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Abstract We consider a simple phytoplankton model introduced by Shigesada and
Okubo which incorporates the sinking and self-shading effect of the phytoplankton.
The amount of light the phytoplankton receives is assumed to be controlled by the
density of the phytoplankton population above the given depth. We show the existence
of non-homogeneous solutions for any water depth and study their profiles and stability.
Depending on the sinking rate of the phytoplankton, light intensity and water depth,
the plankton can concentrate either near the surface, at the bottom of the water column,
or both, resulting in a “double-peak” profile. As the buoyancy passes a certain critical
threshold, a sudden change in the phytoplankton profile occurs. We quantify this
transition using asymptotic techniques. In all cases we show that the profile is locally
stable. This generalizes the results of Shigesada and Okubo where infinite depth was
considered.
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106 T. Kolokolnikov et al.

1 Introduction

Since the classical work of Riley [16], many mathematical models of phytoplankton
have been proposed, see for example [1,3,5,7–9,11,15,17]. These papers study the
formation of phytoplankton blooms from the mathematical, experimental and nume-
rical viewpoints. One of the simplest mathematical models was introduced in [17].
It takes into account light absorption by the phytoplankton. Any other nutrient and
species interactions are modeled via a source term. The authors also introduced a
simplifying assumption that the light absorption by water is negligible compared to
the absorption by the phytoplankton itself (the so-called self-shading case). They then
showed the existence of phytoplankton blooms for water columns of infinite depth,
under some additional assumptions on the sinking velocity of the phytoplankton.

In this paper we analyse the self-shading model [17] for the case of finite water
depth using a combination of rigorous and asymptotic techniques. We show that even a
simple model can lead to complicated phytoplankton distributions. Before stating our
results, let us review the model introduced in [17]; see also [3] for detailed derivation.
Consider a single phytoplankton species and let p(x, t) denote its population density
at depth x and time t . The species is subject to diffusion, sinking and its production
rate depends on light intensity. This is modeled as

∂p

∂t
= D

∂2 p

∂x2 − v
∂p

∂x
+ g(I )p

where D is the diffusivity of the plankton and v is its sinking velocity. The function
g(I (x, t)) is the specific growth rate of phytoplankton as a function of light intensity
I (x, t). A standard model that incorporates saturation is

g(I ) = aI

1 + bI
− kd (1)

where a and b are two positive constants and the constant kd denote the death rate. An
alternative model derived from more physical considerations (see [14,18]) is given by

g(I ) = b
1 − e−cI

c
− kd . (2)

Light intensity I is decreasing with depth x due to light absorption via plankton and
water. This is modeled by

d I

dx
= − (

kp p + kw

)
I

so that

I = I0e−kwx e−kp
∫ x

0 p(s,t)ds

where I0 is the light intensity at the surface. The water is assumed to have the depth
L . We will use a normalization D = 1 and obtain the following model,

123



Phytoplankton depth profiles and their transitions 107

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂p

∂t
= ∂2 p

∂x2 − v
∂p

∂x
+ g(I )p, x ∈ (0, L)

∂p

∂x
− vp = 0, at x = 0 and x = L ,

I = I0e−kwx e−kp
∫ x

0 p(s,t)ds .

(3)

The boundary conditions reflect the fact that the plankton cannot cross the air-water
or the water ground interfaces.

In general, Eq. (3) is an integral-differential equation. However, if the plankton
is assumed to be sufficiently transparent (i.e. kp = 0), then Eq. (3) will reduce to
a completely linear model which was studied in [3] and [5] among others. In [5],
Fennel found that a species occurs in highest abundance in the vertical location where
its species-specific growth and loss rates are balanced, while in [3] the authors used
Bessel functions to study the distribution of the plankton and their results show that the
condition for phytoplankton bloom can be captured by a critical depth, a compensation
depth, and zero, one or two critical values of the vertical turbulent diffusion coefficient.

Another simplification used in [17] is to assume that most of the light is absorbed
by the plankton itself (i.e. kw = 0). This is the so-called self-shading model and is the
regime that we will study in this paper. We now summarize our results.

