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Abstract Resorting to a multiphase modelling framework, tumours are described
here as a mixture of tumour and host cells within a porous structure constituted by
a remodelling extracellular matrix (ECM), which is wet by a physiological extracel-
lular fluid. The model presented in this article focuses mainly on the description of
mechanical interactions of the growing tumour with the host tissue, their influence
on tumour growth, and the attachment/detachment mechanisms between cells and
ECM. Starting from some recent experimental evidences, we propose to describe the
interaction forces involving the extracellular matrix via some concepts coming from
viscoplasticity. We then apply the model to the description of the growth of tumour
cords and the formation of fibrosis.

Mathematics Subject Classification (2000) 92C10 · 92C50

1 Introduction

As recently reviewed in [6], the first models dealing with avascular tumour growth
worked under the hypothesis that the tumour is made by only one type of cells having
a constant density [31]. In the last few years, it became evident that such a description
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was insufficient, and multiphase models started being developed [5,16–19,26–28]
(see also the review articles [8], [30]). This description allows to consider density
variation within the tumour and the host tissue, to evaluate the evolution of stresses,
and to take into account mechanical interactions among the constituents, e.g., cells
and extracellular matrix, and among tissues.

For instance, Chaplain et al. [21] developed a model accounting for contact inhibi-
tion of growth and showed how a misperception of the compression state of the local
tissue, hence of the subsequent stress which is exerted on a cell, can generate by itself a
clonal advantage on the surrounding cells leading to the replacement and the invasion
of the healthy tissue by the tumour. In addition to bio-mechanical effects, the model
also takes into account the effect of the stress-dependent production of extracellular
matrix (ECM) and of matrix degrading enzymes (MDEs). Franks et al. [26,27] deve-
loped a model of ductal carcinoma, in which all constituents, solid and liquid, move
with the same velocity. The model also includes the mechanical interaction with the
duct walls. Breward et al. [15,17] deduced a one-dimensional multiphase model to
describe vascular tumour growth and tumour vessel interaction.

Still within the multiphase modelling framework, here we want to describe soft
tissues as mainly made of ECM and cells. The former will be schematised as a network
of fibrous material, the latter as an ensemble of sticky and highly deformable balloons
living in it. More specifically, we will focus on a mixture of four constituents: tumour
and host cells, within a porous structure constituted by the extracellular matrix, which
is wet by a physiological extracellular fluid. We will take account of tumour growth,
ECM remodelling and mechanical interaction with the host tissue. Generalizations to
more cell populations or to more ECM constituents will also be discussed.

The main focus of the article is on the interaction forces between cells and ECM,
starting from the experimental evidences presented in Baumgartner et al. [11], in
Canetta et al. [20], and in Sun et al. [47]. The above papers, in fact, study in detail
the attachment/detachment properties of the adhesion sites on the cell membrane. In
[11] the described test consists in gluing a functionalised microsphere at the tip of an
atomic force microscopy (AFM) cantilever. After putting the microsphere in contact
with the cell and allowing enough time to attach well, the cantilever is pulled away at
a constant speed (in the range 0.2–4 µm/s). Adhesion gives rise to the measurement
of a stretching force and a characteristic jump indicating the rupture of an adhesive
bond. Actually, since a sphere binds to many binding sites, it is common to experience
multiple unbinding events occurring at different instants during a single experiment.

Transferring this concept to the macroscopic scale, one may infer that if the pressure
acting on a cell is not strong enough, then the cell moves together with the ECM. It can
deform but adhesion sites are not broken. On the other hand, if an ensemble of cells
is subject to a sufficiently high tension or shear, then some bonds break and new ones
may form. This occurs in particular during growth, when the duplicating cell needs to
displace its neighbours to make room for its sister cells. The qualitative description
above calls for a description of the interaction forces involving the extracellular matrix
that includes viscoplastic phenomena.

We will first deduce a general multiphase model, and then simplify it considerably
in view of the observation that the interactions with the liquid are much weaker than
those involving cells and ECM. Specifically, the simplification consists in that the
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equations describing the evolution of the interstitial pressure and of the liquid flow
can be possibly solved after solving those related to the solid constituents, i.e., cells
and ECM, that do not depend directly on the liquid and pressure evolution. We will
then specialise the model to two cases study: In the former the tumour grows in a
rigid non-remodelling ECM around one or more vessels from which the necessary
nutrients diffuse out, in the latter growth is accompanied by ECM remodelling. One
of the by-products of the second case is the possibility to describe the formation of
fibrotic tissues, namely tissues stiffer than normal that can be felt with a self-test.

In more detail, the paper develops as follows. After this introduction, in Sect. 2 the
general multiphase model is developed, focusing first on the constitutive modelling
of the interaction forces and then on that of the stress tensor. A simplified model is
deduced under the observation and hypothesis that interactions with the liquid are
negligible, if compared, for instance, with cell–ECM interactions. The inclusion of
the diffusion of nutrients and chemicals relevant for growth is also described. Section 3
details the two aforementioned applications, and Sect. 4 finally draws conclusions and
sketches some research perspectives.

2 Multiphase modelling

Soft tissues are made of several cell populations living within a porous structure, the
extracellular matrix, which is wet by a physiological extracellular fluid. In principle,
this system is a rather complicated mixture of many different interacting components.
However, aiming at focusing on the main ingredients of a mathematical model of
tumour growth, we restrict the number of state variables according to the following
assumptions:

Assumption 2.1 [Cell populations] We account for two cell populations, namely
tumour cells and normal healthy cells belonging to the host tissue. We denote by
φt , φh ∈ [0, 1] their volume ratios, respectively.

Assumption 2.2 [Extracellular matrix] We consider the ECM as a whole without
distinguishing its components (collagen, elastin, fibronectin, and so on), though we
are aware that they contribute differently to the mechanical and adhesive properties of
the matrix and have different production and degradation mechanisms. We denote by
φm ∈ [0, 1] the ECM volume ratio.

Assumption 2.3 [Extracellular fluid] We assume that the extracellular fluid, whose
volume ratio is denoted by φ� ∈ [0, 1], fills all interstices of the mixture, so that no
empty space is left within the latter (saturated mixture).

We simply remark that the inclusion of other cell populations, as well as of more
ECM components, is a purely technical matter, which does not affect the basic ideas
underlying the mathematical modelling of the system. We briefly discuss this topic in
Remark 2.4 at the end of the next section, and refer the interested reader to [10] for
more details.
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2.1 Basic equations

Let us introduce the index set C = {t, h, m, �} to identify the components of the
mixture. If α, β ∈ C, it will be sometimes useful in the sequel to use the notations
Cα , Cα,β to denote the index sets C\{α}, C\{α, β}, respectively. In addition, whenever
necessary we will use the letter d for the spatial dimension (d = 1, 2, 3 from the
physical point of view).

