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Abstract This paper presents new geometrical flow equations for the theoretical
modeling of biomolecular surfaces in the context of multiscale implicit solvent models.
To account for the local variations near the biomolecular surfaces due to interactions
between solvent molecules, and between solvent and solute molecules, we propose
potential driven geometric flows, which balance the intrinsic geometric forces that
would occur for a surface separating two homogeneous materials with the potential
forces induced by the atomic interactions. Stochastic geometric flows are introduced
to account for the random fluctuation and dissipation in density and pressure near the
solvent–solute interface. Physical properties, such as free energy minimization (area
decreasing) and incompressibility (volume preserving), are realized by some of our
geometric flow equations. The proposed approach for geometric and potential forces
driving the formation and evolution of biological surfaces is illustrated by extensive
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numerical experiments and compared with established minimal molecular surfaces and
molecular surfaces. Local modification of biomolecular surfaces is demonstrated with
potential driven geometric flows. High order geometric flows are also considered and
tested in the present work for surface generation. Biomolecular surfaces generated
by these approaches are typically free of geometric singularities. As the speed of
surface generation is crucial to implicit solvent model based molecular dynamics,
four numerical algorithms, a semi-implicit scheme, a Crank–Nicolson scheme, and
two alternating direction implicit (ADI) schemes, are constructed and tested. Being
either stable or conditionally stable but admitting a large critical time step size, these
schemes overcome the stability constraint of the earlier forward Euler scheme. Aided
with the Thomas algorithm, one of the ADI schemes is found to be very efficient as it
balances the speed and accuracy.

Keywords Biomolecular surface formation and evolution · Mean curvature flow ·
Potential driven geometric flows · High order geometric flows · Stochastic geometric
flows · Computational algorithm

Mathematics Subject Classification (2000) 92E10 · 53A10 · 49Q10 · 65M06

1 Introduction

Rigorous, quantitative, and atomic scale description of complex biological systems is a
challenge for both biological science and mathematical modeling. Under physiological
conditions, most biological processes occur in water, which constitutes of 65–90% of
human cell weight. However, explicit descriptions of biomolecules and their aqueous
environment, including solvent, co-solutes, and mobile ions, are prohibitively expen-
sive. Even so, a variety of methods, including Ewald summations, Euler summations,
periodic images and reaction field theory, have been developed in the past few decades
in attempts to produce accurate simulations. In many situations, our central concern
is the solute, i.e., proteins, DNAs and RNAs, and their interactions, instead of water
molecules. Therefore, multiscale analysis, which treats the solvent as a macroscopic
continuum while admitting a microscopic atomic description for the biomolecule, is an
attractive and sometimes indispensable approach. Implicit solvent models [2,24] are
efficient multiscale approaches to simulate complex, large-scale biological systems
[19,29,38,57,67,75,79,90]. These approaches have become very popular since the
pioneering work by Warwicker and Watson in the early 1980s [79], and Honig in the
1990s [38]. One of the implicit solvent models employs the Poisson–Boltzmann (PB)
equation, or Poisson equation (PE) if no salt is present for the electrostatic potential
[2]. Another implicit solvent model is based on the generalized Born (GB) theory [25].

In both models, a solvent–molecule interface is required to separate the conti-
nuum domain from the biomolecule, which is described in atomistic detail. Cur-
rently, commonly used solvent–solute interface models include the van der Waals
surface, the solvent accessible surface [42], and the molecular surface (MS) [56].
A partial differential equation (PDE) approach was proposed for the MS generation
[82]. However, the MS definition suffers from geometric singularities, such as cusps
and self-intersecting surfaces [18,22,32,59], which are not only unphysical, but also
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destabilize numerical simulations. Smoothly varying functions were proposed to avoid
this problem [34,40,45,91]. However, it has been shown that some atomic centered
dielectric functions may lead to unphysically high dielectric interstitial regions in
implicit solvent models [73].

When a less polar macromolecule is immersed in a polar environment, surface
free energy minimization occurs naturally to stabilize the system. Since the surface
free energy is proportional to the surface area, the minimization of the surface free
energy must lead to surface area minimization. Mathematically, such a minimization
can be achieved with the Euler–Lagrange variation and has been extensively stu-
died in the context of differential geometry, image processing, and computer-aided
surface design. In particular, the surface area minimization naturally leads to the
minimization of mean curvature as demonstrated by Chan and coworkers, and others
[7,9,44,51,52,58,60,61,68,78,92]. Mumford and Shah proposed an energy variation
functional to balance the fidelity and smoothness, and minimize the discontinuous
domain [49]. The motion of surfaces by mean curvature was first studied by Brakke
[5]. Geometric flows [84], particularly mean curvature flows, have been of interest
in applied mathematics over many years with an emphasis on image processing and
computer vision [26,33,48,54,62,63,66,71]. Mathematical techniques using the level
set theory were devised by Osher and Sethian [37,50,53,58,66,92] and have been
developed and applied by many others, e.g., [10,14,70]. Wei proposed a series of
arbitrarily high order gradient controlled PDEs for image analysis [80], including
the fourth order anisotropic diffusion equation and the Perona–Malik equation [55]
as special cases. A coupled PDE system was also proposed to extract image edges
by Wei and Jia [81]. Geometric flows have also been used for image surface evo-
lution [17,39,72,85]. High order geometric flows such as the surface diffusion flow
[64,65], the generalized Perona–Malik equation [80], variation-based PDE [12], cur-
vature diminishing diffusion equation [88], and Willmore flow [17,20,84,87] are also
proposed for image processing and/or surface analysis. A diffusion approach was used
to model lipid membrane [77]. Motivated by the difficulty of surface analysis asso-
ciated with implicit solvent models, we have recently proposed a new concept, the
minimal molecular surface (MMS), for modeling the solvent–biomolecule interface
[3,4]. The intrinsic curvature force is used to drive the surface formation and evolution.
The resulting MMS minimizes the surface free energy. The MMSs were employed in
implicit solvent models to evaluate electrostatic potentials and solvation free energies
of 26 proteins [4] via the PB method.

Another challenge in current implicit solvent models is their inability to address
ion correlation, polar–nonpolar coupling and solvent–solute interaction [1,8,11,15,
21,27,28]. The formation and evolution of our MMS are driven purely by intrinsic
geometric forces and thus neglect potential interactions near the interface. Recently,
Dzubiella et al. [21] proposed an interesting free energy minimization procedure for
coupling the polar–nonpolar interaction at the solvent–solute interface. They arrive at
a PDE involving contributions from pressure, Gauss and mean curvatures, short-range
repulsion, dispersion and electrostatic effects. More recently, Cheng et al. [13] has
employed the level set approach to minimize the free energy functional proposed in
[21] for complex molecules. Surfaces with various contributions are produced from
this approach. To address current difficulties in implicit solvent models, the PDE-based

123



196 P. W. Bates et al.

biomolecular surface models are promising, because the potential forces induced by
the interactions can be accounted for by adding driving terms into the purely geometric
PDE models. Moreover, the resulting PDE approach is easier to implement than the
direct minimization procedure.

The objective of the present work is threefold. First, we propose a class of new bio-
surfaces whose formation and evolution are driven not only by the intrinsic geometric
forces, but also by forces induced by potential [80,83]. Via the potential effect, these
surfaces are expected to account for the polar–nonpolar coupling and solvent–solute
interaction in implicit solvent models. We discuss how physical properties, such as area
decreasing and volume preserving, are realized in our PDE approach. We note that area
decreasing geometric flows were studied by Lawson [41], and Gage and Hamilton [30]
among others. In normal cases, decreasing surface area leads to surface energy mini-
mization. However, the introduction of interaction potentials in the geometric PDEs
balances the geometric force to some extent and so the minimum energy configuration
is not necessarily that with least surface area. Volume preserving geometric flows were
discussed by Huiskens [39] and others. In molecular dynamics, volume preservation
is required for the canonical ensemble and grand canonical ensemble, and is equiva-
lent to incompressibility. Under physiological conditions, most biological systems are
incompressible.

Second, we explore the use of high order geometric PDEs for biomolecular surface
modeling. The advantages of these high order geometric PDEs are that one may specify
more boundary conditions and thus exercise better control of the biomolecular surface
generation. It is also possible to ensure the balance between intrinsic geometric forces
and potential forces in the surface generation via high order geometric PDEs. Some of
the proposed high order geometric PDEs are modified versions of the earlier high order
gradient controlled PDEs [80]. Numerical experiments are carried out to illustrate the
unique feature and usefulness of these proposed high order geometric equations for
biological surface formation and evolution.

Finally, the generation of the biomolecular surfaces which separate the biomole-
cule and the solvent is known to be a bottleneck for long-time molecular dynamics
simulations of implicit solvent models. Typically, biomolecular surfaces are to be
mapped out up to billions of times in the course of such a simulation. Therefore, any
nontrivial improvement in computational efficiency implies a significant reduction in
computational time in molecular dynamics simulations. One major goal of this paper
is to construct efficient numerical schemes for the generation of the MMS [4] for
large proteins using the mean curvature flow. The standard finite difference and the
forward Euler time stepping are commonly utilized to solve these types of equations
[4,10,14]. However, explicit algorithms have strict restriction on the time step for sta-
bility. Various implicit methods are explored in this paper and results from this study
may be useful for the surface generation using other PDEs.