In Sect. 2 we rigorously study the steady state of the self-shading model for finite
water depth L . We show that there exists a unique non-constant steady state for any
L . This generalizes results of [17], where it was assumed that L = ∞. In addition
we study the local stability of the non-constant solution, and show that it is indeed
stable. In Sect. 3 we study the change in the solution profile as the sinking velocity v

is increased. The plankton concentrates at the bottom of the water column for large
enough v and near the surface if v is small. Indeed there is a critical value vc near
which the transition occurs. We use asymptotic techniques to describe this narrow
transition regime.

In Sect. 4 we perform an asymptotic analysis of the Webb–Newton–Starr nonli-
nearity (2) in the limit where I0c � 1. In such a regime, the population profile can
be estimated explicitly by solving a piecewise linear ODE. Depending on the water
depth, we found regimes for which plankton density has two peaks, one at or near
the surface, and another peak near the bottom of the water column. Such solution
occurs for finite L only, and is stable both in time and in parameter space. Some open
problems are discussed in Sect. 5.

2 Existence, uniqueness and stability of the steady state

2.1 Existence and uniqueness

Before deriving the results, we review the non-local transformation introduced in [17]
to simplify the model in the self-shading case kw =0. After scaling, set kp =1 and let

Q(x, t) =
x∫

0

p(s, t)ds.
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and define

f (Q) =
Q∫

0

g(I0e−s)ds. (4)

We then obtain a new equation for Q,

{
Qt = Q′′ − vQ′ + f (Q) for x ∈ (0, L)

Q(0) = 0; Q′′(L) − vQ′(L) = 0
(5)

In order to obtain nontrivial steady states, we shall need a further assumption that the
phytoplankton has a positive growth rate at the surface; that is,

g(I0) > 0. (6)

or equivalently, f ′(0) > 0. Since g(I e−s) tends to −kd as s → ∞ and since g(I e−s)

is monotone in s, we see that in this case, f (Q) has precisely two positive roots at
Q = 0 and Q = Q∞, with f (Q) positive for Q ∈ (0, Q∞) and with f (Q) negative
otherwise.

In this section we study the existence and uniqueness of the nonhomogeneous steady
state of (5) and its stability. The steady state satisfies

{
0 = Q′′ − vQ′ + f (Q),

Q(0) = 0, Q(L) = Q∞ where f (Q∞) = 0.
(7)

Generally speaking, the plankton will sink to the bottom of water column if its
sinking velocity v is sufficiently large; it will then survive there if the reproduction
rate at the bottom is greater than the death rate. On the other hand, for very light
plankton such as picophytoplankton or for some species that have gas vesicles [3], v

may be near zero or positive. In the case of zero velocity, the steady state reduces to

{
0 = Q′′ + f (Q),

Q(0) = 0, Q(L) = Q∞.
(8)

and an explicit solution in terms of quadrature is available. In particular for the case
of deep water column (L = ∞), the plankton density at the surface is given by

p(0) = Q′(0) ∼

√√√
√√2

Q∞∫

0

f (s)ds (9)

and p(x) decays exponentially to 0 as x → ∞.
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Here we are primarily concerned with the regime where v is positive but not too
large. In this case, surface or subsurface concentrations may occur. This coincides
with the fact that maxima of phytoplankton biomass often occurs in clear water, not
necessarily on the surface, in oceans and in lakes (for example, see [2,16]). In [17], the
authors have proved the existence of a non-homogeneous steady state in the case of
infinite depth (L = ∞) under an additional restriction on v. In this section we extend
these results for the case of the finite depth. We also prove that this equilibrium is
locally stable. Our existence result is the following.

Theorem 2.1 Suppose that f ′(0) > 0, f ′(Q∞) < 0. Then the solution to (7) exists
for any v ≥ 0, 0 < L < ∞, and is unique. If L = ∞, then the solution to (7) exists
provided that v < vc where

vc = 2
√

f ′ (0). (10)

When L = ∞, the existence of the steady state was shown in [17] using phase
plane analysis. In this case, the solution to (7) lies on a heteroclinic orbit that connects
the unstable equilibrium at Q = 0 to the saddle point at Q = Q∞. Here, we extend
the results in [17] for the case when L is finite. As in [17], the existence follows from
phase plane analysis. The main difficulty here is to prove the uniqueness of solution,
which requires a certain monotonicity property (Lemma 2.1 below).