The saturation constraint claimed by Assumption 2.3 implies

∑

α∈C
φα = 1. (2.1)

On the other hand, for each of the above state variables one can write a mass balance
equation of the form

∂φα

∂t
+ ∇ · (φαvα) = �α, (α ∈ C) (2.2)

where vα ∈ R
d , �α ∈ R are the velocity and the source/sink term of the constituent

α, respectively. Equation 2.2 implicitly assumes that all constituents of the mixture
have the same (constant) mass density ρ, which equals that of the physiological fluid.
Summing Eq. 2.2 over α and taking Eq. 2.1 into account yields

∇ ·
(

∑

α∈C
φαvα

)
=

∑

α∈C
�α. (2.3)

Following a popular custom in mixture theory, we define the composite velocity vc

of the mixture as the weighted average of the velocities of the constituents:

vc =
∑

α∈C
φαvα. (2.4)

In addition, we introduce the notation

�c =
∑

α∈C
�α, (2.5)

so that Eq. 2.3 becomes

∇ · vc = �c. (2.6)

Equations 2.3 and 2.6 are differential versions of the algebraic saturation constraint
2.1. If it is possible to assume that the mixture is closed, as in the avascular case, or
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for in vitro experiments, so that mass exchanges occur only among its constituents,
then condition

�c = 0 (2.7)

applies, whence ∇ · vc = 0. This result can be regarded as the counterpart of the
incompressibility constraint for a classical continuum. Notice, however, that in spite
of the assumption of constant density for each constituent one is not allowed here to
conclude on the solenoidality of any of the vectors vα .

On the other hand, we remark that in many cases one cannot assume condition
2.7. This is, for instance, the case when external mass sources/sinks are introduced to
describe inflow or outflow processes related to a homogenised vascular or lymphatic
structure within the mixture (Breward et al. [15,17], Franks and King [28]). In this
case, the solenoidality of the composite velocity is definitely lost, hence in the vascular
case Eq. 2.6 must be adopted.

In multiphase models velocity fields are determined by taking into account the
mechanical response of the constituents to the mutual interactions. Specifically, in
describing growth phenomena the inertial effects are negligible, therefore the corres-
ponding terms can be dropped in the momentum equations. By consequence the latter
read

− ∇ · (φαTα)+ φα∇ p = mα, (α ∈ C) (2.8)

where

(i) p ∈ R is introduced as a Lagrange multiplier due to the saturation constraint 2.1
and is then classically identified with the interstitial pressure of the extracellular
fluid;

(ii) Tα ∈ R
d×d is the so-called excess stress tensor of the constituent α, accounting

for the characteristic internal stress of the latter;
(iii) mα ∈ R

d is the resultant of the forces acting on the constituent α due to the
interactions with the other components of the mixture.

More specifically, in the theory of deformable porous media the excess stress tensor
T� of the fluid is usually neglected in order to get Darcy-like laws [49]. This proce-
dure is justified by the fact that Brinkman-like effects have not been pointed out yet.
Consequently, the corresponding momentum equation 2.8 for α = � simplifies as

φ�∇ p = m�. (2.9)

Remark 2.4 In order to take more cell populations into account it is technically suffi-
cient to allow the index α in Eqs. 2.2 and 2.8 to range in a larger index set C. Similarly,
if some of the components of the ECM need to be distinguished explicitly. However, as
far as this second case is concerned we remark that ECM fibres are usually so tangled
that it is reasonable to invoke the constrained mixture hypothesis, which amounts in
essence to assuming that all ECM constituents move with the same velocity vm . This
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way all mass balance equations for the components of the ECM are featured by vm ,
and no extra momentum equation is needed besides

− ∇ · (φmTm)+ φm∇ p = mm . (2.10)

Of course, all constituents of the ECM contribute to the excess stress tensor Tm accor-
ding to their relative proportions, and mm accounts for all interactions involving all
ECM constituents and cell populations [10].

2.2 Interaction forces

The interaction forces mα appearing in Eq. 2.8 can be specialised, according to their
definition, as

mα =
∑

β∈Cα
mαβ,

where mαβ represents the external force exerted on the constituent α by the constituent
β. Clearly, we must have β �= α because internal forces of the constituent α are
accounted for by the stress tensor Tα .

In mixture theory one proves that the sum of the mα’s equals the global momentum
transfer due to mass exchanges produced by phase transitions among the components.
In biological phenomena, however, such a momentum transfer is very small compared
to the magnitude of the interaction forces (see [45]), hence one can say that the mα’s
sum to zero. This is actually not surprising, for they act as internal forces among the
constituents:

∑

α∈C
mα = 0. (2.11)

Here, we further reinforce this condition assuming, consistently with an action–
reaction principle, that

mαβ = −mβα, ∀α, β ∈ C, α �= β. (2.12)

Let us now fix α = � and focus first on the interaction forces between the extracel-
lular fluid and the other constituents of the mixture. Darcy-like laws are obtained by
taking m�β proportional to the relative velocity between the fluid and the constituent
β via a positive definite matrix M�β ∈ R

d×d , i.e.,

m�β = M�β(vβ − v�). (2.13)

It is worth pointing out that M�β depends in general in a nonlinear way on the volume
ratios φ�, φβ of the interacting constituents.
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From Eq. 2.13 we deduce

m� =
∑

β∈C�
M�β(vβ − v�) =

∑

β∈C�
M�βvβ − M�v�, (2.14)

where we have denoted M� := ∑
β∈C� M�β for the sake of brevity. Inserting Eq. 2.14

into Eq. 2.9 we get then the (generalised) Darcy law

∑

β∈C�
M�β(vβ − v�) = φ�∇ p, (2.15)

relating the relative motion of the fluid within the mixture to the local pressure gradient.
Since each M�β , β ∈ C�, is positive definite, so is also M�, thus invertible. From
Eq. 2.15 we obtain then

v� = M
−1
�

⎛

⎝
∑

β∈C�
M�βvβ − φ�∇ p

⎞

⎠. (2.16)

Considering moreover that φ� = 1 − ∑
β∈C� φβ (cf. Eq. 2.1), we see that Eq. 2.16

allows to represent the velocity of the extracellular fluid in terms of the volume ratios
and velocities of the remaining components of the mixture, along with the interstitial
pressure p. Substituting now this expression of v� into Eq. 2.3 we find, after some
standard algebra,

∇ ·
(
φ2
�M

−1
� ∇ p

)
= ∇ ·

⎛

⎝
∑

β∈C�

(
φ�M

−1
� M�β + φβI

)
vβ

⎞

⎠ −
∑

β∈C
�β, (2.17)

where I ∈ R
d×d denotes the identity matrix. In case that condition 2.7 holds, the second

term at the right-hand side of Eq. 2.17 drops and one simply obtains an equation for p,
formally independent of any unknown quantity linked to the flow of the extracellular
fluid.

Let us consider now the interaction forces mth = −mht among cell populations. We
assume that cellular mechanical properties are at most only slightly influenced by the
progression state. Hence, it might be reasonable to suppose that the response of a cell
to the compression by other surrounding cells is independent of the specific pushing
cell population. Experimental investigations on the validity of this hypothesis would
be desirable. From the mechanical point of view, this corresponds to regarding tumour
and host cells as a unique population with the same excess stress tensor, henceforth
denoted by Tφ :

Tφ := Tt = Th . (2.18)

Tumour cells press host cells with a force proportional to ∇ · (φtTφ
)
, and at the same

time are pressed by the latter with a force proportional to ∇ · (
φhTφ

)
. In view of an
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632 L. Preziosi, A. Tosin

integral balance law, these contributions have to be multiplied by the volume ratio of
the population they act upon, with reference to the overall cellular component of the
mixture. Defining

φ := φt + φh, (2.19)

the net interaction force mth is consequently given by

mth = φt

φ
∇ · (

φhTφ

) − φh

φ
∇ · (

φtTφ
)
, (2.20)

so that, owing to Eqs. 2.8 and 2.13, the momentum equations for the cell populations
specialise as

− φα

φ
∇ · (

φTφ

) + φα∇ p = mαm − M�α(vα − v�), (α = t, h). (2.21)

Summing Eq. 2.21 for α = t, h gives the force balance equation for the ensemble
of cells, without distinguishing tumour and host cells and assuming that they respond
in the same way to compression.