This paper is organized as follows. Theoretical modeling of biomolecular surfaces
is presented in Sect. 2, where geometric and potential forces driving biomolecular
surface flows are introduced. The properties of area decreasing and volume preserving
evolutions are discussed. Stochastic geometric flows are proposed to appropriately
account for some physical interaction and for the realization of the canonical and
grand canonical ensembles. High order gradient flows are also introduced for surface
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modeling. Section 3 is devoted to the applications of some of the proposal theoretical
approaches. Computer experiments are designed to illustrate geometric and potential
driven flows and high order biomolecular surface flows. Comparison is made with
the MSs and our previous MMSs. Numerical algorithms for the fast generation of
MMSs are proposed and illustrated in Sect. 4. Two different alternative direction
implicit (ADI) schemes, a Crank–Nicolson scheme and a semi-implicit scheme are
constructed and examined in our studies.

2 Theoretical formulation

2.1 Hypersurface and curvatures

Consider a C2 immersion f : U → R
n+1, where U ⊂ R

n is an open set. Here
f(u) = (f1(u), f2(u), . . . , fn+1(u)) is a position vector labeled by p = f(u) for a point
on a hypersurface, and u = (u1, u2, . . . , un) ∈ U .

Tangent vectors (or directional vectors) are Xi = ∂f
∂ui

∈ TpR
n+1. The Jacobi matrix

of the mapping f is given by Df = (X1, X2, . . . , Xn).
Denote 〈, 〉 as the Euclidean inner product in R

n+1, i, j = 1, 2, . . . , n. The first
fundamental form I of a surface element is I (Xi , X j ) := 〈Xi , X j 〉 for every two
tangent vectors Xi , X j ∈ Tuf , the tangent hyperplane at f(u). In the coordinate f(u) =
(f1(u), f2(u), . . . , fn+1(u)), the first fundamental form is a symmetric, positive definite
matrix (gi j ) = (I (Xi , X j )).

Let N(u) be the unit normal vector given by the Gauss map N : U → Sn ⊂ R
n+1,

N(u1, u2, . . . , un) := ±(X1 × X2 · · · × Xn)/‖X1 × X2 · · · × Xn‖ ∈ ⊥uf, (1)

where × is the cross product in R
n+1 and ⊥uf is the normal space of f at point

p = f(u). Note that Tuf ⊕ ⊥uf = Tf(u)R
n+1, the tangent space at p. By means of the

normal vector N and tangent vectors Xi , the second fundamental form is given by

I I (Xi , X j ) = (hi j )i, j=1,...,n =
(〈

− ∂N
∂ui

, X j

〉)
i j

. (2)

The mean curvature can be calculated from

H = hi j g
ji , (3)

where we use the Einstein summation convention, and (gi j ) = (gi j )
−1.

The shape operator L of f is the Weingarten map: L := −DN ◦ (Df)−1 defined
pointwise by

Lu = −(DN|u) ◦ (Df |u)−1 : Tuf → Tuf, (4)

where

DN|u : TuU → Tuf, (5)
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and the map

Df |u : TuU → Tuf (6)

is a linear isomorphism whose inverse mapping (Df |u)−1 is well defined. Note that L
is self-adjoint in the basis ∂f

∂ui
and L ∂f

∂ui
= − ∂N

∂ui
. With this notation, it is easy to make

the connection between the first and second fundamental forms

I (LXi , X j ) =
(〈

− ∂N
∂ui

, X j

〉)
i j

=
(〈

N,
∂2f

∂ui∂u j

〉)
i j

= I I (Xi , X j ) = (hi j )i, j=1,...,n, (7)

where I I is a symmetric bilinear form on Tuf for every u ∈ U . Similarly, the third
and fourth fundamental forms are conveniently given in terms of the shape operator

I I I (Xi , X j ) = I (L2 Xi , X j ) =
(〈

∂N
∂ui

,
∂N
∂u j

〉)
i j

(8)

I V (Xi , X j ) = I (L3 Xi , X j ). (9)

Principal curvatures are defined as the eigenvalues of L with eigenvectors being
unit tangent vectors. For n = 2, appropriate organization of the principal curvatures
gives rise to the mean curvature H = Tr(L) and Gauss curvature K = Det(L)

H = κ1 + κ2 (10)

K = κ1κ2. (11)

The mean curvature defined in Eq. (10) differs from the conventional definition by a
factor of 2. However, the present definition is convenient for the derivation of evolution
equations. A point p = f(u) on the surface is called an elliptic, hyperbolic, parabolic,
umbilic or level point if K (p) > 0, K (p) < 0, K (p) = 0, κ1(p) = κ2(p), and
κ1(p) = κ2(p) = 0, respectively. For n = 3, we have

K1 = κ1 + κ2 + κ3 (12)

K2 = κ1κ2 + κ1κ3 + κ2κ3 (13)

K3 = κ1κ2κ3 (14)

where K1 = H = Tr(L) and K3 = K = Det(L) are the mean curvature and
the Gauss curvature, respectively. K1 and K2 differ from the standard definition
by a factor of 3. The local property of the Gauss curvature can be used to clas-
sify the point as elliptic, hyperbolic, parabolic, etc. It follows from the Cayley–
Hamilton theorem that in three dimensional case, the first four fundamental forms
satisfy I V − H I I I + K2 I I − K I = 0.

In general, given an n-dimensional manifold � embedded in R
n+1 and a vector

field b defined in � the divergence of b relative to � is given by
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∇� · b = 1√
g

∂

∂ui

(√
gbi

)
, (15)

where g = Det(gi j ) is the Gram determinant of f , the surface being described locally
by a mapping f : U ⊂ R

n to R
n+1. The gradient of a scalar field b on the manifold is

given by

(∇�b)i = gi j ∂

∂u j
b. (16)

The Laplace–Beltrami operator is given by

��b = ∇� · ∇�b = 1√
g

∂

∂ui

(√
ggi j ∂

∂u j
b

)
. (17)

Applying this to the position vector p gives ��p = HN, where N is the normal vector
at p. The integral of a function b on the manifold is given by

∫
�

bdσ =
∫
U

b
√

gdu1du2 · · · dun .

2.2 Mean curvature flow for minimal molecular surfaces

The surface deformation or evolution of macromolecules can be postulated as a time-
dependent process for a family of smooth surfaces, which are defined as an immer-
sion of two-dimensional manifolds �(t) in R

3. Here �(t) are parameterized by t ,
{�(t) : t ≥ 0, �(0) = �0}, where �0 is the initial surface determined by the
input configuration of the molecule with appropriate selection of atomic radii, such as
expanded van der Waals radii. Assuming a homogeneous biomolecule in a homoge-
neous solvent, the equation of motion for a surface position vector p(t) ∈ �(t) in the
separating surface will be in the normal direction and given by

∂p
∂t

= ��p = HN. (18)

This is the mean curvature flow and has been used for the generation of the minimal
molecular surface (MMS) [4]. To generate the desired MMS, appropriate geometric
constraints originating from molecular boundaries are required as explained in detail
in [4]. In particular, the van der Waals surface of the molecule is protected during the
evolution.

2.3 Generalized geometric flows for biomolecular surfaces

More general geometric flows can be cast in the form of

∂p
∂t

= VgN, �(0) = �0, (19)
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where Vg is the amplitude of the velocity V induced by geometric forces. The surface
diffusion flow is obtained by choosing Vg = −�� H [23,64,65]

∂p
∂t

= −�� HN, �(0) = �0. (20)

By selecting Vg = −�� H −2H(H2 − K ), one has the Willmore flow [20,69,84,87]

∂p
∂t

= [−��H − 2H(H2 − K )]N, �(0) = �0, (21)

where K is the Gaussian curvature. The Willmore flow is designed to minimize the
Willmore energy

EW =
∫

�(t)

(H2 − K )dσ = 1

4

∫
�(t)

(κ1 − κ2)
2dσ,

where κ1 and κ2 are two principle curvatures. As a result, the Willmore flow minimizes
the difference of two principle curvatures. Generalized surface diffusion flows (Vg =
(−1)k�k

�H ) can also be considered [85]

∂p
∂t

= (−1)k�k
�HN, �(0) = �0. (22)

These generalized geometric flows can also be used for our biomolecular surface
modeling. A good reason for using high order equations is that one can specify more
boundary conditions; for the second order equations one can only specify a single
condition (such as Dirichlet or Neumann boundary conditions, or their combinations).
With more boundary conditions one can reasonably hope to preserve desirable features
in the solvent density function. Apart from possible isolated singularities appearing at
discrete rare instances in time, these flows produce smooth surfaces. The smoothness
in surfaces is useful for biological applications, such as in implicit solvent models.

2.4 Potential driving geometric flows for biomolecular surfaces

It is noted that the association of “surface area decreasing” and “surface free energy
minimizing” during the time evolution are equivalent under the assumption of homo-
geneous solvent–solute interfaces, i.e., the energy density is a constant over �. Howe-
ver, this will generally not be the case due to the polar–nonpolar coupling and surface
response to solvent density variations and ion binding. Therefore, the biomolecular
surface motion should be driven not only by intrinsic geometric forces, but also by
forces induced by interaction potentials. To this end, we propose the following poten-
tial driving geometric flows (PDGF)

∂p
∂t

= (Vg + Vp)N, �(0) = �0 (23)
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where Vp are the forces from equilibrium pressure contribution of the solvent,
contributions due to solvent–solvent and solvent–solute interactions, and van der Waals
interactions of solute atoms near the interface. In the spirit of implicit solvent theory, the
microscopic detail of individual solvent molecules will not be included. Their impact
on the surface formation should be expressed in terms of macroscopic variables, such
as density, mean velocity, pressure and temperature, and transport coefficients such as
dielectric constant, viscosity, etc. Therefore, local force can be expressed as the product
of the particle density function and the gradient of the particle interaction potential.
However, van der Waals interactions of solute atoms can be treated explicitly.

