be

� ≈
√

2

C0
ln

(
4C0

ρ

)(
1 − 1

2

ρ

C0
ln C0

)
. (78)

In practice, we find that we can ignore the correction terms to both C0 and �.
Specifically, we let C0 = (1/2)x(t0)2 in the equation for � and obtain

� ≈ 4

x(t0)
ln

(√
2

ρ
x(t0)

)
(79)

In Fig. 8a we compare Eq. 79 to results from numerical simulations of Eq. 73. The thin
solid curve is the pulse width based on numerical simulation of the ordinary differen-
tial equations, Eqs. 73. The thick solid curve is the pulse width of the DDEs, Eqs. 9.
Our first observation is that the pulse width of the ODE model is a good approximation
of the pulse width of the DDE model. The dashed curve is the pulse width based on
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Fig. 8 The pulse width as a function of the feedback rate r . a The thin solid curve is the numerically com-
puted pulse width for the system without delay, while the dashed curve is the analytical approximation of
the pulse width, Eq. 79, for the system without delay. The thick solid curve is the pulse width of the delayed
system. b For fixed values of r , the linear approximation of the pulse width given by Eq. 80 compared to
Eq. 79

Eq. 79, where we used the numerical value of x(t0) to find �. We see that Eq. 79 does
an excellent job of describing the pulse width of the delay system over the full range
of the feedback parameter r .

Unfortunately, using Eq. 79 for �, which is given in terms of a natural log function,
makes it impossible to determine explicit final answers for x and the period. Thus, we
use a linear approximation for � that we find does a very good job of fitting the actual
function and is shown in Fig. 8b. We find that

� = d1 + d2x(t0), (80)

d1 = 4

xc

(
2 ln

(√
2

ρ
xc

)
− 1

)
, d2 = 4

x2
c

(
1 − ln

(√
2

ρ
xc

))
, (81)

where x = xc is the expansion point. We have to choose xc using some measure of best
fit. Clearly, the value of x = xc should be within the range of numerically computed
amplitudes. However, we have not tried to optimize our choice beyond the observa-
tion criteria that we now describe. In Fig. 9 we have selected xc = 4 and observe that
the numerically computed bifurcation curves for β = 200 and β = 800 intersect at
approximately the same value of r as the corresponding analytically computed curves.
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Fig. 9 The maximum of the susceptible population x f but shifted by 1 − r ; otherwise, same parameter
values as in Fig. 6a

The intersections for the β = 200 and β = 1,400 curves are essentially equivalent.
However, the intersections of the β = 800 and β = 1,400 curves do not line up as
well. We matched these intersection points as a way to very coarsely choose between
xc = 4 and, for example, xc = 5, but did not try to be more precise than this. That
said, in general, our final results are relatively insensitive to the choice of xc such that
we observe significant deviations only for xc ≈ 10 or xc ≈ 1.

6.3 Constructing the map

The map is determined by patching together the results on each subinterval to deter-
mine a relationship for x(t1) and t1 in terms of x(t0) and t0. More specifically, we have
derived the following relationships:

From Eq. 51: x(t ′0) = f1(x(t0)),

From Eq. 54: x(t0 + τ) = f2(x(t ′0)),
(82)

From Eq. 70: x(t ′0 + τ) = f3(x(t0 + τ)),

From Eq. 71: x(t1) = f4(x(t ′0 + τ)).

Thus, in general, if we let xn = x(t0) be the current maximum value of x , and xn+1
be the next maximum, then the map is given by the composition of the relation-
ships as

xn+1 = f4( f3( f2( f1(xn)))). (83)

After making the explicit substitutions and expanding all exponentials for ε � 1, we
find that
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xn+1 = ρ

[
T3(1 − 1

2
εηT3) − εηT1�n

]
+ (1 − r2)�n

[
(1 − εηT2) − 1

2
εη�n

]

+ xn [2r(1 − εηT2) − (1 − εηT3) + εηρ�n] + 2

3
εbρx2

n + O(ε2), (84)

where

T1 = τ − �n, T2 = Pn − (τ + �n), and T3 = T1 + T2. (85)

�n = �(xn) is the pulse width of the current pulse and is given by Eq. 79, which we
reproduce here using the map notation:

�n = d1 + d2xn (86)

Finally, Pn = tn+1 − tn is the total time from start of the current pulse to the next and
has yet to be determined.