Finally, we consider the interaction forces mαm between cells and ECM. We observe
that in principle they depend on the volume ratios of both the ECM constituents and the
cells, and consequently also on the portion of ‘free’ space φ� filled by the extracellular
fluid (recall the saturation constraint 2.1). In particular, they become very large when
φ� → 0, due to the lack of available space. In addition, it is known [23,24,43] that there
is an optimal concentration of ECM favouring cell motility, which then decreases as
the ECM content becomes both smaller and larger. This is due to the lack of substrate to
move on and to the increased number of adhesive links, respectively. The observation
that cells hardly move when there is too few or too much extracellular matrix can be
rendered by saying that mαm’s, α ∈ Cm,�, increase for both small and large φm .

As a first approximation, one can still mimic Eq. 2.13 and assume mαm to be
proportional to the relative velocity vm − vα , which amounts in essence to envisaging
a viscous friction between cells and ECM. Introducing new positive definite matrices
Mαm ∈ R

d×d for α = t, h, one then has

mαm = Mαm(vm − vα), (2.22)

where the Mαm’s depend in turn nonlinearly on the volume ratio φm and possibly also
on φα .

A more accurate modelling of the attachment/detachment process occurring bet-
ween cells and ECM calls however for an alternative form of the interaction terms
mαm . In particular, on the basis of the experiments performed by Baumgartner et al.
[11], Canetta et al. [20], and Sun et al. [47], it can be inferred that to each cell popu-
lation α there corresponds a minimal threshold σαm of the strength of the interaction
force with the extracellular matrix causing the detachment. If |mαm | < σαm then the
interaction is not strong enough and cells remain attached to the ECM. Conversely, if
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|mαm | ≥ σαm they detach and in this case, following some guidelines of viscoplasti-
city, we can recover the idea of proportionality of the force in excess to the relative
velocity vm − vα . This is mathematically expressed by

Mαm(vm − vα) =

⎧
⎪⎨

⎪⎩

0 if |mαm | < σαm

(|mαm | − σαm)
mαm

|mαm | if |mαm | ≥ σαm
(2.23)

or, in a more compact form, by

Mαm(vm − vα) =
(

1 − σαm

|mαm |
)+

mαm, (2.24)

where (·)+ denotes the positive part of the expression in parenthesis. This relation
defines implicitly mαm in terms of the relative velocity vm − vα . Notice however that,
unlike the previous viscous case (cf. Eq. 2.22), such a definition is univocal only for
|mαm | ≥ σαm , when Eq. 2.24 yields indeed

mαm =
(

1 + σαm

|Mαm(vm − vα)|
)

Mαm(vm − vα). (2.25)

In particular, it can be observed that Eqs. 2.22 is recovered from 2.24 or Eq. 2.25 in
the limit case σαm = 0. We remark that σαm is a function of the ECM volume ratio,
σαm = σαm(φm), as the number of adhesion bonds depends on the density of ECM.

Equations 2.16, 2.21, and 2.24 allow in principle to express the velocity fields v�,
vt , vh in terms of the internal and external stress on the corresponding components of
the mixture, as well as of the velocity vm of the extracellular matrix.

Concerning the latter, we remark that its momentum equation can be straightfor-
wardly replaced by the analogous equation for the whole mixture, which is obtained
summing Eqs. 2.8 over α ∈ C while taking Eqs. 2.1 and 2.11 into account:

− ∇ · (
φTφ + φmTm

) + ∇ p = 0. (2.26)

2.3 Stress tensors

As usual, the momentum equations above call for the specification of the constitutive
laws describing the response of the cells and the extracellular matrix to stress. However,
unlike the inert matter dealt with by classical continuum mechanics, living materials
continuously change, indeed ECM is frequently remodelled and cells undergo prolife-
ration and death processes during their evolution. There is then a conceptual difficulty
in describing tumours as solid masses, for this would force to identify a relationship
between stress and deformation. This ultimately requires a reference configuration,
and therefore a Lagrangian treatment of the system. Such a key issue has been recently
addressed for tumour and tissue growth in several papers (see e.g., [1–4,33,34,46]),
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resorting to the idea of evolving natural configuration, and will not be investigated in
detail here.

Of course, the basic question is to understand whether cells and ECM behave like
solids, like (possibly viscoelastic) liquids, or like viscoplastic bodies. In this respect,
some tests on the mechanical properties of ECM constituents such as elastin and
collagen suggest that in the absence of remodelling the latter can be regarded as elastic
compressible materials with different elastic features [12,29,32,41]. More difficult is
to establish from both the conceptual and the experimental point of view whether the
ensemble of cells behaves like a solid or a liquid, how important viscoelastic effects
are, if and when plastic deformation occurs, and so on.

Clearly, the above-mentioned problem of the reference configuration is circumven-
ted if tumour cells are modelled as a fluid, for in such a case it is possible to look at
them from the Eulerian point of view and to describe cell stress in terms of volume
ratios and deformation rates. In this paper, we confine ourselves to this kind of consti-
tutive equations, following the most popular custom in multiphase models of tumour
growth. We simply remark here that actually the ensemble of cells is most likely not
to behave like a liquid. However, even using the just stated constitutive model, the
‘cellular liquid’ lives within a solid structure given by the extracellular matrix, so that
finally the whole mixture would behave like a viscoelastic solid.

The easiest constitutive equation for the cellular matter is

Tφ = −	(φ)I, (2.27)

where 	 : [0, 1] → R is a nonlinear pressure-like function depending on the overall
cell volume ratio φ = φt + φh , whose positive values indicate compression. Equa-
tion 2.27 refers essentially to an elastic fluid. As a possible extension, one might want
to consider a viscous contribution of the form

Tφ = 2µDφ + (−	(φ)+ λ∇ · vφ)I, µ, λ > 0

where Dφ = Sym(∇vφ) is the deformation rate tensor based on the ‘reduced’ com-
posite velocity vφ = φt vt + φhvh (in the sense that it is restricted to the cellular
component only). Nevertheless, we refrain from dealing with viscoelastic constitutive
relations since, despite their importance in accounting for mechanical properties of
tissues, viscoelastic behaviours are less influential on cell growth phenomena. Indeed,
the characteristic time of the viscous response of biological tissues is of the order of
tens of seconds, thus by far much lower than that needed for cell duplication, which
ranges instead from nearly one day up to several days (see e.g., Forgacs et al. [25]).
For this reason, viscoelastic effects fade away by the time a cell duplicates.

As a further hint toward intercellular stress modelling, we simply mention that in
principle the same argument used in Sect. 2.2 to describe the adhesive mechanism
occurring between cells and ECM, which from the physical point of view involves
integrins, may be reproposed for cell–cell interaction, even if the latter involves dif-
ferent proteins such as cadherins. However, we refrain from doing that here, and refer
instead to [4] for additional details on more complex constitutive relations.
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2.4 Reduced equations

In the momentum equations 2.8 it is often useful to distinguish the contributions of the
terms related to the pressure gradient and to the interaction with the extracellular fluid.
In most cases one can assume that the magnitudes of the interaction forces involving
the liquid mα� and ∇ p for α ∈ C� are negligible with respect to those related to the
interaction among cells and between cells and ECM, i.e., mαβ for α ∈ C�, β ∈ Cα,�:

φα|∇ p|, |mα�| = o
(|∇ · (φαTα) |, |mαβ |

)
, (α ∈ C�, β ∈ Cα, �), (2.28)

so that the main momentum balance reduces to

− ∇ · (φαTα) =
∑

β∈Cα,�
mαβ, (α ∈ C�). (2.29)

This assumption has several interesting implications on the resulting mathematical
models.