2.5 Incompressible geometric flows for biomolecular surfaces

In biological processes, such as protein folding, it is very important to keep track of
certain physical quantities, such as area and volume. At the steady state, the surface area
of a biological molecule or complex might not be necessarily the minimum because it
is the total free energy that is minimized during the time evolution and even the surface
free energy is not necessarily minimized by minimizing surface area, as mentioned
above. However, incompressibility is an important feature of most biological systems
at normal temperature. Let A(t) and V (t) denote, respectively, the area of �(t) and
the volume of the region enclosed by �(t). Then the rate of change of the area and
the volume during the deformation of �(t) can be computed respectively as

d A(t)

dt
= −

∫
�(t)

(Vg + Vp)Hdσ and
dV (t)

dt
=

∫
�(t)

(Vg + Vp)dσ, (24)

where dσ is an area element. It is easy to show that the mean curvature flow, Eq. (19),
is area decreasing ( d A(t)

dt = − ∫
�(t) H2dσ ≤ 0) and not volume preserving. In

the context of biomolecular surface modeling, area decreasing is associated with the
surface free energy minimization, while volume preserving is associated with the
incompressibility during a biological process. We therefore propose incompressible
geometric flows, such as

∂p
∂t

= (Vg + Vp − V̄ )N, �(0) = �0 (25)

where V̄ = ∫
�(t)(Vg +Vp)dσ/

∫
�(t) dσ . Note that this equation conserves the volume

during the surface evolution since dV (t)
dt = ∫

�(t)(Vg + Vp − V̄ )dσ = 0.

It is also easy to show that the surface diffusion flow Eq. (20) is area decreasing
and volume preserving, and thus can be used as a higher order equation for the surface
formation. The higher order geometric flows given by Eq. (22) are volume preserving
for k ≥ 1

∫
�(t)

�k
� Hdσ =

∫
�(t)

��(�k−1
� H)dσ =

∫
�(t)

∇�(1) · ∇�(�k−1
� H)dσ = 0.
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2.6 Stochastic surface dynamics

In the implicit solvent models, the solvent is considered as a dielectric continuum so
that each individual solvent molecule is not explicitly described. The solvent–solute
electrostatic interaction is accounted for by the Poisson–Boltzmann equation or the
generalized Born approximation. However, many other important solvent–solute inter-
actions, such as the polar–nonpolar interaction, the solvent collision or scattering on
the biomolecular surface, solvent density fluctuation, energy dissipation on the bio-
molecular surface, are not sufficiently addressed. We therefore introduce a stochastic
velocity to account for some of these effects

∂p
∂t

= (Vg + Vp + Vr − V̄ )N, �(0) = �0, (26)

where Vr is the amplitude of the random velocity Vr in the surface normal direction. We
take the random velocity to have mean value zero and to be independently distributed
in time, i.e., 〈Vr 〉e = 0 and 〈Vr (t)VT

r (t ′)〉e = ηδ(t − t ′), where 〈·〉e denotes average
over an appropriate ensemble distribution, T the transpose and η the strength of the
random velocity. Here the average of V̄ includes the effect of the three other terms.

Technically, the introduction of stochastic processes enables the realization of cano-
nical and grand canonical ensembles, in which the volume and temperature are kept
as constant. Temperature is associated with the strength of the random term. The
realization of other ensembles, such as the isothermal-isobaric ensemble is under
investigation. The mathematical analysis of the proposed stochastic geometric flows
is involved and interesting, but not the focus of the present discussion.

3 Applications of generalized geometric flows to biological surfaces

3.1 Eulerian and Lagrangian formalisms

The formation of biomolecular surfaces can be pursued via either the Lagrangian for-
malism or the Eulerian formalism. In the Lagrangian formalism, surface elements are
evolved directly under various driving forces. In the Eulerian formalism, the surface is
embedded in a (implicit) hypersurface and the latter is evolved under prescribed driving
forces. The desired surface is obtained from an isosurface extraction procedure. The
Lagrangian formalism is straightforward for force prescription and computationally
efficient, but may have difficulties in handling geometric singularities. The Eulerian
formalism can easily handle the geometric singularities, but is more time consuming.
Moreover, it is not clear how to implement the incompressibility in the present Eulerian
formalism.

The Eulerian formalism can be obtained via an appropriate choice of the immersion
f . Previously, we have chosen f = (x, y, z, S) which maps U ⊂ R

3 to R
4 [4]. It is

easy to show that

��S = 〈N, S〉H = H√
g

= 1√
g
∇ ·

(∇S√
g

)
(27)
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where N = (−Sx ,−Sy ,−Sz ,1)√
g is the normal vector in R

4, S = (0, 0, 0, 1), and � is the
graph of S. Note that N is the normal vector for the surface immersion f , rather than
for the hypersurface function S. For a given surface, it is easy to show that its normal
vector does not depend on whether its description is based on an implicit function or
an explicit one. In our earlier work, the mean curvature flow for the MMS [4] was
constructed as

∂S

∂t
= ��S

〈N, S〉2 = √
g∇ ·

(∇S√
g

)
. (28)

The computational procedure for the surface formation and evolution of molecules as
dictated by (28) was described in detail in [4].

3.2 Potential driving geometric flows

3.2.1 Formulation

In the Eulerian formulation, the potential driving geometric flow (PDGF) can be given
as

∂S

∂t
= √

g∇ ·
(∇S√

g

)
+ P, (29)

where g = 1 + |∇S|2 and P(r, S, |∇S|) is a driving term due to the potential, whose
physical origin has been discussed in an earlier section. A possible choice of the
potential term is to set P = √

gHp(x, y, z), where Hp(x, y, z) is an interaction
potential term. Obviously, Eq. (29) includes our previous MMS formula [4] as a
special case with P = 0. We note that for a general choice of P , the area-decreasing
and volume-preserving properties are usually not satisfied.

By using Eq. (29), the proposed potential driving biomolecular surface flow can be
constructed in a procedure similar to what we used for the generation of the MMS [4].

The surface evolves according to Eq. (29) until
√

g∇ ·
(∇S√

g

)
+ P = 0 everywhere,

except for the protected van der Waals sphere surfaces. Finally we extract the desirable
biomolecular surface from the hypersurface function S by choosing a level surface
S = C .

3.2.2 Numerical experiments

We first consider cases where Hp is constant over the whole domain. Figure 1 illustrates
the impact of Hp, taken as a series of constants, to the geometry of a diatomic system.
By setting the van der Waals (VDW) radius r = 2.0 Å, the PDGF results are compared
with the molecular surface (MS) generated with a probe radius rp = 1.4 Å. It can
be seen that at an appropriate Hp value, we can reproduce the MS of the diatomic
molecule. In other words, by using such an Hp value, some effect of probe rolling can
be well captured in the PDGF model, at least for diatomic systems. This motivates us
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Fig. 1 The PDGF surfaces of a diatomic molecule plotted at Hp = −1.200,−0.666, 0.000 and +0.300,
from left to right. The corresponding comparison with the molecular surface (circles) with the probe radius
r p = 1.4 Å is given at the cross section z = 0 in the second row. The coordinates of the diatomic molecule
are (x, y, z) = (−2.4, 0, 0) and (2.4, 0, 0). The van der Waals radius is set to 2.0 Å

Fig. 2 The PDGF surfaces of a seven-atom system with VDW radius rv = 1.0 Å. The coordinates are
generated with a pair of atoms with center distance 4.8Å and by π

2 rotations. a Hp = −0.666; b Hp = 0;

c the comparison of cross section z = 0 (circles molecular surface with r p = 1.4 Å; solid line Hp = −0.666;
dashed line Hp = 0)

to choose the free parameter P of the PDGF model to account for the probe radius
of the MS. For simple geometries, the proposed PDGF surface with an appropriate
Hp value gives a good approximation to the MS. This is further demonstrated by a
seven-atom system in Fig. 2.

It is also of great interest to verify that the proposed PDGF surface is free of geome-
tric singularities. To this end, we consider geometric parameters where singularities
occur in the molecular surface (MS). Figure 3 depicts three molecular systems which
admit cusps and/or self-intersecting surfaces. Parameter τ is the probe radius that
enforces the cavity constraint [4]. The molecular surface of the diatomic system has a
pair of cusps when the atomic distance is in a certain interval. The molecular surface
of a three-atom system has a sharp self-intersecting surface. The molecular surface
of a four-atom system admits both cusps and self-intersecting surfaces. Unlike the
MS, surfaces generated with the proposed PDGF surfaces are very smooth at these
geometric parameters. The MMSs looked significantly different from the traditional
MS surface while the current PDGF surfaces appear much more similar to MS surface.
Different PDGF surfaces can be generated by choosing different potential terms.

An important issue in biomolecular surface modeling is the ability to capture any
open and internal cavities. Following the approach of the MMS generation [4], we
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Fig. 3 Top row Molecular surfaces of two-, three- and four-atom systems; bottom row corresponding PDGF
surfaces. For the diatomic system, (x, y, z) = (−3.15, 0, 0) and (3.15, 0, 0); The van der Waals radius is set
to rv = 2 Å. For the three-atom system, (x, y, z) = (−2.3, 0, 0), (2.3, 0, 0), and (0, 3.984, 0); rv = 1.5 Å,
r p = 1.5 Å, and τ = 0.9 Å. For the four-atom system, (x, y, z) = (−3, 0, 0), (0, −2.6, 0), (3, 0, 0), and
(0, 2.6, 0); rv = 1.5 Å, r p = 1.5 Å, and τ = 0.9 Å

set S(x, y, z, t) = 0 on the domain outside a solvent accessible surface during the
computation. Here the solvent accessible surface is attained by rolling a probe radius
τ on the van der Waals surface of the molecule. We consider a buckyball molecule
(buckminsterfullerene C60). By an appropriate choice of the solvent excluding radius
τ , a cavity is produced for the buckyball as shown in Fig. 4. Moreover, by choosing
relatively smaller rv and τ , a topologically interesting PDGF surface for the buckyball
molecule is created in Fig. 5.