We begin by reviewing the phase plane of the corresponding autonomous system,

{
Q̇ = p,

ṗ = vp − f (Q)
(11)

The steady state Q = 0, p = 0 has the eigenvalues

λ = v ± √
v2 − 4 f ′ (0)

2
.

Since f ′(0) > 0, this is an unstable equilibrium which is a spiral (i.e. complex
conjugate eigenvalues) when 0 < v < vc = 2

√
f ′ (0). On the other hand when

v > vc, the eigenvalues are purely real. The other equilibrium is Q = Q∞, p = 0
and has eigenvalues

λ = v ± √
v2 − 4 f ′ (Q∞)

2
.

Since f ′(Q∞) < 0, this is a saddle point. Now from the sketch of the phase plane (see
Fig. 1), there is a heteroclinic connection between the unstable manifold of Q = 0 and
the stable manifold of Q = Q∞ when v > 0. If 0 < v < vc, the origin is a spiral so
that the heteroclinic orbit crosses the positive p-axis as shown at some point p = pc,

as shown on Fig. 1a. This orbit is precisely the solution to (7) in the case L = ∞.
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Fig. 1 Phase plots of system (11) with f (Q) = Q − Q2 �⇒ vc = 2. a v = 0.2 < vc . The thick curve
corresponds to the solution of (7) that corresponds to L = ∞. It lies on a heteroclinic orbit connecting
Q = 1 to Q = 0. b v = 2.2 > vc . The thick curve corresponds to a heteroclinic orbit

To prove the existence and uniqueness of solution for finite L , we consider the
corresponding initial value problem

{
0 = Q′′ − vQ′ + f (Q),

Q(0) = 0, Q′(0) = µ.
(12)

We show the following key monotonicity result.

Lemma 2.1 (a) Given 0 < µ1 < µ2, let Qµ1 and Qµ2 be two positive solutions
of (12). Then Qµ1(x) < Qµ2(x) for all x > 0.

(b) Let pc = Q′(0) where Q is the solution to (7) corresponding to L = ∞. If
µ > pc then Qµ(x) is an increasing function for all x .

Proof (a) Since f ′ is bounded on [0, Q∞], we may choose a constant
k > maxQ∈[0,Q∞] | f ′(Q)|. Next define

f0(Q) = f (Q) + k Q.

From the choice of k, it is clear that f0(Q) is increasing on [0, Q∞] and f0(Q) ≥ 0
on [0, Q]. Next rewrite the first equation of (7) as

Q′′ − vQ′ − k Q = − f0(Q).

Using the initial conditions in (12) we can construct an equivalent integral equation
for Q:
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Qµ(x) = µ

(
eλ1x − eλ2x

λ1 − λ2

)
+ 1

(λ1 − λ2)

x∫

0

(
eλ1(x−s) − eλ2(x−s)

)
f0(Q)ds,

λ1 = v + √
v2 + 4k

2
, λ2 = v − √

v2 + 4k

2
.

(13)

Since Q′
µ(0) = µ, there exists a small neighborhood near x = 0 such that Qµ1(x) >

Qµ2(x) in that neighborhood. Now suppose that Qµ2(x) ≤ Qµ1(x) for some x > 0.
Then there exists x0 so that Qµ2(x) > Qµ1(x) if x ∈ [0, x0) but Qµ1(x0) = Qµ2(x0).
But then we have

Qµ2(x0) − Qµ1(x0) = (µ2 − µ1)

(
eλ1x0 − eλ2x0

λ1 − λ2

)

+ 1

(λ1 − λ2)

x0∫

0

(
eλ1(x0−s) − eλ2(x0−s)

)

× [
f0(Qa2(s)) − f0(Qa1(s))

]
ds. (14)

Now the first term on the right hand side is strictly positive since µ2 > µ1 and λ1 > λ2.

On the other hand, f0(Qµ2(s)) − f0(Qµ1(s)) > 0 for all s ∈ [0, x0] since Qµ2(s) >

Qµ1(s) and since f0 is increasing. Therefore the integral term is also positive and so
the right hand side is strictly positive. On the other hand, the left hand side is zero by
since we assumed Qµ1(x0) = Qµ2(x0). We obtain a contradiction. This completes
the proof of (a).