To determine Pn we use the results for Y . Recall that we define Y to have the same
value at the beginning and the end of the pulse, i.e., Y (t ′0) = Y (t0). We also assume
that when the delay pulse is large, this has little effect on Y , i.e., Y (t ′0 +τ) = Y (t0 +τ).
Thus, taking the composition of results for Y from Eqs. 71 and 54, we have that

Y (tn+1) = −ρ + [ρ + Y (tn)] eF(t0+τ,t ′0)+F(t1,t ′0+τ), (87)

The beginning and end of the pulse are defined when dx/dt = 0 and, hence, Y = 0.
Thus, Eq. 87 requires that F(t0 + τ, t ′0) + F(t1, t ′0 + τ) = 0. Writing this in terms of
the map variables, we see that the following condition must be satisfied:

ρ

[
1

2
T 2

3 − 1

6
εηT 3

3 − εη�nT1T2

]

+(1 − r2)�nT2

[
1 − 1

2
εη(�n + T2)

]

−xn

[
T3 − 1

2
εηT 2

3 − 2r

(
T2 − 1

2
εηT 2

2

)
− εηρ�nT2

]

+2

3
εbx2

n (T3 − rT2) + O(ε2) = 0. (88)

In summary, we have a map from (xn, tn) �→ (xn+1, tn+1) given by

From Eq. 86: xn �→ �n

From Eq. 88: (xn,�n) �→ Pn (89)

From Eq. 84: (xn,�n, Pn) �→ xn+1

and tn+1 = tn + Pn .
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6.4 Fixed points of the map

Periodic solutions of the original DDEs correspond to fixed points of the map, which
are described by the following coupled set of equations:

−x f + ρ

[
T3(1 − 1

2
εηT3) − εηT1�

]

+(1 − r2)�

[
(1 − εηT2) − 1

2
εη�

]

+x f [2r(1 − εηT2) − (1 − εηT3) + εηρ�] + 2

3
εbρx2

f = 0, (90)

where

T1 = τ − �, T2 = Pf − (τ + �), and T3 = T1 + T2, (91)

� = d1 + d2x f , (92)

and

ρ

[
1

2
T 2

3 − 1

6
εηT 3

3 − εη�T1T2

]
+ (1 − r2)�T2

[
1 − 1

2
εη(� + T2)

]

−x f

[
T3 − 1

2
εηT 2

3 − 2r(T2 − 1

2
εηT 2

2 ) − εηρ�T2

]

+2

3
εbx2

f (T3 − rT2) = 0. (93)

A general solution for x f and Pf is not possible without additional approximations.
With � given by Eq. 91, Eqs. 90 and 93 are algebraic in x and P , and we solve for
them using a perturbation expansion. We let x f = x0 +εx1 +· · · , Pf = P0 +εP1 · · ·
and then collect terms by powers of ε. At O(1) we find that

x0 = P0 − d1ρ

2 + d2ρ
, P0 = 2τ. (94)

Thus, to leading order the period is locked to be twice the delay time. If we ignore
the effect of the pulse width, then x0 ∼ P0/2, which is consistent with previous map
derivations for systems related to Eqs. 9 (Carr et al. 2000; Schwartz and Erneux 1994).