We have demonstrated that the surface generated by the PDGF is a singularity-free
approximation to the MS, and is capable of capturing cavities. Thus, we provide an
alternative way to generate smooth surfaces for complex proteins. We finally consider
a quantitative way to study the difference between the PDGF surface and MS by
means of an electrostatic analysis. By defining the PDGF surface as the solvent–
solute dielectric interface, the electrostatic potentials of proteins can be attained via
the numerical solution of the Poisson–Boltzmann equation. Twenty three proteins, a
test set used in previous studies [25,89], are employed to validate our approach. For
all structures, extra water molecules that are attached to proteins are excluded and
hydrogen atoms are added to obtain full all-atom models. Partial charges at atomic
sites and atomic van der Waals radii in angstroms are taken from the CHARMM22
force field [47]. By setting the PDGF surface and MS as the dielectric boundaries,
electrostatic free energies of solvation, �G, are computed by using the MIBPB-II
solver [89] at mesh size h = 0.5 Å. For a comparison, results from the fourth order
geometric equation (FOGE), which is described in detail in the next section, are also
presented. In all test cases, the dielectric coefficient ε is set to 1 and 80 respectively
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Fig. 4 The PDGF surfaces of the buckyball. a1 van der Waals radius rv = 2.0 Å and τ = 0.5 Å;
a2 rv = 1.7 Å and τ = 0.5 Å; a3 rv = 1.4 Å and τ = 0.5 Å. In b1–b3, cross section views of the
corresponding (a) parts are shown with half of the data of S removed

Fig. 5 The PDGF surface of the buckyball with scaled atomic radius rv = 0.8 Å and τ = 0.25 Å

for the protein and solvent. A probe radius of rp = 1.4 Å was used for the MS. The
PDGF surface is generated with the probe radius of τ = 0.85 Å to enforce the cavity
constraint. The numerical results of electrostatic free energies of solvation are listed
in Table 1. Good consistency can be observed among results of the PDGF surface, the
FOGE surface and MS. In fact, this consistence can be observed clearly from Fig. 6. For
reference, we also list the solvation free energies associated with MMSs in the table. It
can be seen that differences in solvation free energies between the PDGF surface and
MS are generally less than those between the MMS and MS. Similar energetic results
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Table 1 Electrostatic free
energies of solvation calculated
by using the MIBPB

Hp = −0.6666

PDB ID No. of atoms MS MMS PDGF FOGE

1ajj 519 −1136.9 −1150.4 −1106.4 −1168.8

1bbl 576 −994.2 −1043.5 −999.9 −1017.4

1bor 832 −854.1 −875.0 −836.0 −875.5

1bpi 898 −1304.0 −1358.7 −1301.2 −1341.6

1cbn 648 −305.4 −315.9 −285.0 −340.6

1fca 729 −1201.3 −1245.5 −1205.3 −1233.9

1frd 1478 −2852.2 −2944.8 −2859.2 −2919.3

1fxd 824 −3299.8 −3356.0 −3311.0 −3351.3

1hpt 858 −811.6 −857.5 −799.0 −834.6

1mbg 903 −1350.9 −1407.9 −1362.7 −1376.1

1neq 1187 −1730.7 −1833.0 −1757.9 −1784.8

1ptq 795 −871.8 −902.45 −852.9 −899.6

1r69 997 −1088.9 −1131.6 −1067.5 −1111.7

1sh1 702 −754.6 −779.7 −728.8 −792.6

1svr 1435 −1713.5 −1786.8 −1703.2 −1773.2

1uxc 809 −1141.6 −1206.8 −1156.0 −1158.5

1vii 596 −902.5 −949.5 −915.8 −966.8

2erl 573 −950.2 −986.1 −952.1 −1000.1

2pde 667 −819.5 −833.3 −767.7 −854.7

451c 1216 −1025.0 −1061.9 −992.3 −1044.4

1a2s 1272 −1912.8 −1973.6 −1906.6 −1934.1

1a63 2065 −2375.5 −2486.4 −2367.8 −2469.3

1a7m 2809 −2158.0 −2233.6 −2126.9 −2223.1

Fig. 6 Comparison of electrostatic free energies of solvation of 23 proteins listed in the same order as
those of Table 1
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Fig. 7 The PDGF surfaces of a diatomic molecule. a1 Hp = −0.427

(
4√

x2+(y−5.5)2+z2

)7
; b1 Hp =

−0.999 + 0.488

(
4√

x2+(y−5.5)2+z2

)7
; a2 A comparison of z = 0 cross sections of a1 (solid line) and

a case with Hp = 0 (dash line); b2 A comparison of z = 0 cross sections of b1 (solid line) and a case
with Hp = −0.999 (dash line). The coordinates of the diatomic molecule are (x, y, z) = (−2.4, 0, 0) and
(2.4, 0, 0). The center of the potential is at (0, 5.5, 0). The van der Waals radius is set to rv = 2.0 Å for
both atoms

suggest that these PDGF surfaces may not require extensive reparameterization of
biomolecular radii used in implicit solvent modeling [76]. The biological significance
of these differences is to be investigated.

Finally, we illustrate the flexibility of the proposed method for the local modification
of biomolecular surfaces. To demonstrate the principle, we consider only simple non-
constant potentials. We expect that our method works similarly for more realistic
potentials, such the Lennard–Jones potential and the classical dipolar potential [43,
74,76].

To this end, we set

Hp(r) = Hp0 + d
(σ

r

)l
(30)

where Hp0 is a constant, l an integer, d the depth of the potential well and σ the
reference distance at which the potential becomes very weak. Parameter d can be
either negative or positive representing an attractive potential or a repulsive poten-
tial, respectively. Parameter l controls the decay rate of the potential. In practice, the
combination of both positive and negative terms with different l values can be used
as in the Lennard–Jones potential. However, we consider only a single term here to
illustrate our method. Figure 7 shows two cases, both having l = 7 and σ = 4.0. In
the first case, we set Hp0 = 0 and an attractive d = −0.427. A significant change
in the necked part of the surface is produced as shown in Fig. 7(a1) and (a2). Since
l is sufficiently large, the change in the surface is localized to one side of the necked
part. In the second case, we choose Hp0 = −0.999 to enlarge the necked part of the
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surface. We then set a repulsive d = 0.488 to create a localized indent on one side of
the necked part as shown in Fig. 7(b1) and (b2). More dramatical changes in the sur-
face can be generated with appropriate selection of Hp. These numerical experiments
indicate that the proposed PDGF is a robust approach for the generation of desirable
locally modified biomolecular surfaces.

3.3 High order geometric flows

3.3.1 Formulation

High order forced and gradient-controlled diffusion operators were introduced for
image analysis [80]

∂S(r, t)

∂t
=

m∑
q=0

∇ ·
[

Dq(|∇S(r, t)|)∇∇2q S(r, t)
]

+ P(S(r, t), |∇S(r, t)|), (31)

where S(r, t) is an image function, Dq(|∇S|) are gradient sensitive diffusion coeffi-
cients. P(S, |∇S|) is a gradient sensitive forcing term. It can be a nonlinear function
of S as in chemical kinetics. A fourth order version of Eq. (31) was used for noisy
image restoration [80], and the treatment of medical magnetic resonance images [46].
Based on Eq. (31), combinations of forward and backward diffusion operators were
also utilized for image deblurring [31,72]. A fourth order variational-based PDE was
proposed by Chan et al. [12] for noisy image restoration. You and Kaveh [88] intro-
duced a fourth order curvature diminishing diffusion equation. An analysis of these
fourth order equations has recently been carried out in Sobolev space H1 by Bertozzi
and Greer [6,35,36]. Xu and Zhou discussed the existence and uniqueness of weak
solutions of this class of equations [86].

In the present work, we propose the following generalized high order geometric
PDE for surface formation and evolution

∂S

∂t
= (−1)q

√
g(|∇∇2q S|)∇ ·

(
∇(∇2q S)√
g(|∇∇2q S|)

)
+ P(S, |∇S|), (32)

where g(|∇∇2q S|) = 1 + |∇∇2q S|2 is the generalized Gram determinant and P is a
general production term representing possible forces, including the potential effect in
biomolecular surface formation. When q = 0 and P = 0, Eq. (32) reduces to the mean
curvature flow equation, while when q = 1 and P = 0, it is a surface diffusion flow.
This equation can also be regarded as a variation of the high order anisotropic diffusion
equation (31). Obviously, we could modify Eq. (32) by including both forward and
backward diffusion operators.

3.3.2 Numerical experiments

Since the effect of the forcing term has been discussed in earlier sections, we focus
our attention on the effect of the fourth order geometric equation (FOGE) obtained by
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Fig. 8 The FOGE surface of a diatomic molecule. In the first row, two atoms have the same radius while
the atomic distance is changed. In the second row, both the radius of the second atom and the atomic distance
are changed

setting P = 0 and q = 1 in Eq. (32). As in the MMS generation [4], standard finite
difference schemes and forward Euler time integration are used to numerically evolute
the surface toward its steady state configuration. Finally we extract the desired surface
from the hypersurface function by choosing a level set of S. In the following studies,
we are particularly interested in the biological surfaces generated with the FOGE, in
comparison with the MMSs.