First of all, it should be noticed that now Eqs. 2.16 and 2.17 live in principle a life
apart, since their integration is a by-product of the solutions of the other equations of the
model. This is certainly true for a closed mixture in view of condition 2.7. Depending
on the specific form of the source/sink terms�α , the same possibly applies also to other
types of mixtures. Therefore one might recover a posteriori the interstitial pressure p
and the velocity v� of the extracellular fluid, after solving the coupled system of Eqs.
2.2 and 2.29 for α ∈ C�. Regarding the latter, we specifically observe that Eqs. 2.21
become

− φα

φ
∇ · (

φTφ

) = mαm, (α = t, h), (2.30)

while summing Eq. 2.29 over α ∈ C� and recalling 2.12 yields

∇ · (
φTφ + φmTm

) = 0, (2.31)

which represents the reduced counterpart of the momentum balance equation 2.26 for
the whole mixture.

Second, in this reduced framework Eqs. 2.22 and 2.24 can be effectively used to
obtain explicit expressions for the velocities vt , vh in terms of the velocity vm and of
the internal stress of the cellular matter. Thanks to Eq. 2.30, if we define Kαm := M

−1
αm

we have indeed

vα − vm = φα

φ
Kαm∇ · (

φTφ

)
, (α = t, h) (2.32)

in case of viscous friction between cells and ECM (cf. Eq. 2.22), or

vα − vm =
(
φα

φ
− σαm

|∇ · (φTφ

) |

)+
Kαm∇ · (

φTφ

)
, (α = t, h) (2.33)
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if a more sophisticated viscoplastic interaction is accounted for. Again, we notice that
Eq. 2.32 is a special case of Eq. 2.33 with σαm = 0.

2.5 Advection and diffusion of chemicals

A crucial role in tumour growth is played by all chemicals, namely nutrients, growth
factors, chemotactic factors, and so on, dissolved in the liquid component. They diffuse
and are advected through the mixture by the extracellular fluid. In addition, they are
either absorbed or produced by the cells, that make use of them in order to carry out
some vital functions such as proliferation, growth or intercellular communication.

For the sake of simplicity, let us focus on just one species of chemical and let us
denote by cα ∈ R, α ∈ C, its concentration per unit volume within the constituent α
of the mixture. The generalisation of the result we are going to state to more chemi-
cal species is straightforward, requiring in essence the same ideas up to some more
complicated mathematical notation. It is worth pointing out that in the present context
chemicals are not regarded as components of the mixture. However, the concentration
cα has to be related to the volume ratio φα occupied by the constituent in which it
is present, so that finally the relevant entities for an overall balance over the whole
mixture are the reduced (or weighted) concentrations Cα = φαcα . For these quantities
one can write the following set of reaction–advection–diffusion equations

∂

∂t
(φαcα)+ ∇ · (φαcαvα) = ∇ · (Dα∇cα)+ γα − δαcα, (α ∈ C) (2.34)

where

(i) Dα = Dα(φα) is the effective diffusion tensor, characteristic of the constituent
α, which accounts for diffusion of the chemical in the constituent α due to
Brownian motion as well as for molecules dispersion due to the porous structure
of the mixture;

(ii) γα > 0 is the production/source term in the constituent α, which may either
depend or not on the other state variables of the system (including e.g., the
volume ratios φt , φh of the cells) according to the specific production mecha-
nisms of the chemical at hand. For instance, nutrients like oxygen and growth
activators/inhibitors are usually not produced by the components of the mixture
but are delivered from outside, while chemotactic factors are released by the
cells during their motion to trigger intercellular signalling (Lanza et al. [38]);

(iii) δα > 0 is the degradation/uptake rate, linked either to the solubility of the
chemical in the constituent α or to its absorption by the latter. Notice that δα
might in turn depend on the volume ratio φα , especially when it represents an
absorption rate. Conversely, when it plays the role of a degradation rate, it is
usually assimilated to a constant related to the characteristic degradation time
of the chemical at hand.

Under the assumption that the concentrations cα are the same in all constituents,
i.e., cα ≡ c, we can sum Eqs. 2.34 over α ∈ C to get an equation satisfied by c over the
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whole mixture. Recalling in particular the saturation constraint 2.1 and the definition
of the composite velocity 2.4 we find

∂c

∂t
+ ∇ · (cvc) = ∇ · (D∇c)+ γ − δc, (2.35)

where we have let D := ∑
α∈C Dα , γ := ∑

α∈C γα , and δ := ∑
α∈C δα . Specifically,

we observe that for closed mixtures the composite velocity is divergence-free, hence
in such a case the advection term at the left-hand side of Eq. 2.35 gives rise to pure
transport ∇ · (cvc) = vc · ∇c.

We remark that in most cases the assumption above is only a first order approxima-
tion. Indeed, taking the concentration of chemicals independent of the constituents of
the mixture in which they are microscopically diffusing may not be satisfactory, parti-
cularly for chemicals with high molecular weight, such as drugs, or showing different
affinities with the various components of the mixture.

Equation 2.35 can be further manipulated for those chemicals for which homoge-
neous and isotropic diffusion dominates over advection. Specifically, the advection
term ∇ · (cvc) can be dropped, and the evolution of the concentration c can be duly
described by the following reaction–diffusion equation:

∂c

∂t
= D
c + γ − δc, (2.36)

which is the one classically used in many models but requires the validity of the
assumptions above.

3 Tumour growth in a rigid ECM

Probably the most simplifying hypothesis to generate specific models of tumour growth
from the general theory developed in the previous section is to consider the ECM as a
rigid scaffold, within which cells and extracellular fluid move and evolve in time. From
the macroscopic point of view, this implies that the whole tissue behaves like a rigid
porous medium. Any possible external action on it is sustained by the extracellular
matrix, while cells and extracellular fluid in the core of the tissue stand no external
stress imposed on the mixture from its boundary.