The statement (b) follows easily from the analysis of the phase plot of (11)—see
Fig. 1. We omit the details. �


Proof of Theorem 2.1 Define a function L = L(µ) to be such that Qµ(L) = Q∞.

where Qµ is the solution to (12). Due to continuous dependence of (12) on µ, it is
clear that L(µ) is a continuous function of µ. Moreover, L → ∞ as µ → pc. On the
other hand, for large µ, the solution to (12) is estimated asymptotically by a system

0 ∼ Q′′ − vQ′, Q(0) = 0, Q′(0) = µ � 1

whose solution is given by

Qµ(x) ∼ µ

v

(
1 − e−vx) , µ � 1.

From this we obtain

Q∞ ∼ µ

v

(
1 − e−vL

)
, µ � 1.
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so that

L ∼ Q∞
µ

, µ � v.

Therefore, L(µ) is a continuous function with L(µ) → ∞ as µ → p+
c and L(µ) → 0

as µ → ∞. This shows that the solution to (7) exists for any L > 0. Finally, Lemma 2.1
shows that L is a strictly decreasing function of µ. This shows the uniqueness of
solution to (7). �


2.2 Stability

Next we show that the steady state constructed in Theorem 2.1 is indeed stable. To do
so, we linearize around the steady state,

Q(x, t) = Q(x) + φ(x)eλt

where Q(x) is the equilibrium steady as constructed in Theorem 2.1 and φ � 1 is a
small perturbation. Substituting into (5) and keeping the leading order terms we obtain
the following eigenvalue problem,

λφ = φxx − vφx + f ′(Q)φ; φ(0) = 0; [
λ − f ′(Q∞)

]
φ(L) = 0. (15)

Our main result is the following.

Theorem 2.2 All eigenvalues of (15) are real and negative and thus the positive steady
state Q is stable.

We remark that Shigesada and Okubo [17] used a Lyapunov functional approach
to prove global stability of the steady state in the case infinite L . Their approach relies
on uniqueness of the steady state. For the case of finite L the uniqueness is shown in
Theorem 2.1; indeed the rest of the proof of global stability can be carried through.
Here, we use a simpler approach to show only local stability, which also works for
more general systems where uniqueness may not be guaranteed.

Proof of Theorem 2.2 We first rewrite (15) to make the problem self adjoint. Define

Lφ ≡ (
e−vxφ′)′ + e−vx f ′(x)φ

so that (15) becomes

λe−vxφ = Lφ (16)

The proof now consists of two steps.
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Step 1: All real eigenvalues are negative. Note that Q′ satisfies L Q′ = 0. Multi-
plying both sides of (16) by Q′ and integrating the right hand side by parts twice from
0 to x0 we therefore obtain

λ

x0∫

0

φQ′e−vx dx =
[
e−vxφ′Q′ − (

e−vx Q′)′
φ
]x=x0

x=0
. (17)

Now either λ = f ′(Q∞) or else φ(L) = 0. In the former case, λ is negative and
we are done. In the latter, case, let x0 be the leftmost nonzero root of φ. Then (17)
becomes

λ

x0∫

0

φQ′e−vx dx = [
e−vxφ′Q′]x=x0

x=0 .

Since λ is assumed to be real, we may take φ > 0 on the interval (0, x0) with φ(0) =
φ(x0) = 0 (by replacing φ by −φ if necessary). Then φ′(0) ≥ 0 and φ′(x0) ≤ 0. In
fact, using the strong maximum principle, one has a stronger condition φ′(0) > 0 and
φ′(x0) < 0, since otherwise φ ≡ 0 on the whole interval [0, L]. Finally, Q′ > 0 by
Theorem 2.1. It immediately follows that λ < 0 provided that λ is real.

Step 2: All eigenvalues are real: Multiply (16) by φ̄ and integrate both sides on
[0, L]. We then obtain

λ

L∫

0

|φ|2 e−vx dx =
L∫

0

φLφdx =
L∫

0

φLφdx =
L∫

0

φLφdx

It follows that λ
∫ L

0 |φ|2 e−vx dx = λ̄
∫ L

0 |φ|2 e−vx dx so that λ is purely real. �


3 Population profiles near the critical sinking velocity

When plotting the phase plane for the steady state profile as was done in Theorem 2.1,
it is clear that there are two distinguished cases depending on whether v > vc or v < vc

where vc = 2
√

f ′(0) is the critical sinking velocity at which the zero steady state has a
double eigenvalue. When the water depth L is sufficiently large, the population profile
concentrates near the surface for small v. However, for v > vc, the heteroclinic
orbit shown in Fig. 1b never intersects the positive p axis; as a result, all orbits
close to the heteroclinic orbit spend a long time near the equilibrium Q = Q∞.