We first consider the generation of the surface of the FOGE for a diatomic mole-
cule. By setting the radius of the main atom (left one) being r1 = r , the radius r2
of the other atom (right one) and the distance L between the atomic centers being
given in terms of r . It is known for the MMS generation [4] that there is a cri-
tical length Lc above which the surface enclosing two connected atoms becomes
disconnected. The same is true for the FOGE surface, see Fig. 8. In comparison
with the MMS, it can be observed from Fig. 8 that the catenoid type connecting
tube in the FOGE surface is usually thinner than that for the MMS. Moreover, by
considering different cases with varying length L , a linear dependence of the cri-
tical value Lc with respect to r1 and r2 can be identified as Lc � 1.25(r1 + r2)

for the surface of the FOGE, which is slightly different from that of the MMS, i.e.,
Lc � 1.213(r1 + r2).

We next consider a comparison between the surface of the FOGE and MMS for
the cases of three atoms and four atoms. Similar studies have been done in [4] to
demonstrate that the MMS is free of singularities. The same conclusion can be drawn
for the surface generated by the proposed FOGE. We focus on the difference bet-
ween the surfaces of the FOGE and MMS, see Fig. 9. Here, both surfaces are gene-
rated without a cavity constraint. The MMS is known to have the minimal surface
in terms of total area surrounding all van der Waals (VDW) atoms. In comparison
with the MMS, it is clear from Fig. 9 that the FOGE surface actually has smaller
surface area for the connecting tube than that of the MMS, whereas the total sur-
face area of VDW patches of the FOGE surface is larger than that of the MMS
so that the FOGE surface has a larger total surface area. Consequently, the FOGE
surface is able to represent more atomic details than the MMS. Furthermore, it is
interesting to see that the FOGE surface can generate a cavity where the MMS does
not.
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Fig. 9 Comparison of 3- and 4-atom surfaces generated by the FOGE (left column) and MMS (right
column) without constraint

Inaccessible internal cavities and open cavities (pockets) are commonly encoun-
tered in macromolecules. The cavity constraints introduced in the MMS generation
[4] can be similarly applied in the FOGE surface generation. As an example, we
consider a buckyball molecule (buckminsterfullerene C60). We set S(x, y, z, t) =
0 on the domain outside a solvent accessible surface during the computations of
both the MMS and FOGE surfaces. Here the solvent accessible surface is attained
by rolling a probe radius τ = 1.5Å on the van der Waals surface of the mole-
cule. The results shown in Fig. 10 clearly indicate that the cavities of the FOGE
surface are much larger than those of the MMS. This suggests that the FOGE
surface is well suited for certain biological applications where large cavities are
desirable.

We next test the FOGE surface for some complex biomolecules. The FOGE surface
of a protein (PDB ID: 1ajj) is given in Fig. 11. It is interesting to see that atomic details
are captured in the FOGE surface, but not so well in the MMS, while the FOGE surface
still maintains the smoothness property of the MMS.

We finally consider the electrostatic free energies of solvation of 23 proteins com-
puted with FOGE surfaces. The treatment of the protein data is the same as that
described in the last section. Results are listed in Table 1 and plotted Fig. 6. It is
seen that FOGE surfaces often provide smaller solvation values. This is consistent
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Fig. 10 A comparison between the cavities of C60 generated by the FOGE (the first row) and those
generated by the mean curvature flow (the second row)

Fig. 11 Biomolecular surfaces of protein 1ajj. a Obtained with the FOGE. b Obtained with the mean
curvature flow

with the fact that FOGE surfaces are more skinny than MMSs as shown in Figs. 9
and 11.

4 Computational algorithms for the mean curvature flow

The generation of surfaces is important and has been a bottleneck for molecular dyna-
mics simulations in the implicit solvent models. In this section, we study efficient
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computational algorithms for solving nonlinear diffusion equations. In particular, we
focus on the mean curvature flow equation

∂S

∂t
= √

g∇ ·
(∇S√

g

)
. (33)

Standard finite differences with forward Euler time stepping are commonly utilized
to solve this type of equations [10,14]. In our earlier work [4] a simple discretiza-
tion scheme was used. Specifically, the forward Euler method is employed for time
integration, while the second order central difference scheme was used for the spa-
tial discretization. Stability constraints provide the major obstacle that slows down
the computation. In the present study, numerical algorithms based on a semi-implicit
scheme, a Crank–Nicolson and two alternating-direction implicit (ADI) methods [16]
are designed and tested. Comparison is made for the different approaches in terms of
numerical accuracy and efficiency.

4.1 Numerical algorithms

4.1.1 Explicit Euler scheme

In a detailed form, the three-dimensional (3D) mean curvature flow equation (33) can
be rewritten as

∂S

∂t
= (1 + S2

x + S2
y)Szz + (1 + S2

x + S2
z )Syy + (1 + S2

y + S2
z )Sxx

1 + S2
x + S2

y + S2
z

−2
Sx Sy Sxy + Sx Sz Sxz + Sz Sy Syz

1 + S2
x + S2

y + S2
z

. (34)

We adopt the following notations in the rest of discussions. Let the index i, j, k
represent the location (xi , y j , zk) and h be the uniform grid size. We consider a dis-
crete time tn := nτ where n is a non negative integer and τ is the time step size.
We denote Sn

i jk to the discretized form of S(xi , y j , zk, tn). An explicit scheme for the
mean curvature flow can be given as

Sn+1
i jk − Sn

i jk = [vxδ
2
x + vyδ

2
y + vzδ

2
z ]Sn

i jk + τ f n
i jk, (35)

where

vx = Dn
1i jkτ, vy = Dn

2i jkτ, vz = Dn
3i jkτ, (36)

f n
i jk =

{
−2

+(δx S)(δy S)(δxy S)+(δx S)δz S)(δxz S)+(δy S)δz S)(δyz S)

1+(δx S)2 + (δy S)2 + (δz S)2

}n

i jk

, (37)

Dn
1i jk =

{
1 + (δy S)2 + (δz S)2

1 + (δx S)2 + (δy S)2 + (δz S)2

}n

i jk

, (38)
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Dn
2i jk =

{
1 + (δx S)2 + (δz S)2

1 + (δx S)2 + (δy S)2 + (δz S)2

}n

i jk

, (39)

Dn
3i jk =

{
1 + (δx S)2 + (δy S)2

1 + (δx S)2 + (δy S)2 + (δz S)2

}n

i jk

, (40)

where

{δx S}n
i jk = δx Sn

i jk =
[

Sn
(i+1) jk − Sn

(i−1) jk

]
/2h, (41)

{δy S}n
i jk = δy Sn

i jk =
[

Sn
i( j+1)k − Sn

i( j−1)k

]
/2h, (42)

{δz S}n
i jk = δz Sn

i jk =
[

Sn
i j (k+1) − Sn

i j (k−1)

]
/2h, (43)

{δxy S}n
i jk = δxy Sn

i jk

=
[

Sn
(i+1)( j+1)k +Sn

(i−1)( j−1)k −Sn
(i+1)( j−1)k −Sn

(i−1)( j+1)k

]
/4h2, (44)

{δxz S}n
i jk = δxz Sn

i jk

=
[

Sn
(i+1) j (k+1)+Sn

(i−1) j (k−1)−Sn
(i+1) j (k−1)−Sn

(i−1) j (k+1)

]
/4h2, (45)

{δyz S}n
i jk = δyz Sn

i jk

=
[

Sn
i( j+1)(k+1)+Sn

i( j−1)(k−1)−Sn
i( j+1)(k+1)−Sn

i( j−1)(k+1)

]
/4h2 (46)

and

δ2
x Sn

i jk =
[

Sn
(i−1) jk − 2Sn

i jk + Sn
(i+1) jk

]
/h2, (47)

δ2
y Sn

i jk =
[

Sn
i( j−1)k − 2Sn

i jk + Sn
i( j+1)k

]
/h2, (48)

δ2
z Sn

i jk =
[

Sn
i j (k−1) − 2Sn

i jk + Sn
i j (k+1)

]
/h2. (49)

We can rewrite the explicit scheme (35) in matrix–vector notation as

Sn+1 − Sn = A(Sn)Sn + F(Sn). (50)

This scheme is explicit, since Sn+1 can be calculated from Sn directly, and it has the
advantage of not requiring much memory. However, it is not very efficient, because
a very small step size is required to guarantee the stability of the algorithm. This
motivates us to consider the following semi-implicit scheme in the present study.

4.1.2 Semi-implicit scheme

From Eq. (50), we consider a modified discretization, i.e.,

Sn+1 − Sn = A(Sn)Sn+1 + F(Sn), (51)
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which leads to a semi-implicit scheme [70]

(
1 − A(Sn)

)
Sn+1 = Sn + F(Sn). (52)

It is implicit in the sense that this scheme does not give the solution Sn+1 directly—one
needs to solve a linear system. However, in order to avoid solving a nonlinear algebraic
system at each time step, we compute nonlinear terms with the solution obtained in
the previous time step, and thus, this is a semi-implicit scheme. The advantage of the
implicit nature is that the computation could be more stable so that it does not suffer
from such a serious time step size restriction. Consequently, the computation can be
fully adapted to the desired accuracy without the need of choosing a small time step.

However, being able to use a large time increment does not necessarily imply that the
semi-implicit scheme is superior, since it gives rise to a new problem. It requires one to
solve a linear system which has a large sparse matrix. Applying a direct algorithm such
as Gaussian elimination would lead to enormous memory storage and computation
effort in 3D. Hence, iterative algorithms have to be applied. Classical iterative methods
like Gauss–Seidel do not need additional storage and convergence can be guaranteed
for some special A, but the convergence rate is rather slow. Biconjugate gradient
method can also be used in our semi-implicit scheme. The Fast Fourier transform
(FFT) was used in Ref. [70]. However, due to the protection of the van der Waals
surfaces in our surface evolution, the FFT cannot be directly applied.