Specifically, since possible rigid motions of the ECM are irrelevant in the study of
growth processes, it is not restrictive to assume

vm ≡ 0 . (3.1)

In view of this, no momentum equation for the extracellular matrix is needed, and the
stress tensor Tm has to be regarded formally as a Lagrange multiplier to satisfy the
constraint 3.1. The relevant mass and momentum balance equations for the components
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of the mixture turn out to be then

∂φα

∂t
+ ∇ · (φαvα) = �α, (3.2)

−φα
φ

∇ · (
φTφ

) = mαm, (3.3)

∂φm

∂t
= �m (3.4)

for α = t, h. Notice in particular that, owing to Eqs. 2.33 (or Eq. 2.32 in the special
case σαm = 0) and 3.1, the cell momentum equation 3.3 along with the constitutive
relation 2.27 yields

vα = −
(
φα

φ
− σαm

|∇(φ	(φ))|
)+

Kαm∇(φ	(φ)). (3.5)

Substituting this into Eq. 3.2, we get a pair of single equations for the cellular com-
ponent:

∂φα

∂t
− ∇ ·

(
φα

(
φα

φ
− σαm

|∇(φ	(φ))|
)+

Kαm∇(φ	(φ))
)

= �α, (α = t, h), (3.6)

which in case of viscous friction between cells and ECM (formallyσαm = 0) specialise
as

∂φα

∂t
− ∇ ·

(
φ2
α

φ
Kαm∇(φ	(φ))

)
= �α, (α = t, h). (3.7)

It is worth mentioning that if the two cell populations occupy different regions of
space and are not mixed, then Eqs. 3.5 and 3.6 can be further simplified because in
each region only one population is found, hence φ = φα . Specifically, consider the
situation in which a spatial region Q ⊂ R

d can be initially divided into two subregions
�t (0) and �h(0), such that �t (0) ∪�h(0) = Q, occupied by tumour and by healthy
host cells, respectively. Then φt = 0 in �h(0) and φh = 0 in �t (0). As we will
see, the model is such that the tumour cells will be always confined into �t (t) and
the host population always in �h(t). However, the two cell populations interact by
exerting mutual stresses on the (d − 1)-dimensional interface S(t) = �t (t) ∩ �h(t)
separating their respective domains. It is plain that �t (t) and �h(t), as well as the
interface S(t), evolve geometrically in time according to the growth of the tumour
mass within the surrounding tissue. By pushing normal cells away to gain space for
growing, tumour cells compress the region �h(t) and simultaneously enlarge �t (t).
Conversely, when they die for an insufficient delivery of nutrient�t (t) locally shrinks
and correspondingly �h(t) expands. We refer the reader to Appendix A for a short
discussion of the method used in addressing the simulation of such a system.
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One then has

∂φ

∂t
− ∇ · (φ I(φ; σαm)Kαm∇(φ	(φ))) = �α in �α(t), (α = t, h), (3.8)

where

I(φ; σαm) :=
(

1 − σαm

|∇(φ	(φ))|
)+
. (3.9)

The velocity of the cells on the two sides of the interface S(t) must be the same,
i.e.,

[[I(φ; σαm)Kαm∇(φ	(φ)) · n]] = 0, (3.10)

where n is the normal to the interface and [[·]] denotes the jump across it. The interface
S(t), which is a material surface for the cellular matter, moves then with their common
velocity:

dx(t)
dt

· n = v(x(t), t) · n, ∀ x ∈ S(t) (3.11)

where, for instance,

v = −I(φt , σtm)Ktm∇(φt	(φt )). (3.12)

In addition, across the normal direction to S(t) continuity of cell stress and of
nutrient flux has to be imposed, according to the classical theory of continuum mecha-
nics:

[[φTφn]] = 0, [[∇c]] · n = 0. (3.13)

Recalling Eq. 2.27, we see that the continuity of the normal cell stress is actually
equivalent to [[φ	(φ)]] = 0 and, if one assumes that φ	(φ) is a continuous monotone
function of φ, further to

[[φ]] = 0, (3.14)

namely to the continuity of the cell volume ratio across S(t). Finally, continuity of the
concentration c is imposed:

[[c]] = 0. (3.15)

3.1 Tumour cords

As a first application we consider the case of a capillary surrounded by a tissue within
which an aggregate of tumour cells has formed. The latter can survive and proliferate
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thanks to some nutrients (e.g., oxygen) carried by the blood, that penetrate from the
vessel wall and diffuse into the tissue. For this reason, the tumour tends to develop
along the blood vessel, giving rise to a structure called tumour cord due to its particular
spatial geometry.

In the specialised literature, the papers by Bertuzzi et al. [13,14] have originated
a relevant thread of mathematical models of tumour cord growth. However, they use
only partially the theory of multicomponent systems, relying mainly on some parti-
cular kinematic relations deduced under suitable assumptions on the geometry of the
system (namely, cylindrical symmetry of the cord around the blood vessel). In this
section, working under the hypothesis of rigid ECM, we want to apply instead the
theory previously developed to deduce a multiphase model for the growth of a tumour
cord in generic multidimensional domains, taking into account both the presence of
several components in the system and their mutual mechanics. A minimal version of
this model, focusing on two-dimensional development of a cord structure along the
longitudinal axis of a blood vessel, is introduced and analysed from the qualitative
point of view in [48].

The whole system is regarded as a saturated mixture of cells, extracellular fluid and
extracellular matrix, the latter being a rigid non-remodelling scaffold of zero velocity
and constant volume ratio φm = 1 − φ∗, φ∗ ∈ (0, 1). Equation 3.4 can therefore be
disregarded in the present context. Moreover, it is assumed that initially tumour cells
and host cells occupy different spatial regions, which, as stated in the previous section,
causes the former to be always confined into �t (t) and the latter into �h(t).

As a sample case, we assume, like in [21], that tumour cells and normal cells
only differ in the mechanism that regulates their proliferation and death. This is a
good approximation in the initial stages of tumour growth, when contact inhibition is
more important than differences in motility like those considered in [22]. From the
modelling point of view, the consequence is that in Eq. 3.8 we take σtm = σhm =:
σm , Ktm = Khm =: KmI for a positive parameter Km , though at later stages these
parameters may be different for different clones, and phenomena like mesenchymal
transition, differential motility, and formation of metastasis come into play.

Regarding the source/sink terms �α , we consider that in �t (t) tumour cells are
mainly concerned with proliferation or death on the basis of the local availability of
oxygen. In addition, following [21], we want to include also phenomena like contact
inhibition of growth, as well as the development of hyperplasia as a consequence of
the loss of tissue compression responsiveness by the cells. In more detail, Chaplain
et al. [21] focus on a characterization of normal and abnormal cells based on the ability
of the cells themselves to sense the stress exerted by the surrounding environment.
They assume that a correct detection of the compression state normally causes a cell
to reproduce only if it senses there is enough free space in its neighbourhood. In case
of excess of stress, normal cells enter a quiescent survival state, whence they possibly
reactivate if, for instance, some surrounding cells die. Conversely, a misperception of
the stress state, due to something wrong in the cascade of intracellular biochemical
events characterising the mechano-transduction pathway, may lead to cell replication
even when there is actually insufficient free space for new cells. This mechanism,
which is easily understood to give rise to hyperplasia, often underlies the formation
and development of avascular tumours. Therefore, we let
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�t = �t (φt , c) =
[
γt

(
c

c0
− 1

)
H(	∗

t −	(φt ))− δt H(	(φt )− 	̄t )− δ′t
]
φt

in �t (t), (3.16)

where H is the Heaviside function:

H(s) =
{

0 if s ≤ 0

1 if s > 0,
(3.17)

γt > 0 is the growth rate of tumour cells, and c0 > 0 represents the critical threshold
in the nutrient concentration below which cells starve and die and above which they
instead duplicate if they feel to be not too compressed, i.e., if 	(φt ) < 	∗

t . The last
two terms in parenthesis in Eq. 3.16 are related to apoptosis. Specifically, the first
one reflects the fact that high compression levels, like those produced by growing
tumour cells, may induce apoptosis (see e.g., Ambrosi and Mollica [2,3]). Hence,
	̄t > 0 represents the maximum stress that tumour cells can sustain without under-
going apoptosis, and δt > 0 is the stress-induced apoptotic rate. Finally, δ′t is the
physiological apoptotic rate.