This implies that the plankton populations concentrate at the bottom of the water
column when v > vc. Therefore there is a transition that occurs as v crosses vc. An
example of this phenomenon is shown in Fig. 2a. In this section we quantify this
transition, in the case where the water depth is sufficiently large. Our main result is
the following.
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Fig. 2 Subsurface plankton populations for model (3) with nonlinearity (1). The parameters are a = 2,

b = 1, kd = 1, I0 = 2, L = 100. a Profiles of plankton densities p with v given by (18) and with
α = 0.15, 0.2, 0.3, 0.5,

√
2 (from right to left). The vertical axis represents depth with the density p(x)

plotted on the horizontal axis. The corresponding asymptotic location x0 of the maximum given by (19) is
shown by a horizontal line. A good agreement is observed. b The plot of f (Q), where f is given by (4)
and (2). The critical buoyancy (10) is vc = 1.1547

Proposition 3.1 Suppose that

v = √
f ′ (0)

(
2 − α2

)
, α � 1. (18)

Consider the steady state profile of Theorem 2.1 and suppose that

L � O

(
1

α

)
.

Then the plankton population p (x) has an interior maximum that is located asymp-
totically at

x0 ∼ π
√

f ′ (0)

1

α
. (19)

Proof As before, we consider the steady state equations (5). Now let us rescale

x = x0 + ly

Q(x) = u(y)

where x0 is the location of the inflection point of Q, corresponding to the maximum
of p and where l will be chosen later. We obtain

0 = uyy − vluy + l2 f (u)

We now choose l2 = 1
f ′(0)

and obtain

{
0 = uyy − v0uy + h (u)

u (−L1) = 0, u (L2) = Q∞, u′′ (0) = 0
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where

L1, L2 � 1; h′ (0) = 1

and

v0 = −vl, h(u) = f (u) l2, l = 1/
√

f ′ (0)

L1 = x0

l
, L2 = L − x0

l
.

We first analyze the stability of the steady state u = 0. Substituting u = 0 + eλyc,
c � 1 we obtain the characteristic equation λ2 − v0λ + 1 = 0. It is clear then that
v0 = 2 is the threshold value so that u = 0 is an unstable spiral for v0 < 2 whereas
u = 0 is unstable without spirals when v0 > 2 and has a double eigenvalue if v0 = 2.

As we will show, the submerged plankton occurs when v0 is near 2. Therefore we
write

v0 ≡ 2 − α2, 0 < α � 1

so that λ ∼ 1 − α2/2 ± iα. It follows that

u ∼ c exp
((

1 − α2/2
)

y
)

sin (α (y + L1)) , y � 0

∼ c exp (y) [sin (αL1) cos (αy) + sin (αy) cos (αL1)] .

In particular we have

u ∼ c exp (y) [sin (αL1) + αy cos (αL1)] when − 1

α
� y � 0. (20)

Next, let U be the heteroclinic orbit corresponding to v0 = 2 with an inflection point
at y = 0 so that U satisfies:

0 = Uyy − 2Uy + h (U ) (21)

U → 0 as y → −∞; U → Q∞ as y → ∞ and U ′′ (0) = 0.

Note that the equilibrium U = 0 has a double eigenvalue so that

U ∼ exp (y) (A + By) , y → −∞ (22)

for some O(1) constants A and B that are independent of L1, α. These constants are
determined by solving numerically the problem (21).

Matching (20) and (22) we then obtain

α−1 tan (αL1) ∼ A

B
, α → 0.
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Since A/B is independent of α, we obtain that αL1 ∼ πn+αB/A, α → 0. Moreover
u must be positive so that sin ((L1 + y) α) �= 0 for −L1 < y � 0. This yields

L1 ∼ π

α
+ A/B, α → 0.

In the original variables we therefore get (19). �

Figure 2 provides an illustration of Proposition 3.1. It demonstrates that the maxi-

mum of the profile moves to the right as α−1 increases, according to the law (19).