Inclusion of the pulse width in the O(ε) corrections results in quite complicated
and analytically intractable solutions for x1 and P1. Thus, we have chosen to set � = 0
(d1 = d2 = 0) in the O(ε) problem and still get excellent results when we compare
against numerical solutions. With this final simplification, the results for the x and P ,
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including both the leading order and correction terms, are

x f = 2τ − d1(1 − r)

2 + d2(1 − r)
− ετ 2

6r
[(2 + r)η + 2(1 − r)b] ,

(95)

Pf = 2τ − ετ 2

3r
[(2 + r)η + 2b] ,

where we have made the substitution P0 = 2τ into the equation for x .
Finally, we use the value of x with Eq. 52 to determine the peak value of the pulse

in y, which corresponds to the maximum deviation from the endemic infectious pop-
ulation equilibrium:

y f = −r + 1

2
x2

f − 1

3
εbx3

f . (96)

Thus, Eqs. 95 and 96 describe how the maximum value of the susceptible and infec-
tious populations during epidemics, as well as the time period between the epidemics,
depends upon the model parameters and the delay time τ .

6.5 Comparison of analytical and numerical bifurcation results

In Fig. 6d–f we compare the map results from Eqs. 95 and 96 (solid curves) to numer-
ical simulations (dashed curves). Recall that in deriving the map we assumed large
and narrow pulsating solutions when r = O(1). As a result, in each plot, agreement
between the numerical and analytical results improves as r is increased further away
from the Hopf bifurcation point.

We begin first with the period of the pulsations. Because of the general tendency
of the period of delayed systems to lock to the delay time, we see that the period is
relatively constant over the full range of r . Roughly speaking, our analysis is within
approximately 2% of the numerically computed value for lower values of r and, as
expected, gets much better as r is increased. In addition, there is excellent agreement
in how the period changes for changes in β and τ . Thus, we have analytically derived
the locking phenomena that to leading order is P ≈ 2τ as well as reasonably captured
the O(ε) correction.

We also have very good fit between the analytical and numerical values of the peak
susceptible population x f , as shown in Fig. 6a and d. It is clear that our result for x f as
a function of β and τ does an excellent job of matching the numerical curves as these
parameters are varied. In Fig. 9 we have flattened the curves by adding the function
1−r so that we could expand the x f axis and still view the full range of r ; as described
in Sect. 6.2, we capture the intersection of the curves for different β quite accurately.

The fit for y f is not as accurate as that for x f and Pf . The order of magnitude of
y f is approximately correct, but the slope as a function of r does not match as well as
it does for the other quantities. However, the change in y f as a function of β and τ is
accurately captured.

123



874 M. L. Taylor, T. W. Carr

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
3.5

4

4.5

fx
=

m
ax

(x
) (a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
9.1

9.2

9.3

9.4

P
f=

P
er

io
d (b)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
7

8

9

10

r

y f=
m

ax

(c)

β = 200
β = 800
β = 1400

Fig. 10 a–c Same as in Fig. 6a–c but with ε = 0.014

In Fig. 10 we use the same parameter values as in Fig. 6a–c but decrease ε to 0.01,
corresponding to weaker diseases. The figure shows the quality of the leading order
map results because the O(ε) correction terms are made smaller.

In summary, Eqs. 95 and 96 can be used to predict the magnitudes and periods of
periodic epidemics as a function of the three parameters r , β and τ . Changes in the
three basic quantities x f , Pf and y f as functions of the parameters are particularly
well described.

6.6 Longer delays

In the derivation of our map we assumed that the delayed pulse that occurred at the
time td ≡ t0 + τ was the delayed version of the pulse at t0 (see Fig. 7). However,
for larger delays the delayed pulse that occurs at td ∈ [t0, t1] may have originated
from a pulse N oscillations in the past at t0−N . If this is the case, then by definition
td = t0−N +τ . Or, with reference to the pulse that started the current interval, we have
that

td = t0 +
⎛
⎝τ −

N∑
j=1

P0− j

⎞
⎠ , (97)

where the P0− j are the time intervals between the previous pulses. If the oscillations
are periodic such that the time period between all pulses is equivalent, then

td = t0 + (τ − N Pf ). (98)
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If we re-derive the map from scratch, taking into account the possibility that the
delayed pulse occurred N periods in the past, and then look for periodic solutions as
fixed points of this new map, we obtain new results for x f and Pf as

x f = 2τ − d1(1 − r)