4.1.3 Crank–Nicolson scheme

In Eq. (34), the right hand side can be regarded as a multi-variable function
F(Sx , Sy, Sz, Sxx , Syy, Szz, Sxy, Syz, Sxz),

∂S

∂t
= F = (1 + S2

x + S2
y)Szz + (1 + S2

x + S2
z )Syy + (1 + S2

y + S2
z )Sxx

1 + S2
x + S2

y + S2
z

−2Sx Sy Sxy + 2Sx Sz Sxz + 2Sz Sy Syz

1 + S2
x + S2

y + S2
z

. (53)

The Crank–Nicolson scheme is given as

Sn+1 − Sn = �t

2

(
Fn+1 + Fn

)
, (54)

with Fn+1 being linearized by a multi-variable Taylor expansion

Fn+1 = Fn + ∂ F

∂Sx
(Sn+1

x − Sn
x ) + ∂ F

∂Sy
(Sn+1

y − Sn
y ) + ∂ F

∂Sz
(Sn+1

z − Sn
z )

+ ∂ F

∂Sxx
(Sn+1

xx − Sn
xx ) + ∂ F

∂Syy
(Sn+1

yy − Sn
yy) + ∂ F

∂Szz
(Sn+1

zz − Sn
zz)

+ ∂ F

∂Sxy
(Sn+1

xy − Sn
xy) + ∂ F

∂Syz
(Sn+1

yz − Sn
yz) + ∂ F

∂Sxz
(Sn+1

xz − Sn
xz) (55)
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where derivatives of F should be evaluated at time instant tn . The resulting scheme is
given by

Sn+1 − �t

2

[
∂ F

∂Sx
Sn+1

x + ∂ F

∂Sy
Sn+1

y + ∂ F

∂Sz
Sn+1

z + ∂ F

∂Sxx
Sn+1

xx + ∂ F

∂Syy
Sn+1

yy

+ ∂ F

∂Szz
Sn+1

zz + ∂ F

∂Sxy
Sn+1

xy + ∂ F

∂Syz
Sn+1

yz + ∂ F

∂Sxz
Sn+1

xz

]

= Sn + �t Fn − �t

2

[
∂ F

∂Sx
Sn

x + ∂ F

∂Sy
Sn

y + ∂ F

∂Sz
Sn

z + ∂ F

∂Sxx
Sn

xx + ∂ F

∂Syy
Sn

yy

+ ∂ F

∂Szz
Sn

zz + ∂ F

∂Sxy
Sn

xy + ∂ F

∂Syz
Sn

yz + ∂ F

∂Sxz
Sn

xz

]
, (56)

with appropriate second order central finite difference schemes for all spatial deri-
vatives. It can be proved that with a smooth solution, the Crank–Nicolson scheme is
second-order in time and second-order in space if appropriate central finite difference
schemes are applied to the spatial discretization. Moreover it is stable. But conver-
gence is slow in the generation of MMSs, which involves rapidly changing solutions.
For rapidly changing solutions, the matrix in the linearized system is far from being
diagonally dominant, which is the main cause of the slow convergence.

4.1.4 Alternating direction implicit (ADI) schemes

In the following, to fully take advantages of a semi-implicit scheme, we adapt a
splitting algorithm based on an alternating direction implicit (ADI) method, which
is a variation of the Crank–Nicolson scheme. The traditional Douglas ADI method,
widely used for linear diffusion equations, is always stable. In the present case, the
additional advantage of the ADI-based scheme is that a fast Thomas algorithm can
be applied to speed up the computation dramatically. In order to develop the ADI-
based scheme, the nonlinear mean curvature equation has to be linearized first. Many
different linearizations are possible. In the present work, we discuss two simple ADI
schemes.

ADI (a). We write Eq. (34) as

∂S

∂t
= Szz + Syy + Sxx − G(S). (57)

where

G(S) = S2
x Sxx + S2

y Syy + S2
z Szz + 2Sx Sy Sxy + 2Sx Sz Sxz + 2Sz Sy Syz

1 + S2
x + S2

y + S2
z

. (58)

The nonlinear source term G is treated from the previous time step while the linear ones
are considered on the current time step. This results in a linear problem at each discrete
time step. Inspired by the Crank–Nicolson scheme and factorization by introducing
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additional terms of order O(τ 2), we modify Eq. (57) to give

(
1 − τ

δ2
x

2

) (
1 − τ

δ2
y

2

) (
1 − τ

δ2
z

2

)
Sn+1

i jk

=
[(

1 + τ
δ2

x

2

) (
1 + τ

δ2
y

2

) (
1 + τ

δ2
z

2

)
− τ 3 δ2

xδ
2
yδ

2
z

4

]
Sn

i jk − τG(Sn
i jk), (59)

where G(Sn
i jk) is the second order central difference discretized of G(S). Now the

following multi-step algorithm (3D Douglas-like method) can be adopted

Step 1

(
1 − τ

δ2
x

2

)
S

n+ 1
3

i jk =
(

1 + τ
δ2

x

2
+ τδ2

y + τδ2
z

)
Sn

i jk − τG(Sn
i jk); (60)

Step 2

(
1 − τ

δ2
y

2

)
S

n+ 2
3

i jk = S
n+ 1

3
i jk − τ

δ2
y

2
Sn

i jk; (61)

Step 3

(
1 − τ

δ2
z

2

)
Sn+1

i jk = S
n+ 2

3
i jk − τ

δ2
z

2
Sn

i jk . (62)

The first step only introduces the diffusion operator in x-direction. Therefore, the
resulting set of algebraic equation is tridiagonal. Similarly, the second and third steps
involve the diffusion operators in y- and z-directions respectively. Therefore the effi-
cient Thomas algorithm can be applied. Moreover, it is numerically verified by varying
τ that this ADI scheme, denoted as ADI (a), is stable. However, the accuracy is somew-
hat affected due to the introduction of some second derivative terms into the source
term. In other words, a small time step (but still much greater than that of an explicit
scheme) is required in order to achieve a desired accuracy. This motivates us to design
another ADI scheme in order to use a larger time step for the computation.

ADI (b). In Eq. (35), nonlinear terms vx , vy, vz, and f n
i jk can be calculated from

the previous time step while the linear terms are considered at the current time step.
This also leads to a linear problem at each time step. We modify Eq. (35) to give

(
1 − vx

2
δ2

x − vy

2
δ2

y − vz

2
δ2

z

)
Sn+1

i jk =
(

1 + vx

2
δ2

x + vy

2
δ2

y + vz

2
δ2

z

)
Sn

i jk + τ f n
i jk .

(63)

123



218 P. W. Bates et al.

By introducing additional terms of order O(τ 2), this equation is further modified as

(
1 − Ax

2

)(
1 − Ay

2

)(
1 − Az

2

)
Sn+1

i jk

=
[(

1 + Ax

2

)(
1 + Ay

2

)(
1 + Az

2

)
− Ax Ay Az/4

]
Sn

i jk + τ f n
i jk, (64)

where

Ax = vxδ
2
x , Ay = vyδ

2
y, Az = vzδ

2
z . (65)

Then the following multi-step implementation can be applied.

Step 1

(
1 − Ax

2

)
S

n+ 1
3

i jk =
(

1 + Ax

2
+ Ay + Az

)
Sn

i jk + τ f n
i jk; (66)

Step 2

(
1 − Ay

2

)
S

n+ 2
3

i jk = S
n+ 1

3
i jk − Ay

2
Sn

i jk; (67)

Step 3

(
1 − Az

2

)
Sn+1

i jk = S
n+ 2

3
i jk − Az

2
Sn

i jk . (68)

We denote this scheme as ADI (b).
The ADI (b) scheme obviously possesses almost the same features as ADI (a),

namely, the efficient Thomas algorithm can also be used here and the scheme is stable
for a modified mean curvature flow with a small solution discussed in Sect. 4.2.2.
However, it is not stable in our MMS computations because of rapid changes in the
solution. Nevertheless, at a given accuracy, the ADI (b) scheme is able to admit a
larger time increment than the ADI (a) scheme does.

Moreover, experimental examples demonstrate that the ADI (b) scheme is the most
efficient scheme under typical accuracy requirement. It is about four times more effi-
cient than our previous explicit scheme.

4.2 Numerical procedure and benchmark test

In this subsection, we carry out numerical experiments to test the performance of
the proposed schemes in terms of accuracy and efficiency. The minimal molecular
surfaces are generated in these experiments.
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4.2.1 Computational procedure for MMS generation

First of all, we briefly introduce the procedure to generate MMSs of protein molecules.
For a given protein, let the atomic centers be ri = (xi , yi , zi ), i = 1, · · · , n, and ri

represents the radius of the i th atom. Here n denotes the total number of the atoms in the
protein molecule. We take an enlarged domain to be D = ⋃n

i=1{r : |r − ri | < 1.3ri }.
We choose factor 1.3 to guarantee the formation of properly connected MMSs. This
is based on our observations for the diatomic system reported above and in [4], which
shows that the critical separation distance for the centers of two connected atoms
with radii r1 and r2 is 1.213(r1 + r2). It was demonstrated in [4] that appropriate
connectivity of MMSs is guaranteed if the initial domain D is chosen with a factor
larger than 1.213. For the initial value of S, we consider an indicator function, namely

S(x, y, z, 0) =
{

S0, (x, y, z) ∈ D

0, otherwise.
(69)

To obtain the minimal molecular surface of biomolecules, we need to protect the van
der Waals surface during the evolution. To this end, we consider a simple characteristic
function

χ(r) =
{

0, ∀r ∈ Dχ

1, otherwise
, (70)

where Dχ = ⋃n
i=1{r : |r − ri | < ri }. Thus, our evolution equation is modified into

∂S

∂t
= χ(x, y, z)

[
(1 + S2

x + S2
y)Szz + (1 + S2

x + S2
z )Syy

1 + S2
x + S2

y + S2
z

+ (1 + S2
y + S2

z )Sxx − 2Sx Sy Sxy − 2Sx Sz Sxz − 2Sz Sy Syz

1 + S2
x + S2

y + S2
z

]
.