4 Population profiles with two peaks

In this section we demonstrate the existence of population profiles that consist of two
peaks—one at the bottom of the water column and one near the surface. To do so, we
will study in detail a piecewise-linear model of the form

{
Q′′ − vQ′ + f (Q) = 0

Q(0) = 0, Q(L) = µ0
(23)

where f (Q) is a piecewise linear function that has two roots at 0 and µ0, and the
phytoplankton population is P = d Q

dy . By scaling and relabeling L and v, we will
assume without loss of generality that f (Q) is of the form

f (Q) =

⎧
⎪⎨

⎪⎩

Q, 0 ≤ Q ≤ 1

1

µ0 − 1
(µ0 − Q) , 1 ≤ Q ≤ µ0

; µ0 > 1 (24)

In other words, f (Q) is a unique piecewise linear function that connects (0, 0), (1, 1)

and (µ0, 0). This model is actually an approximation of the Webb-Newton-Starr non-
linearity (2) in the limit where I0c � 1 (up to rescaling and relabeling of constants)
as we now show. Note from (2) and (4) that

f ′(Q) = b

c

(
1 − e−cI0 exp(−Q)

)
− kd .

Therefore in the limit cI0 � 1 we have

f ′(Q) ∼
⎧
⎨

⎩

b

c
− kd , Q � Q0

−kd , Q � Q0

, Q0 ≡ ln ( cI0) � 1.

Since f ′ is asymptotically piecewise constant, f can be approximated by a piecewise
linear function in this limit. This is demonstrated in Fig. 3 where f (Q) and its linear
approximation are plotted.
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Fig. 3 The nonlinearity f given by (4) where g is given by (2). The parameter values there are c =
100, b = 400, I0 = 1, kd = 1. The piecewise linear approximation shown in dashes connects the points

(0, 0), (Q0, Q0

(
b
c − kd

)
) and (Q1,0) where Q0 = ln ( cI0) and Q1 = Q0

b
ckd

In terms of the nonlinearity (2), we have

µ0 ∼ b

ckd
. (25)

As in Section 2, the steady state Q = 0 admits two eigenvalues that are complex
conjugate when v < 2 and are purely real if v > 2. In the latter case, the steady state
will concentrate near x = L . However, when v < 2, it is possible to obtain solutions
which concentrate both at the surface x = 0 and near the bottom x = L . Our goal is
to demonstrate the following asymptotic result.

Proposition 4.1 Let p = Q′ be the population density where Q is given by (23) with
f given by (24). Suppose that

L � 1, µ0 ≤ O(L),

and suppose that

v � O(µ
−1/2
0 ) with 0 < v < 2.

If µ0 = O (L) then the phytoplankton profile P has two peaks, one near the bottom
x = L and another at x ∼ M < L , where M is independent of µ0, given by (28). The
population concentrations at the two peaks are given by

p(M) ∼ 1

v
; p(L) ∼ µ0v exp

(
− L − M

vµ0

)
. (26)

Moreover

p(L) ∼ µ0v when µ0 � L .

Examples of such profiles are shown on Fig. 4. Since we assumed L � 1, the
two-peak distribution occurs when µ0 � 1. In particular from (25), this can occur for
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Fig. 4 Population profiles for the model (24). The vertical axis represents depth x with the density p(x)

plotted on the horizontal axis. Solid curves represent exact numerical solution; dashed curves represent
the asymptotic solution given by (27). a The effect of µ0. Parameter values are L = 30, v = 1 and
µ0 = 7.5, 10, 15 (from bottom to top). b The effect of L with µ0 = 8, v = 1 and L = 20, 30, 40. c The
effect of v with µ0 = 8, L = 30 and v = 1, 1.3, 1.5 and 1.9

low death rates kd , high surface illumination I0 as well as positive sinking velocity v.
This phenomenon is illustrated in Fig. 4a. The parameter values were L = 30, v = 1,

µ0 = 7.5, 10 and 15. As µ0 is increased, a population spike appears near the bottom
x = L , and coexists with another spike near the surface.
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We now give a derivation of Proposition 4.1. Near the surface of the water column
we have

Q ∼ Qs ∼ A exp
(v

2
x
)

sin (αx) , Q ≤ 1

where

α =
√

1 − v2

4

and where A is to be determined. In this way, the condition Q(0) = 0 is satisfied. On
the other hand, near the bottom when Q ≥ 1 we have

Qb = µ0 + B
[
exp (λ+ (x − L)) − exp (λ− (x − L))

]

where B is to be determined; the condition Q(L) = µ0 is then automatically satisfied.
The constants λ± satisfy the characteristic equation

λ2 − vλ − 1

µ0 − 1
= 0

so that

λ+ ∼ v, λ− ∼ − 1

vµ0
for µ0 � 1.