2 + d2(1 − r)
− ετ 2

6r(1 + 2N )3 [(2 + r)η + 2(1 − r)b − 4bNr ] ,

(99)

Pf = 2τ

1 + 2N
− ετ 2

3r(1 + 2N )3 [(2 + r)η + 2b] ,

with y f again given by Eq. 96. The result is that the observed period locks to some
fraction of the delay. Similar calculations have been made for lasers with delayed
feedback by Carr (2003) and Grigorieva et al. (1992). When we compare the results of
Eqs. 99 to numerical simulations using long delays (e.g. τ = 21π/2 and 31π/2) we
see the same excellent qualitative fit as described in the previous section with shorter
delays.

For our system, we know from the linear stability analysis that the periodic oscil-
lations that appear at the Hopf bifurcation point have a period that is approximately
2π (see Eq. 17). In general, the integer N that is selected is such that Pf in Eq. 99 is
approximately 2π . For example, we found that when τ = 21π/2 then N = 4, while
when τ = 31π/2 then N = 7.

7 Discussion

In the first part of our discussion we will summarize the analysis and basic mathemat-
ical results presented in this paper. We will follow this with a discussion that focuses
on the epidemiological interpretation of our results and their consequences.

7.1 Summary of analysis and results

It is well known that introducing delays into a system can lead to oscillatory behavior.
However, the mathematical analysis of delay systems has traditionally been limited to
linear stability analysis or existence proofs. Crudely speaking, the former can identify
for what parameter values the endemic steady state is unstable. The latter can often
provide parameter ranges or bounds such that periodic solutions must exist. In the
present paper we use asymptotic methods to determine how the amplitude and period
of oscillations functionally depend on the physical parameters; our primary control
parameters are the delay time and the fraction of individuals who become resuscepti-
ble. The analysis methods are general in that they can be applied to other delay systems.
More specifically, our results can be easily extended to the study of related systems
such as SEIR models, more general competition models, or extensions of the current
model, for example to the consideration of multistrain diseases (the latter will be the
focus of a future manuscript). Finally, the analytical results are particularly useful
in guiding numerical simulations when a quantity of interest depends in a nontrivial
way on a combination of parameters. For example, having a functional relationship
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between the amplitude and the parameters identifies which are the primary parameters
of interest and how sensitive that dependence is, both of which can avoid the need for
guesswork when starting simulations.

For all of our results, we validate numerical computations against analytical approx-
imations and vice versa. It should be noted that the numerical simulation of DDEs is
not as straightforward as that for ODEs due to having to account for the system’s
history (Thompson and Shampine 2006). In addition, while the basic algorithms for
numerical continuation of ODEs are mature (Doedel and Oldeman 2007), continuation
algorithms for DDEs (Engelborghs et al. 2001) are a much newer development and the
results are not always as robust. Furthermore, the pulsations followed by long quies-
cent period in our problem require careful monitoring of the accuracy of results. Thus,
whenever possible we consider standard operating procedure for having a complete
understanding of a problem to be to use both approaches in tandem.

After we rewrite our SIRS model in non-dimensional form, we perform a linear
stability analysis of the non-zero endemic state. Exact solutions of the characteris-
tic equation are impossible to obtain. However, using perturbation methods we can
determine the parameter values, including delay times, for which the endemic state
is unstable with growing oscillations via a Hopf bifurcation. We find that depending
upon the delay, the first (lowest r ) bifurcation is to either a natural mode, whose fre-
quency is close to the quasifrequency of the system without delay, or a delay mode,
whose frequency is fixed by the delay time.