(71)

At the same time, corresponding modifications have to be made in formulas described
in the last section. For instance, We set Dn

1i jk into

Dn
1i jk =

{
χ(x, y, z)

1 + (δy S)2 + (δz S)2

1 + (δx S)2 + (δy S)2 + (δz S)2

}n

i jk

. (72)

After evolving Eq. (71), an approximate steady state solution of S(x, y, z, t) is attained
at a large value of t = T and is a smooth function on a 3D domain with rapid changes
near the protected atomic boundaries of Dχ . However, the hypersurface S(x, y, z, T )

obtained is not the MMS that we seek. Instead, it gives rise to a family of level surfaces,
which include the desired MMS. Note that that S(x, y, z, T ) ≡ S0 on Dχ . It turns
out that S(x, y, z, T ) is very flat away from the MMS, while it varies sharply at the
MMS. In other words, S(x, y, z, t) is virtually a step function at the desirable MMS.
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Therefore, it is easy to extract the MMS as an isosurface, S(x, y, z, t) = C . It is
convenient to choose C = (1 − ε)S0, where S0 is the initial amplitude, and ε > 0 is
a very small number. Computationally, by taking S0 = 1000, satisfactory results can
be attained by using ε values ranging from 0.004 to 0.01.

Before we proceed to the numerical comparison, we point out that in the semi-
implicit scheme, the linear system is solved by the bi-conjugate gradient scheme in
the smooth test case and by the successive over-relaxation algorithm (SOR) in test
cases with rapid changing solutions, such as proteins and our diatomic system. The
choice is based on the speed of the convergence. The SOR is a popular solver for
nonlinear differential equations, since it is easy to implement and additional memory
is not required. It is also possible to solve the problem as a steady state one, i.e.,
a boundary value problem. However, our test which is not reported in this paper
indicates this approach is not necessarily better than the evolution equation approach
in terms of efficiency. In particular, the fast Fourier transformation (FFT) solver fails
because of the characteristic function χ(x, y, z) in Eq. (71) which is equivalent to
the computational domain being inhomogeneous. It is found that if the characteristic
function χ is applied via a post processing approach (i.e., S is updated in the whole
domain followed by setting back to S0 in Dχ ), the accuracy of integration cannot
be ensured. In the Crank–Nicolson scheme, the linear system is solved by using the
bi-conjugate gradient scheme for the smooth test case and by the SOR in the MMS
generation. The Crank–Nicolson scheme is of second order convergence in time in the
smooth test. However, its convergence is hardly reached because of the rapid changes
of the solution. On the other hand, the ADI-based schemes can easily implement the
van der Waals surface constraint. They require only a 1D problem’s memory storage.
The computational complexity is of O(N ), where N = Nx Ny Nz , because of the use
of the Thomas algorithm.

4.2.2 Numerical test involving smooth solutions

It is well known that the error of a 3D Douglas ADI scheme for linear diffusion
equation is of second-order convergence in space, and of first-order convergence in
time. We examine the order of accuracy of the proposed schemes for solving the mean
curvature flow equation in the present study. Since our geometric flow equation does
not admit a closed form solution, we consider a modified nonlinear diffusion equation
with an exact solution. Consequently, numerical results can be analytically validated.
In particular, we consider the following modified mean curvature equation

∂S

∂t
= (1 + S2

x + S2
y)Szz + (1 + S2

x + S2
z )Syy + (1 + S2

y + S2
z )Sxx

1 + S2
x + S2

y + S2
z

+−2Sx Sy Sxy − 2Sx Sz Sxz − 2Sz Sy Syz

1 + S2
x + S2

y + S2
z

− (B2 − B3)

B1
− B4 (73)

B1 = 1 + (cos(t))2((cos(x) sin(y) sin(z))2

+(sin(x) cos(y) cos(z))2 + (sin(x) sin(y) cos(z))2) (74)
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Table 2 Numerical convergence in space for the proposed schemes

nx × ny × nz ADI (b) ADI (a) Semi-implicit Crank–Nicolson

L∞ Order L∞ Order L∞ Order L∞ Order

4 × 4 × 4 0.214 0.214 0.217 0.216

8 × 8 × 8 5.09(−2) 2.07 5.08(−2) 2.07 5.30(−2) 2.03 5.18(−2) 2.06

16 × 16 × 16 1.23(−2) 2.05 1.23(−2) 2.07 1.48(−2) 1.84 1.31(−2) 1.98

Table 3 Numerical convergence in time for the proposed schemes

τ ADI (b) ADI (a) Semi-implicit Crank–Nicolson

L∞ Order L∞ Order L∞ Order L∞ Order

0.4 0.161 0.156 0.362 6.59(−3)

0.2 9.02(−2) 0.84 8.84(−2) 0.83 0.187 0.95 1.55(−3) 2.09

0.1 4.75(−2) 0.93 4.68(−2) 0.92 9.48(−2) 0.98 3.78(−4) 2.04

B2 = −(cos(t))3 sin(x) sin(y) sin(z)(3(cos(t))−2 + 2(cos(x) sin(y) sin(z))2

+2(sin(x) cos(y) sin(z))2 + 2(sin(x) sin(y) cos(z))2) (75)

B3 = 2(cos(t))3 sin(x) sin(y) sin(z)((cos(x) cos(y) sin(z))2

+(cos(x) sin(y) cos(z))2 + (sin(x) cos(y) cos(z))2 (76)

B4 = sin(x) sin(y) sin(z) sin(t) (77)

The exact solution is designed to be

S(x, y, z, t) = sin(x) sin(y) sin(z) cos(t). (78)

This modified equation has the same differential operator as the mean curvature flow
equation, but with extra source terms.

Consider a cube domain [0, 2π ]×[0, 2π ]×[0, 2π ] and t > 0. Note that the solution
is smooth for this test problem. Table 2 lists the computed errors in different mesh
sizes. The standard absolute L∞ norm error measurement is employed. Grid numbers
in (x, y, z, t) direction are represented by (nx , ny, nz, nt ). Here we let T = τ ×nt and
fix T = 10, τ = 0.05 and thus, nt = 2000. The second order convergence in space
is observed for the ADI schemes, the Crank–Nicolson scheme and the semi-implicit
scheme. In Table 3, we fix spatial mesh size with 48 × 48 × 48 and set T = 10.
First order convergence in time is obtained for the ADI schemes and the semi-implicit
scheme. The Crank–Nicolson scheme shows second order convergence in time and
has the best performance. Furthermore, by varying τ , it is found that ADI schemes,
the Crank–Nicolson scheme and the semi-implicit scheme are all stable in this test
case, while the forward Euler scheme needs a very small τ to make the computation
stable. For instance, if we select a 32 × 32 × 32 mesh for the forward Euler method, it
blows up when we take τ = 0.01, whereas we have L∞ = 2.63 × 10−2 = 2.63(−2)

if τ = 0.005.
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4.3 Numerical test involving rapidly changing solutions

In this subsection, we perform a comparison in terms of efficiency for the proposed
schemes in solving the mean curvature flow equation. Both numerical accuracy and
the computational efficiency are investigated in a diatomic system, an amino acid and
six proteins. For the amino acid and proteins, atomic coordinates are obtained from
the protein data bank (PDB) and their atomic van der Waals radii are taken from the
CHARMM22 force field [47]. All of the computations are carried out on a SGI Altix
350 workstation with four 1.4 GHz itanium 2 Processors and 4 GB memory. For these
test systems, there is no closed form solution available. To benchmark our results,
we consider a reference solution by using the explicit Euler scheme with a small
step size and large number of iterations, and with T = 20. This reference solution is
essentially a steady state solution and is used to compare with other solutions obtained
at a shorter time, but long enough to also bring the solution close to steady state. The
relative L2 error measurement is employed in efficiency studies. We show that some
of the proposed schemes are able to deliver a good approximation to the reference
solution with a small CPU cost.

4.3.1 A diatomic system

First let us consider a diatomic system with the atomic radius 2 Å and atomic centers
at r1 = (−2.2, 0, 0) and r2 = (2.2, 0, 0). The mesh size is set to 53 × 31 × 31 with
a uniform mesh size of h = 0.2 Å. It is found that although the ADI (b) scheme
is stable over a large time increment for the previous modified mean curvature flow
equation, it becomes conditionally stable while being applied to real biomolecular
systems, including the diatomic system, because of the rapid spatial variation in the
solution. Nevertheless, the critical time step τ of the ADI (b) scheme is usually much
larger than that of the explicit Euler scheme, so that considerable efficiency gain can
still be attained by using such a large τ . For the present study, it has been found that
ADI (b) scheme admits a time step τ = 0.15, which is about 20 times larger than the
time step limit τ = 0.008 in the explicit scheme. On the other hand, by varying τ , it
is found that the ADI (a) scheme and semi-implicit scheme are stable at a large time
increment.