To determine A,B we must glue Qs and Qb and their derivatives at some point x = M.

We then obtain the following set of equations:

A exp
(v

2
M

)
sin (αM) = 1 = µ0 + B

[
exp (−λ+d) − exp (−λ−d)

] ;

v

2
+ α

cos αM

sin αM
= B

[
λ+ exp (−λ+d) − λ− exp (−λ−d)

]

where

d = L − M.

so that

A exp
(v

2
M

)
sin (αM) = 1 = µ0 + B

[
exp (−vd) − exp

(
1

vµ0
d

)]
;

v

2
+ α

cos αM

sin αM
= B

[
v exp (−vd) + 1

vµ0
exp

(
1

vµ0
d

)]
.
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Under the assumption v � 1√
µ0

the system simplifies to

µ0 ∼ B exp

(
1

vµ0
d

)
; v

2
+ α

cos αM

sin αM
∼ 1

v

µ0 − 1

µ0

In summary we obtain

Q(x) ∼

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

exp
(v

2
(x − M)

) sin (αx)

sin (αM)
, 0 ≤ x ≤ M

µ0 + µ0 exp

(
− L − M

vµ0

) [
exp (v (x − L))−exp

(
− 1

µ0v
(x − L)

)]
,

M ≤ x ≤ L

(27)

where

tan αM ∼ α
1
v

− v
2

, α =
√

1 − v2/4. (28)

Recalling that p = Q′; equations (26) are a direct consequence of (27) and (28).
Note that the expression for M and the concentration of plankton near the surface

are independent of the domain length L . Figure 4b shows the effect of the depth L on
the shape of the plankton profile. It is clear that the shape of the phytoplankton near
the surface is unaffected by changing L . On the other hand, changing v affects the
entire profile as Fig. 4c demonstrates. Note that for values of v close to 2, we have
α � 1 and (28) reduces to

tan αM = −2α; α � 1

so that

M ∼ π

α
.

In fact this is a special case of Proposition 3.1 where v was assumed to be close to vc.

In this case, p(L) = Q′(L) is significant provided that µ0 is large enough, that is

L − π
α

2µ0
� 1.

5 Discussion

In this paper we have analyzed the self-shading model introduced by Shigesada and
Okubo [17] for the case of finite depth L . We proved the existence and uniqueness of
the steady state profile for all L . In addition, we made a more detailed analysis of the
nonlinearity (2) in a certain limit. There are several open questions that remain.
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In Sect. 3 we have shown that by choosing v sufficiently close to vc, it is possible that
population profiles concentrate at any given depth, under the self-shading assumption.
While such solution is locally stable in time, it occurs for a rather narrow parameter
range (see Proposition 3.1). As v is continuously increased past vc, there is a very
sudden change in plankton profile from surface to bottom location. This phenomenon
has been observed previously in lakes; see for example [13] and [19].

An alternative mechanism for existence of subsurface peaks is the so-called deep
chlorophyll maximum, see for example [1,5,6,10,12]. This can develop from the inter-
play between nutrient and light limitation. Incident solar light enters the water column
from above, while nutrients are generally mixed upwards from deeper water layers
below. Because phytoplankton growth requires both nutrients and light, a subsurface
maximum often develops at an intermediate depth where the growth rate shifts from
nutrient limitation to light limitation. In the tropical and subtropical oceans, this deep
chlorophyll maximum typically develops at about 100 m deep.