The periodic epidemics that arise when the endemic steady state is unstable to a
natural mode can be described using results derived by Pieroux et al. (1994). We have
specialized their results for our system and found that they well describe the amplitude
of the oscillations. In addition, the change from supercritical to subcritical bifurcations
near the minimum of the neutral stability curve is predicted.

To describe the periodic epidemics due to the delay modes we need to allow the
resusceptible fraction r to be O(1) such that the leading-order problem contained the
delay. However, by looking for periodic solutions we are able to use the method of
multiple scales to derive a bifurcation equation that describes the amplitude of the
oscillations. We find the delay modes with frequency ω = mπ/τ , m an even integer,
bifurcate subcritically such that there is an interval of r where oscillations coexist with
the endemic state. On the other hand, if m is odd the bifurcation is supercritical.

To describe the pulsating epidemics that occur when the resusceptible fraction
is O(1), we derive a map based on solutions constructed using matched asymptot-
ics. More specifically, we patch together solutions that are individually determined
from approximate equations in subintervals of the full period, e.g., when the epi-
demic is large, when the epidemic is small, or when the “delayed epidemic” is large.
This technique has been previously used to describe pulsating lasers, both with delay
and without (see Schwartz and Erneux 1994; Carr 2003; Grigorieva et al. 1992; Carr
et al. 2000). However, in these earlier analyses the pulse width was much smaller than
the overall period and could be ignored. This was not true in the present problem, and
to obtain a good fit between the analytical and numerical results, we were required to
find an approximate expression for the pulse width and include its effect in the leading
order map. While the calculation is rather lengthy, the final equations that describe the
amplitude and period of the epidemics are fairly simple.
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Qualitatively, our results are as follows. As described above, when r is increased
beyond the Hopf bifurcation point, the populations begin to exhibit harmonic oscil-
lations with the period close to 2π . As the resusceptible fraction is increased, the
oscillations in the infectious population become pulsating, the susceptible population
exhibits a triangular shape, and both increase in amplitude and period. The triangular
shape is due to the fast depletion of susceptible individuals when there is an epi-
demic, and then the slow resupply of susceptible individuals after the epidemic. As r
is increased further, the period locks to approximately 2τ/(1 + 2N ) for some integer
N , while the peaks in oscillations continues to grow.

For r away from the Hopf bifurcation, the susceptible population transitions from
being a triangular shape to more of a square shape. Without delay, as the amplitude
of the epidemic peaks becomes increasingly large, the susceptible population takes a
long time to recover, and the period between epidemics becomes increasingly long
(Schwartz and Erneux 1994). However, in the present problem the susceptible pop-
ulation is resupplied at time τ after the original epidemic. This causes a jump in the
susceptible population leading not only to the square shape, but also a shorter duration
of time until the next epidemic. Indeed, this is the physical interpretation of the locking
of the period to the delay time.

For values of the delay corresponding to the results shown in Figs. 2–5, the periodic
oscillations that appear at the primary bifurcation are stable as r is increased to rmax.
More specifically, we have not observed quasiperiodic oscillations or chaos for these
values of the delay. However, for longer values of the delay, on the order of the lifetime
of the individual (O(1/µ)), it is possible to observe more complex oscillations as r is
increased (Pieroux et al. 2000). We have not explored these solutions in any detail.

7.2 Epidemiological interpretation

Temporary immunity plays a role in the spread of diseases such as cholera,
pertussis, influenza and malaria. The DDEs we study include a fixed delay
corresponding to all individuals retaining immunity for the same amount of time.
We assume that R0 > 1 such that if the delay is zero the endemic steady state is
stable. Our analysis describes periodic epidemics that appear via a Hopf bifurcation of
the endemic steady state, where we have found that the critical value of the resuscep-
tible fraction r = rh depends upon the immunity time. For intervals of the immunity
time such that the natural mode is the first to bifurcate, we have that rh � 1. Thus,
only a small fraction of the population needs to lose its immunity to generate recurrent
epidemics in the whole population. On the other hand, there is a minimum immunity
time necessary such that periodic epidemics will occur; that is, the delay must be
greater than τmin for there to be a Hopf bifurcation.