If the function 	 is one-to-one, and if φ̄ and φ∗
t denote the values of φt such that

	(φ̄t ) = 	̄t and 	(φ∗
t ) = 	∗

t , respectively, then Eq. 3.16 can be duly rewritten as

�t = �t (φt , c) =
[
γ

(
c

c0
− 1

)
H(φ∗

t − φt )− δt H(φt − φ̄t )− δ′t
]
φt in �t (t).

(3.18)

A similar equation can be set in �h(t) for the host tissue, with t replaced by h.
An additional customary assumption on 	 is the existence of a value φ0 such that

	(φ0) = 0, identifying a stress-free state of the cells. For volume ratios lower than φ0
the stress is negative, denoting tension in the cell population, while for volume ratios
greater than φ0 it is positive, denoting compression of the cell tissue. In view of this,
the apoptosis threshold φ̄α has to satisfy in particular φ̄α > φ0 for α = t, h.

Finally, we join to Eq. 3.8 the diffusion of the nutrient in the tissue

∂c

∂t
= D
c − (βtφt + βhφh)c (3.19)

where βt , βh > 0 are phenomenological parameters related to the nutrient uptake
rate by tumour and host cells. Notice that Eq. 3.19 is a particular case of Eq. 2.36
with γ = 0 (i.e., no production of oxygen by the cells) and δ = βtφt + δhφh (i.e.,
δ = δt + δh with δα = βαφα , α = t, h).

In addition to the interface conditions 3.10, 3.13, 3.14, 3.15, and to the evolution
equation for the moving interface 3.11, the model 3.6 has to be supplemented by
suitable boundary conditions. As their formal statement depends on the configuration
of the system, we simply outline here, mainly at a qualitative level, the basic general
ideas to be precisely formulated from time to time according to the specific geometrical
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setting at hand. In doing so, we denote by n any outward normal unit vector to be
conveniently referred to the boundary under consideration.

(i) At the vessel wall we impose no detachment of cells. In view of Eq. 3.5 this
amounts to

− I(φ; σm)Km∇(φ	(φ)) · n = 0. (3.20)

Concerning the nutrient, we prescribe a Dirichlet boundary condition of the form

c = cb (3.21)

where cb > 0 denotes the characteristic oxygen concentration carried by the
blood. If more than one vessel is present, then conditions 3.20, 3.21 have to be
prescribed at each boundary representing a vessel wall.

(ii) The part of the outer boundaries not occupied by capillaries serve uniquely to
confine geometrically the domain of the problem. We regard them as sufficiently
far in the host tissue to be unaffected by the dynamics of the growing tumour
cords. Consequently, we prescribe there an unstressed cell field with zero flux
of nutrient

	(φ) = 0, ∇c · n = 0. (3.22)

Figure 1 describes how a tumour mass, initially located at the intersection bet-
ween two capillaries coinciding with the bottom and the left edge of the domain Q
(Fig. 1a), grows along them. In the first stages, the host tissue is well nourished by
the capillaries (Fig. 1b) but when the tumour cord starts growing an hypoxic region
forms. In particular, cells closer to the capillaries have enough nutrient and proliferate,
while those farther away starve because of the lack of oxygen due to the eagerness
of tumour cells (Fig. 1d). The balance between these tendencies results in that away
from the propagating fronts the thickness of the cord is nearly constant and steady,
whereas its heads move forward as they are mostly made of proliferating cells. Notice
that the largest densities of cells are, in fact, at the heads and at the capillary junction
(Fig. 1c). In principle, a similar situation could be reproduced in vitro by allowing
nutrients to diffuse only through part of the boundary of, say, a Petri dish, or by gro-
wing cells around cylindrical porous membranes mimicking the capillaries, immersed
in a three-dimensional gel.

Figures 2 and 3 look at the formation of tumour cords around three capillary sections.
In particular, Fig. 2 describes the evolution of the cell volume ratio and Fig. 3 that
of the oxygen concentration. The tumour starts growing from the capillary on the
right, keeping initially an almost circular shape (Fig. 2a). It can be noticed that, during
growth, host cells on the left of the domain are still well nourished, as they do not
consume much oxygen, while those on the top-right corner are in hypoxia (Fig. 3a).
Before reaching the limit radius, characterised by balance between proliferation and
death of cells, the tumour boundary approaches another capillary, and some cells begin
to grow toward it (Fig. 2b, c). Upon reaching it (Fig. 2d), the tumour coopts the other
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Fig. 1 Evolution of the cell volume ratio (left) and of the nutrient concentration (right) along two capillaries
coinciding with the horizontal and vertical axes y = 0 and x = 0, respectively (thicker edges of the domain).
The white line defines the interface S(t). Values range in the interval [0.75, 0.77] for the cell volume ratio,
and in the interval [0.66, 1] for the nutrient concentration

vessel, forming a tumour cord whose profile reminds the number 8 (Fig. 2e). The same
does not happen for the lower vessel, because it is too far.

Figures 4 and 5 repeat the same simulation for closer vessels. In this case, also the
third vessel is coopted (Fig. 4d), and the tumour is eventually all vascularised.

More details on the simulations can be obtained looking at the Supplemental
material.

3.2 ECM remodelling and fibrosis

As a second example, following [21] and [30], we want to describe by the gene-
ral modelling framework derived in the previous sections the formation of a fibrotic
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Fig. 2 Evolution of the cell volume ratio around three blood vessels at successive time instants. The white
line defines the interface S(t). Values range in the interval [0.75, 0.77]
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Fig. 3 Evolution of the nutrient concentration around three blood vessels at successive time instants. The
white line defines the interface S(t). Values range in the interval [0.53, 1]
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Fig. 4 Evolution of the cell volume ratio around three blood vessels at successive time instants. Vessels
are now closer than in Fig. 2. The white line defines the interface S(t). Values range in the interval
[0.75, 0.77]

tumour [36,37,39,40,42]. In order to do that, we need to account for continuous pro-
duction of matrix degrading enzymes (MDEs) and remodelling of (rigid) extracellular
matrix by both normal and tumour cells. Since the amount of ECM present in the
tissue plays a leading role in determining the overall stress on the cells, ECM evo-
lution cannot definitely be disregarded in the present context. A massive production
of abnormal ECM, triggered by a large population of abnormal cells, induces the for-
mation of stiffer fibrotic tissue, whose dynamics is described as a by-product by the
model.

A key parameter of the model is the overall volume ratio ψ occupied by cells and
ECM:

ψ = φh + φt + φm = 1 − φ�, (3.23)
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Fig. 5 Evolution of the nutrient concentration around three blood vessels at successive time instants.
Vessels are now closer than in Fig. 3. The white line defines the interface S(t). Values range in the interval
[0.71, 1]

which indirectly measures the amount of free space locally available, and can therefore
be used to account for the stress exerted by the environment on the cellular matter. In
particular, the Authors of [21] use a stress–volume ratio relationship for the cells of
the form

	(ψ) = E(1 − ψ0)

(
ψ − ψ0

1 − ψ

)+
, (3.24)

where ψ0 ∈ (0, 1) identifies the stress–free volume ratio (	(ψ0) = 0) and E is a
kind of Young modulus for moderate stress. Notice that 	(ψ) = 0 for ψ ∈ [0, ψ0],
meaning that in a diluted mixture cells neither get in touch with each other nor stand
external loads by the surrounding environment. On the contrary, 	(ψ) > 0 for ψ ∈
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(ψ0, 1) with	 → +∞ when ψ → 1−, i.e., when φ� → 0+. Hence for high packing
levels cells experience compression which increases indefinitely as the solid phase of
the mixture tends to occupy the whole available space.