In Sect. 4 we have studied solutions with two distinct peaks—one near the top,
another at the bottom. Such distributions have been observed in lakes, see for example
[4] and [13,19]. A related model that also leads to bi-stable configurations was studied
in [19]. To get precise analytical results, we have considered a limiting regime of the
Webb-Newton-Starr nonlinearity (2). However, numerical simulations (not shown) as
well as phase plane considerations indicate that this phenomenon is in fact generic,
provided certain assumptions on nonlinearity are satisfied. For the Webb-Newton-Starr
nonlinearity (2) , we were able to obtain double-peaked population profile under the
assumptions of high surface illumination, low death rates, positive sinking velocity and
sufficiently small depth. These are all biologically plausible assumptions and we expect
a possible bi-stable profile under these conditions, regardless of the precise form of the
nonlinearity. We also found such profile to be relatively robust to small perturbations
in parameter space. A possible physical explanation is that the production of new
phytoplankton occurs predominantly near the surface. At the same time, phytoplankton
continuously sinks to the bottom. In a shallow lake with sufficient illumination, this can
lead to another population spike at the bottom, resulting in a bi-stable configuration.

Acknowledgments We are grateful to anonymous referees for helpful comments which improved the
paper. The authors are supported by NSERC discovery grants, Canada.

References

1. Britton NF, Timm U (1993) Effects of competition and shading in planktonic communities. J Math
Biol 31:655–673

2. Cullen JJ (1982) The deep chlorophyll maximum: comparing vertical profiles of chlorophyll. Can
J Fish Aquat Sci 39:791–803

3. Ebert U, Arrayas M, Temme N, Sommeijer B, Huisman J (2001) Critical condition for phytoplankton
Blooms. Bull Math Biol 63:1095–1124

4. Fasham MJ, Holligan PM, Pugh PR (1983) The spatial and temporal development of the spring phy-
toplankton bloom in the Celtic Sea. Prog Oceanogr 12:87–145

5. Fennel K (2003) Subsurface maxima of phytoplankton and chlorophyll: steady-state solutions from a
simple model. Limnol Oceanogr 48:1521–1534

6. Hodges BA, Rudnick DL (2004) Simple models of steady deep maxima in chlorophyll and biomass.
Deep-Sea Res I 51:999–1015

123



122 T. Kolokolnikov et al.

7. Huisman J, Arrayas M, Ebert U, Sommeijer B (2002) How do sinking phytoplankton species manage
to persist? Am Nat 159(3):245–254

8. Huisman J, van Oostveen P, Weissing FJ (1999) Critical depth and critical turbulence: two different
mechanisms for the development of phytoplankton blooms. Limnol Oceanogr 44(7):1781–1787

9. Huisman J, Sharples J, Stroom J, Visser PM, Kardinaal WEA, Verspagen JMH, Sommeijer B (2004)
Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology
85:2960–2970

10. Huisman J, Pham Thi NN, Karl DM, Sommeijer B (2006) Reduced mixing generates oscillations and
chaos in the oceanic deep chlorophyll maximum. Nature 439:322–325

11. Ishii H, Takagi I (1982) Global stability of stationary solutions to a nonlinear diffusion equation in
phytoplankton dynamics. J Math Biol 16:1–24

12. Klausmeier CA, Litchman E (2001) Algal games: the vertical distribution of phytoplankton in poorly
mixed water columns. Limnol Oceanogr 46:1998–2007

13. Miracle MR, Vicente E (1983) Vertical distribution and rotifer concentrations in the chemocline of
meromictic lakes. Hydrobiologia 104:259–267

14. Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages
of marine phytoplankton. J Mar Res 38:687–701

15. Reynolds CS (1984) The ecology of freshwater phytoplankton. Cambridge University Press,
Cambridge

16. Riley GA, Stommel H, Bumpus DF (1949) Quantitative ecology of the plankton of the western North
Atlantic. Bull Bingham Oceanogr Coll 12:1–169

17. Shigesada N, Okubo A (1981) Analysis of the self-shading effect on algal vertical distribution in natural
waters. J Math Biol 12:311–326

18. Webb WL, Newton M, Starr D (1974) Carbon dioxide exhange of Alnus rubra: a mathematical model.
Oceologia 17:281–291

19. Yoshiyama K, Nakajimaz H (2002) Catastrophic transition in vertical distributions of phytoplankton:
alternative equilibria in a water column. J theor Biol 216:397–408

123


	Phytoplankton depth profiles and their transitions near the critical sinking velocity
	Abstract
	1 Introduction
	2 Existence, uniqueness and stability of the steady state
	2.1 Existence and uniqueness
	2.2 Stability

	3 Population profiles near the critical sinking velocity
	4 Population profiles with two peaks
	5 Discussion
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