Table 4 lists the results of CPU time and relative L2 errors with different time
increments. Here we set T = 3.5 for the proposed schemes and compute the reference
solution by using the explicit scheme with τ = 0.002 and T = 20. It is observed that
ADI (b) scheme with time step size τ = 0.15 takes the smallest CPU time if relative
L2 error is required to be less than 2%. The Crank–Nicolson scheme converges slowly
and requires a large CPU time. It is omitted from further comparison. One measure of
efficiency might be the Q factor, computed as the product of the CPU time and relative
L2 error. A small Q factor is desired. Clearly, the ADI (b) has smaller Q factors. Note
that the explicit Euler scheme has the smallest Q factor. However, one usually wishes
to have less CPU cost at an acceptable error, say about 2%. One way to reduce the
CPU cost is to use a larger time increment. However, τ = 0.008 is close to the stability
limit of the explicit Euler scheme. Another way to reduce the CPU time is to choose
a smaller T . Indeed, at T = 2, the relative L2 error of the explicit Euler scheme is
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Table 4 Comparison of CPU
time and errors in a diatomic
system (T = 3.5)

Schemes τ CPU time (s) L2 error (%) Q

Forward Euler 0.008 1.70 0.12 0.2

Crank–Nicolson 0.15 16.7 16.8 280.6

ADI (b) 0.15 0.52 1.83 1.0

0.10 0.77 1.34 1.0

0.05 1.56 0.34 0.5

0.01 7.78 0.06 0.5

ADI (a) 0.15 0.55 9.47 5.2

0.1 0.84 2.54 2.1

0.08 1.07 1.61 1.7

0.01 8.56 0.74 6.3

Semi-implicit 0.8 0.35 15.5 5.4

0.4 0.52 5.84 2.8

0.2 0.94 1.75 1.6

0.15 1.46 0.79 1.2

0.1 7.19 0.30 2.2

0.08 9.42 0.06 0.5

2.1%, obtained with the CPU time of 0.97, which gives Q = 2. Such a result is not as
good as those of the semi-implicit and ADI schemes can deliver.

4.3.2 Amino acid

We next consider an amino acid system—tryptophan (Trp), which is listed as a ligand
chemical component for a DNA binding regulatory protein, PDB Id: 1wrp. Trp has
27 atoms. Atomic van der Waals radii are taken from the CHARMM22 force field
[47], and are in the range of 1–2 Å. In our computation, a mesh of 63 × 49 × 53 with
uniform mesh size h = 0.2 Å is used. It is found that the time step limit for the ADI (b)
scheme with an accuracy of better that 2% is still τ = 0.15 while the time step limit
for the explicit scheme to remain stable is τ = 0.008. Moreover, by varying the τ , it
is found that the ADI (a) and semi-implicit schemes are stable. All of these findings
agree with the observations from the diatomic system.

Table 5 compares the explicit Euler scheme, the semi-explicit scheme, and the ADI
schemes. Here we still set T = 3.5 for the proposed schemes and compute a reference
solution using the explicit scheme with τ = 0.002 and T = 20. Fig. 12 gives a
graphical representation of Table 5 which allows us to find directly the most efficient
schemes for a desired accuracy. The ADI (b) scheme appears to out-performs the other
methods.

Both the ADI (b) and reference solutions are shown in Fig. 13 for a comparison
between the contours at x , y, and z plane cross sections. Good agreement can be seen.
For the purpose of achieving 2% relative L2 error, the ADI (b) is about 1.5 times more
efficient than the semi-implicit and ADI (a) schemes, while it is 4 times faster than
the explicit scheme.
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Table 5 Comparison of CPU
time and error in computing the
surface of Amino acid Trp

Schemes τ CPU time (s) L2 error (%)

Euler scheme 0.008 11.57 0.21

ADI (b) 0.15 3.0 2.01

0.10 4.32 0.99

0.08 5.30 0.69

0.05 8.17 0.33

0.01 41.07 0.18

0.008 50.24 0.15

ADI (a) 0.15 2.71 6.45

0.10 4.08 1.64

0.08 6.06 0.94

0.05 9.71 0.42

0.01 40.36 0.17

0.008 53.15 0.17

Semi-implicit 0.8 1.30 9.29

0.4 2.50 4.53

0.2 3.34 2.08

0.15 4.49 1.38

0.1 7.19 0.79

0.08 7.40 0.60

0.05 12.39 0.37

0.01 53.3 0.16

0.008 65.19 0.15

Fig. 12 Loglog plots of the efficiency against the accuracy for the surface formation of the Trp
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Fig. 13 Visual comparison of the contours of S(x, y, z, T ) between the ADI (b) solution (solid lines) with
τ = 0.15, T = 3.5 and the reference solution (dots) for Trp. a1 contours of S(x = 0, y, z, T ); a2 contours
of S(x, y = 0, z, T ); a3 contours of S(x, y, z = 0, T ); b isosurface of Trp

4.3.3 Proteins

We further explore the performance of our schemes by considering a set of six proteins
whose coordinates are available in the Protein Data Bank (PDB). The number of atoms
and computational meshes of these six proteins are listed in Table 6. The MMSs of
these proteins are generated by using h = 0.4 Å. Based on the accuracy considerations
and the previous results, we choose τ = 0.3 for the ADI (a), τ = 0.4 for the ADI
(b), τ = 0.4 for the semi-implicit and τ = 0.03 for the explicit scheme. It is noted
that the bigger (or more complex) the protein is chosen, the longer evolution time is
needed to reach the steady state surface, because of larger amount of total deformation
involved. Therefore we set T = 15 for these protein computations. Table 7 gives the
final CPU time comparison. It is seen from the table that the ADI (b) scheme is the
fastest scheme. The final MMSs generated by the ADI (b) scheme with τ = 0.4 are
given in Fig. 14. Therefore, the conclusion drawn from the diatomic and the amino
acid systems is in fact quite general. We have found that the proposed ADI (b) scheme
is the most efficient for the desired level of accuracy in generating MMSs for different
biomolecular systems.
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Table 6 Tested proteins
PDB ID Number of atoms Mesh

1ajj 519 69 × 76 × 83

1cbn 648 81 × 72 × 84

1sh1 702 72 × 75 × 83

1bor 832 84 × 84 × 89

1a63 2065 163 × 101 × 103

1a7m 2809 106 × 153 × 129

Table 7 Efficiency comparison
for proteins. CPU time in second
is reported

Scheme 1ajj 1cbn 1sh1 1bor 1a63 1a7m

ADI (a) 18 23 18 28 74 110

ADI (b) 14 17 14 23 63 107

Semi-implicit 22 35 25 33 100 190

Explicit 46 71 58 89 234 359

Fig. 14 Minimal molecular surfaces of six proteins
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5 Conclusion

In the multiscale implicit solvent models, surfaces are required to separate biomole-
cules and continuum solvent. Previously, a mean curvature flow approach was pro-
posed for the formation of minimal molecular surfaces [4]. However, local inhomo-
geneity exists in density, pressure and other macroscopic variables near the biomo-
lecular surface due to a variety of interactions, such as polar–nonpolar, ion–counter
ion, etc. These interactions induce surface responses to supplement the geometric
driving forces. This paper proposes new partial differential equations (GPDEs) for
the biological surface formation and evolution. Normally, geometric equations make
use of intrinsic geometric forces, such as curvature forces, for the formation and post
processing of surfaces. In the present study, we propose GPDEs that utilize not only
intrinsic geometric forces, but also potential forces for the formation and evolution of
biological surfaces. Apart from geometric and potential driving biomolecular surface
flows, stochastic geometric flows were also proposed to account for density and pres-
sure variations, and for the realization of the canonical and grand canonical ensembles.
Generalized geometric flows that ensure the surface area is decreasing and the volume
is preserved are proposed, consistent with physical requirements. High order geome-
tric flows, which permit control near the boundary, are also proposed. Applications
are carried out for proposed potential driving geometric flows and high order geo-
metric flows. Numerical experiments are performed with the Eulerian formulation.
Appropriate balance between the geometric and potential forces are considered for
biological surface formation. We show that with a proper selection of the potential
term, a good approximation to the conventional molecular surface can be achieved.
Local modifications of biological surfaces are illustrated with appropriate position
dependent potential terms. All proposed new biomolecular surfaces are free of geo-
metric singularities.

The second part of this paper is devoted to the design and testing of compu-
tational algorithms for the generation of MMSs. Four algorithms, a semi-implicit
scheme using successive over-relation (SOR), a Crank–Nicolson scheme and two
alternating direction implicit (ADI) schemes, ADI (a) and ADI (b), have been propo-
sed. Through a designed benchmark problem with a closed form solution, the pro-
posed schemes are shown to be stable for smooth solutions by varying the time
increment. Both ADI schemes make use of the Thomas algorithm that reduces the
computational complexity. The Crank-Nicolson scheme is of second order conver-
gence in both space and time for the modified mean curvature equation. Howe-
ver, it does not work well for the MMS involving rapidly changing solutions. All
other schemes are of second order convergence in space and first order in time
for the modified mean curvature equation. Several biomolecular systems have been
considered to validate our algorithms. The ADI (b) scheme is found to be condi-
tionally stable when it is applied to real biomolecular systems which involve rapid
changes in solutions. Nevertheless, this does not affect the efficiency gain of the ADI
(b) scheme, since it usually allows a much larger time step than the forward Euler
method. Although both ADI (a) and semi-implicit schemes are stable, they require a
smaller time step than ADI (b) to achieve a given level of accuracy. Consequently,
the ADI (b) scheme is an efficient scheme for the generation of the MMS. It is
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usually four times faster than the forward Euler scheme based on a coarse mesh.
Such an efficiency gain can be larger when a denser mesh is used. We finally note
that the proposed fast algorithms can be easily applied to the solution of many other
PDEs.
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