Equation 3.24 can be regarded to some extent as a generalisation of Eq. 2.27 (where
we recall thatφ = φh+φt ) for a cell stress function depending also on the concentration
of extracellular matrix. However, we point out that the dependence of the internal stress
of a phase (in this case, the cellular phase) on one or more state variables related to
other phases (here, the ECM volume ratios) is not common in classical mixture theory
and need be quantified experimentally.

In this example, we use Eq. 3.6 with the following source/sink terms, which take
natural death and stress-dependent duplication of cells into account:

�α = �α(φα, ψ) = [
γαHε(ψ − ψα)− δα

]
φα. (3.25)

In Eq. 3.25, Hε is a continuous mollifier of the step function satisfying

Hε(s) =
{

1 if s ≤ 0

0 if s > ε.
(3.26)

The parameter ε > 0 fixes the thickness of the transition between Hε(s) = 1 and
Hε(s) = 0, hence it controls the rapidity of the on/off switch in cell reproduction. The
threshold ψα > ψ0 determines instead the maximum packing level sustainable by the
cells of the population α before sensing a reduction in the surrounding free space and
eventually switching duplication off. Since the cell stress 	 (cf. Eq. 3.24) is a mono-
tonic function of the overall volume ratio ψ , this corresponds to saying that a stress
threshold	α > 0 exists, with	α = 	(ψα), such that cell replication is promoted for
	 ≤ 	α and progressively inhibited for 	 > 	α . Different sensitivity of tumour and
host cells to mechanical cues, and in particular misperception of compression by the
former, is translated in the present context as ψt ≥ ψh . Finally, we assume the same
reproduction and death rates γα, δα > 0 for both cell populations, meaning that only
stress perception is different between them.

Concerning the extracellular matrix, we assume that it is globally remodelled by
cells and degraded by MDEs, whose concentration is denoted by e, so that in 3.4 we
specialise the right-hand side as

�m = µt (ψ	(ψ))φt + µh(ψ	(ψ))φh − νeφm, (3.27)

where µα , α = t, h, is the possibly stress-dependent ECM production rate by the cell
population α, and ν > 0 the specific degradation rate by MDEs.

As usual, matrix degrading enzymes are not included among the components of the
mixture, but are regarded instead as macromolecules that diffuse in the extracellular
fluid without occupying space. For them, the following reaction–diffusion equation is
proposed:

∂e

∂t
= D
e + πh(ψ	(ψ))φh + πt (ψ	(ψ))φt − e

τ
, (3.28)
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where consumption is simply due to chemical decay with characteristic time τ > 0,
while production is operated by cells at possibly stress-dependent rates πh, πt .

Equations 3.8, 3.27 and 3.28, along with Eqs. 3.24, 3.25 and 3.26, completely define
the mathematical model that we summarise here for the sake of completeness:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂φt

∂t
= ∇ ·

(
φt

(
1 − σtm

|∇(φ	(φ))|
)+

Ktm∇(φ	(φ))
)

= [
γt Hε(ψ∗

t − ψt )− δt
]
φt ,

∂φh

∂t
= ∇ ·

(
φh

(
1 − σhm

|∇(φ	(φ))|
)+

Khm∇(φ	(φ))
)

= [
γh Hε(ψ∗

h − ψh)− δh
]
φh ,

∂φm

∂t
= µt (ψ	(ψ))φt + µh(ψ	(ψ))φh − νeφm ,

∂e

∂t
= D
e + πh(ψ	(ψ))φh + πt (ψ	(ψ))φt − e

τ
.

(3.29)

No sort of nutrients are included in the dynamics of the system, since the focus is
on the role of compression and stress on tumour invasion. From the physical point
of view, this may correspond to the assumption that nutrients are always abundantly
supplied to the cells according to their needs.

Figure 6 shows the evolution of a tumour originating from one of the two bones,
ulna and radius, in the lower arm. As nutrients are not considered in this model and
cells are assumed to be always abundantly nourished, no nutrient-limited dimension is
observed. The tumour will then grow indefinitely. Looking closely at the line defining
the interface between tumour and host tissue, one can notice the compression of the
host tissue, while away from the interface the cell volume ratio is nearly constant
(Fig. 6d).

Figure 7 focuses on the distribution of ECM, initially assumed homogeneous over
the domain. The formation of extracellular matrix in excess to the physiological value
closely follows the formation of the tumour. The amount of ECM increases in this
numerical experiment from 20 to 30%. In the model, the ECM is supposed to be rigid.
If this assumption is released, such an increase of ECM would cause an increase of
almost one order of magnitude in tissue rigidity [30].

More simulations are given in the Supplemental material.

4 Possible theoretical and experimental developments

The mathematical model of a solid tumour illustrated in the present paper develops
on the basis of three main observations. First, tumour cells duplicate in a tissue cha-
racterised by the presence of other host cells, a deformable extracellular matrix, and
extracellular liquid. Second, during the evolution cells duplicate, reorganise and
deform. Third, tumour cells are bound to the extracellular matrix through adhesion
molecules, mainly integrins, that have a limited strength, which has been recently the
aim of some experimental investigations. On the basis of these experimental evidences,
it is proposed that there exists a threshold condition below which the ensemble of cells
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Fig. 6 Evolution of the cell volume ratio at successive time instants in the cross section of a lower arm.
The small circles represent blood vessels, whereas the bigger holes in the domain correspond to the two
bones in the arm, the ulna and the radius. Values range in the interval [0.5, 0.63]

stick to the extracellular matrix and move with it, and above which it partially detaches
and features a relative motion with respect to the extracellular matrix. This new concept
is embedded in a multiphase mathematical model with several constituents.

Actually, the model can be easily generalised to even more complex configura-
tions. As an example, one may detail the cell populations (endothelial cells, epithelial
cells, fibroblasts, macrophages, lymphocytes), or distinguish different tumour clones
characterised by relevant differences in their behaviour (for instance, to stay with the
focus of this article, differences in cell–ECM adhesiveness), or include the different
phases of the cell cycle, i.e. G0, G1, G2, in view of the application of the model to the
study of possible treatments. All the generalisations above may give rise to interesting
applications and deserve further studies. For instance, different cell adhesiveness will
certainly influence the motion of cells, inducing differential motility and affecting the
diffusion of tumour metastases. A similar problem is addressed in [22].

From the mechanical point of view, it would be interesting to extend the model
presented here by including cell-to-cell adhesion mechanisms. In fact, using concepts
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Fig. 7 Evolution of the ECM volume ratio at successive time instants in the cross section of a lower arm.
The small circles represent blood vessels, whereas the bigger holes in the domain correspond to the two
bones in the arm, the ulna and the radius. Values range in the interval [0.18, 0.31]

similar to that proposed here to describe cell–ECM adhesion, one can infer that if an
ensemble of cells is subject to moderate stresses, then cells stay attached, may deform
and recover all the deformation elastically (or viscoelastically). On the other hand, in
case of sufficiently high tension or shear, some bonds break and some others form. This
kind of phenomenology suggests the existence of a yield stress and therefore requires
the use of a plastic or viscoplastic deformation formalism in the continuum modelling
of solid tumours, as well as of the concepts of evolving natural configurations [4].