The immunity time also determines if the bifurcation is supercritical or subcritical.
In the case of the former, as the resusceptible fraction increases the size of the epidem-
ics increases from zero monotonically. In contrast, if the bifurcation is supercritical
then the system will jump from the endemic steady state to large (O(1)) amplitude
epidemics. From the point of view of the epidemiologists in the field, this implies that it
is possible for large amplitude epidemics to occur with essentially little warning. This
is because, in general, no disease is modeled well enough to precisely quantify and
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measure rh . If the bifurcation is supercritical, then the small oscillations that occur for
r > rh could possibly be observed before r increases such that large amplitude oscil-
lations are generated. However, if the bifurcation is subcritical, then large oscillations
could occur before it is even known that the system is close to r = rh .

The subcritical bifurcation also creates an interval of bistability between the endemic
steady state and the recurrent epidemics. If we assume that the system is initially in
the endemic steady state, then, in general, a disturbance on the order of the size of the
amplitude of the oscillatory state is needed to kick the system into the latter’s basin
of attraction. Outside of some catastrophic event, we would expect such large distur-
bances to be rare in real populations. However, if oscillations were initiated, either via
a catastrophe or if r > rh , then the bistability could make it equally difficult to stop
the recurrent epidemics. Either another large disturbance would be needed to send the
system back to the endemic state’s basin of attraction, or the resusceptible fraction
must be reduced to less than the lefthand limit point of the bifurcation curve. In the
latter case, if the interval of bistability were small, as in Fig. 4, then the reduction in
r that would be needed is small. However, for other values of the delay, such as in
Fig. 5b and c, the interval of bistability is large and the resusceptible fraction would
need to be reduced substantially to eliminate the epidemics.

Our results do an excellent job of predicting how the oscillations will respond to
changes in the physical parameters such as β, ε (µ and γ ) and τ . Figures 6, 10 all show
that the analytical results accurately predict how much the peak values of the suscep-
tible and infectious populations and the period will change, given a change in the
parameters. For example, increasing the transmission coefficient β causes a decrease
in the severity and period of the epidemics; this is because increasing β increases the
endemic number of infectious individuals and there are fewer available susceptible
individuals for “epidemic” oscillations about the endemic state.

Equations 95 indicate, and Figs. 6, 10 confirm, that changes in the delay time lead
to large (O(1)) changes in the amplitude and period of the epidemic when the latter
is pulsating. Specifically, larger delay times lead to longer periods between epidem-
ics and larger epidemics. This is because a longer delay time allows for a larger
number of individuals to populate the temporarily immune (removed) class before
being re-injected into the susceptible population. The large influx of new susceptible
individuals allows the system to support a large new epidemic spike of infectious
individuals.

In general, the dependence of the properties of the epidemic on the delay time can
be understood by examining the limiting cases of τ → 0 and τ → ∞. When τ → 0,
individuals become susceptible to re-infection immediately after recovery and our
SIR with delay model approaches an SIS model. With τ → ∞, all individuals gain
permanent immunity and our SIR model with partial temporary immunity becomes a
classical SIR model with permanent immunity for all removed individuals.

Finally, we note that as the peak value of the epidemic grows, the post-epidemic
level of the infectious population decreases. In Fig. 7 this corresponds to y(t) get-
ting closer and closer to the invariant line y = −1. For low numbers of infectious
individuals, stochastic effects become important such that extinction of the disease
is possible, see (Dykman et al. 2008). Thus, in general, as the resusceptible fraction
is increased, leading to higher peak values of the infectious population, there is an
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increased probability of disease extinction between the infectious peaks. Using the
results of Sect. 6 we could determine a relationship that provides the minimum value
of y(t) as a function of the parameters and the peak value, and then relate that to
probability of extinction for different noise levels. However, the detailed analysis of
that issue is beyond the scope of the present paper.
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