The main novelty presented in this paper consists in the introduction of a simple
way to model the fact that cells are attached to the extracellular matrix and that this
adhesion force has a limited strength. Of course, some effort need to be done from the
experimental point of view in order to measure and quantify the role of adhesion.

Some information can already be obtained from the works done by Baumgartner et
al. [11], Canetta et al. [20], and Sun et al. [47]. Unfortunately, the difficulty in using
these data consists in upscaling microscopic measurements to macroscopic scale, i.e.,
in transferring information obtained on single bonds to mechanical properties like
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yield stress or elastic moduli. In addition, the experimental setups used in the above-
mentioned papers can be classified as uniaxial tests. On the other hand, it would be
desirable to have some data on the response to shear, possibly on ensembles of cells or
on cells in ECM. In this respect, very recently Iordan et al. [35] tested the response of
cell suspensions to shear using a classical plate-and-plate rheometer. Using Chinese
hamster ovary cells, they proved the existence of a yield stress for volume ratios
higher than φ = 0.4. This is consistent with the concept proposed in this paper.
Still more experiments in this direction are needed, also interfering with the adhesion
molecules, for instance, modifying the anchorage mechanism, or using antibodies of
the extracellular domain of the adhesion molecules. These experiments would be very
important to understand the mechanics underlying the diffusion of metastases.

We have applied the model, which at a first glance may appear rather complex,
to some test cases, showing its applicability also to non trivial two-dimensional geo-
metries. In the first set of simulations, cells were virtually grown around capillaries
which just act as sources of nutrients. It would be interesting to devise experiments in
which nutrients can diffuse in the apparatus only from part of the domain, e.g., from
one of its edges, or from two adjacent edges as in Fig. 1, or even from some sources
placed inside the in vitro apparatus, in order to mimic situations like those presented in
Figs. 2, 3, 4 and 5. For instance, one may put semi-permeable membranes, connected
to proper reservoirs, in a collagen gel. Alternatively, one can use calcium alginate
beads, that are widely employed for the slow release of water soluble chemicals and
that can therefore be used as sources of nutrients.

In this respect, the model can be used to simulate many practical situations in
which tissue and cell–ECM interactions play a relevant role. For instance, interesting
situations to be addressed are, among others, vessel collapse due to tumour growth,
capsule formation and degradation, tissue invasion related to changes in the adhesion
mechanisms, cell compartmentalisation due to strong inhomogeneities in the ECM
distribution or to the presence of porous membranes. Actually, this last phenomenon
cannot be described by simple fluid-like models. In fact, if the cellular constituent is
treated as a viscous fluid living in a porous ECM scaffold, sooner or later it will flow
through it. On the contrary, taking adhesion and yield-like behaviours into account
would allow to keep the ensemble of cells on one side of the membrane, or to describe
the displacement of the membrane due to the growth of the cell mass within it, and
eventually its rupture due to both mechanical pressure and chemical degradation.
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Appendix A: The level set method

In this appendix, we concisely report about a mathematical technique that can be
profitably used to address numerically the equations of a multiphase model of tumour
growth. In particular, we concentrate on the case in which two cell populations are
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present, that remain segregated and interact through a material boundary S(t), like in
the applications discussed in this paper.

To be specific, let us consider the equation

∂φα

∂t
+ ∇ · (φαvα) = �α in �α(t) (α = t, h), (4.1)

where the velocity vα may be given, for instance, by Eq. 3.5. The subdomains �t (t),
�h(t) evolve in time according to the mutual dynamics of tumour and host cells,
however the model is conceived so that they never overlap, sharing only the boundary
S(t)which separates the tumour mass from the healthy host tissue (see e.g., Figs. 1, 2,
3, 4, and 5). As a consequence, it is unnecessary to explicitly distinguish between φt

and φh : A single variable φ for the cell volume ratio is in principle sufficient to track
the evolution in time and space of both cell populations, provided one is able to locate
at each time the position of the interface S(t). Analogously, the source/sink terms �t ,
�h can be merged into a unique term � defined as follows:

� = �tχ�t + �hχ�h ,

where χ�t , χ�h denote the indicator functions of the sets �t , �h , respectively:

χ�α(t)(t, x) =
{

1 if x ∈ �α(t) at time t

0 otherwise,
(α = t, h).

The segregation of tumours and host cells has its mathematical counterpart in that
locating the domain of the former allows to uniquely identify the domain of the latter.

In view of the discussion above, Eq. 4.1 rewrites formally as

∂φ

∂t
+ ∇ · (φv) = � in Q, (4.2)

where Q = �t ∪ �h is a fixed in time domain and v is the velocity field of the cells
in Q, described in a unified manner like the cell volume ratio φ. Notice that this is
possible because, in view of Eq. 3.5, the velocity of each cell population is determined
directly by the corresponding cell volume ratio.

Solving Eq. 4.2 requires to track simultaneously the evolution of the free boundary
S(t), which implicitly underlies the correct definition of the source/sink term � and
has to be regarded to all purposes as a further unknown of the problem. In particular,
it plays the role of a material surface for the cellular matter, meaning that it moves
with the velocity v of the cells, which, owing to Eq. 3.10, must be the same on both
sides of S(t).

A suitable technique, which can be easily converted in a numerical method, to
determine the motion of the interface S(t) in connection with the overall dynamics of
the system is the Level Set Method. The basic idea is to introduce a function

f = f (t, x) : [0, +∞)× Q → R,

123



654 L. Preziosi, A. Tosin

called level set function, such that at time t = 0 its zero level set coincides with the
initial configuration S(0) of the free boundary (prescribed indeed as an initial condition
of the problem):

S(0) = {x ∈ Q : f (0, x) = 0}.

In addition, f (0, x) is required to change sign only once in Q, so that for instance
f (0, x) < 0 for x ∈ �t (0) and f (0, x) > 0 for x ∈ �h(0) or vice versa. Finally, the
evolution in time and space of f is described as a pure advection at the velocity v of
the cells, hence the level set function satisfies the equation

∂ f

∂t
+ v · ∇ f = 0. (4.3)

At each time instant t > 0, the position of the interface S(t) is determined by the
zero level set of f :

S(t) = {x ∈ Q : f (t, x) = 0}.

Moreover, the tumour and host tissue domains are recovered respectively as

�t (t) = {x ∈ Q : f (t, x) > 0}, �h(t) = {x ∈ Q : f (t, x) < 0} (4.4)

or vice versa, according to the initial form given to the level set function.
From Eq. 4.3 it is immediately seen that condition 3.11 governing the motion of

S(t) is satisfied. Furthermore, in view of Eq. 4.4, the level set function can be used to
define the indicator functions of �t (t) and �h(t):

χ�t (t)(t, x) = H( f (t, x)), χ�h(t)(t, x) = H(− f (t, x)), (4.5)

where H(·) is the Heaviside function:

H(s) =
{

1 if s > 0

0 if s < 0.

By coupling Eqs. 4.2 and 4.3, along with Eq. 4.5, one gets the system

⎧
⎪⎪⎨

⎪⎪⎩

∂φ

∂t
+ ∇ · (φv) = �t H( f )+ �h H(− f ),

∂ f

∂t
+ v · ∇ f = 0,

which can be regarded as a standard system of partial differential equations and solved
by means of the most suitable numerical methods for hyperbolic and (possibly nonli-
near) parabolic equations.
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