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Abstract In this article, we present a new multiscale mathematical model for solid
tumour growth which couples an improved model of tumour invasion with a model
of tumour-induced angiogenesis. We perform nonlinear simulations of the multi-scale
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model that demonstrate the importance of the coupling between the development and
remodeling of the vascular network, the blood flow through the network and the tumour
progression. Consistent with clinical observations, the hydrostatic stress generated by
tumour cell proliferation shuts down large portions of the vascular network dramati-
cally affecting the flow, the subsequent network remodeling, the delivery of nutrients
to the tumour and the subsequent tumour progression. In addition, extracellular matrix
degradation by tumour cells is seen to have a dramatic affect on both the development
of the vascular network and the growth response of the tumour. In particular, the newly
developing vessels tend to encapsulate, rather than penetrate, the tumour and are thus
less effective in delivering nutrients.

Keywords Solid tumour · Avascular growth · Angiogenesis · Vascular growth ·
Multiscale mathematical model

Mathematics Subject Classification (2000) 62P10

1 Introduction

Cancer growth, and as a particular example in this paper, solid tumour growth, is a
complicated phenomenon involving many inter-related processes across a wide range
of spatial and temporal scales, and as such presents the mathematical modeller with
a correspondingly complex set of problems to solve. The aim of this paper is to
formulate a multi-scale mathematical model of solid tumour growth, incorporating
three key features: the avascular growth phase, the recruitment of new blood vessels
by the tumour (angiogenesis) and the vascular growth and host tissue invasion phase.

Solid tumours are known to progress through two distinct phases of growth—
the avascular phase and the vascular phase. The initial avascular growth phase can be
studied in the laboratory by culturing cancer cells in the form of 3D multicell spheroids.
It is well known that these spheroids, whether grown from established tumour cell lines
or actual in vivo tumour specimens, possess growth kinetics which are very similar to
in vivo solid tumours. Typically, these avascular nodules grow to a few millimetres in
diameter. Cells towards the centre, being deprived of vital nutrients, die and give rise to
a necrotic core. Proliferating cells can be found in the outer cell layers. Lying between
these two regions is a layer of quiescent (or hypoxic) cells, a proportion of which
can be recruited into the outer layer of proliferating cells. Much experimental data
has been gathered on the internal architecture of spheroids, and studies regarding the
distribution of vital nutrients (e.g. oxygen) and metabolites within the spheroids have
been carried out. See, for example, the recent reviews by Walles et al. [69], Kim [37],
Kunz-Schughart et al. [39], Chomyak and Sidorenko [19] and the references therein.

The transition from the relatively harmless and confined dormant avascular state
to the vascular state, wherein the tumour possesses the ability to invade surrounding
tissue and metastasise to distant parts of the body, depends upon the ability of the
tumour to induce new blood vessels from the surrounding tissue to sprout towards
and then gradually surround and penetrate the tumour, thus providing it with an ade-
quate blood supply and microcirculation. Tumour-induced angiogenesis, the process
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Multiscale modelling and nonlinear simulation of vascular tumour growth 767

by which new blood vessels develop from an existing vasculature, through endothelial
cell sprouting, proliferation and fusion, is therefore a crucial part of solid tumour
growth. Sustained angiogenesis is a hallmark of cancer [33]. Mature endothelial cells
are normally quiescent and, apart from certain developmental processes (e.g. embryo-
genesis and wound healing), angiogenesis is generally a pathological process impli-
cated in arthritis, some eye diseases and solid tumour development, invasion and
metastasis. Tumour-induced angiogenesis is believed to start when a small avascular
tumour exceeds a critical diameter (∼2 mm), above which normal tissue vasculature
is no longer able to support its growth. At this stage, the tumour cells lacking nutrients
and oxygen become hypoxic. In response, the tumour cells secrete a number of dif-
fusible chemical substances—tumour angiogenic factors (TAF)—into the surrounding
tissues and extracellular matrix (ECM). The TAF diffuses into the surrounding tissue
and eventually reach the endothelial cells (EC) that line nearby blood vessels. ECs
subsequently respond to the TAF concentration gradient by degrading the basement
membrane surrounding the parent vessel, forming sprouts, proliferating and migrating
towards the tumour. It takes approximately 10–21 days for the growing network to link
the tumour to the parent vessel, and this vascular connection subsequently provides
all the nutrients and oxygen required for continued tumour growth. An excellent sum-
mary of all the key cell-biological processes involved in angiogenesis can be found in
the comprehensive review articles of Paweletz and Knierim [54] and Carmeliet [16].
Once vascularized the solid tumours grow rapidly as exophytic masses. In certain
types of cancer, e.g. carcinoma arising within an organ, this process typically consists
of columns of cells projecting from the central mass of cells and extending into the
surrounding tissue area. The local spread of these carcinoma often assume an irregular
jagged shape. By the time a tumour has grown to a size whereby it can be detected
by clinical means, there is a strong likelihood that it has already reached the vascular
growth phase.

Cancers also possess the ability to actively invade the local tissue and then spread
throughout the body. Invasion and metastasis are the most insidious and life-threatening
aspects of cancer [43,44]. Indeed, the prognosis of a cancer is primarily dependent on
its ability to invade and metastasize. Many steps that occur during tumour invasion and
metastasis require the regulated turnover of extracellular matrix (ECM) macromole-
cules, catalyzed by proteolytic enzymes released from the invading tumour. Proteases
give cancers their defining characteristic—the ability of malignant cells to break out
of tissue compartments. Motility, coupled with regulated, intermittent adhesion to the
extracellular matrix and degradation of matrix molecules, allows an invading cell to
move through the extracellular matrix [28,40,44].

The most significant turning point in cancer, however, is the establishment of metas-
tasis. The metastatic spread of tumour cells is the predominant cause of cancer deaths,
and with few exceptions, all cancers can metastasize. Metastasis is defined as the
formation of secondary tumour foci at a site discontinuous from the primary tumour
[43,44]. Metastasis unequivocally signifies that a tumour is malignant and this is in
fact what makes cancer so lethal. In principal, metastases can form following inva-
sion and penetration into adjacent tissues followed by dissemination of cells in the
blood vascular system (hematogeneous metastasis) and lymphatics (lymphatic metas-
tases).
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Since the seminal work of Greenspan [32] the mathematical modeling of avascular
solid tumour growth, like its subject, has been rapidly expanding. Most models in this
area consist of systems of nonlinear partial differential equations (e.g. see [13–15]),
and may be described as macroscopic. The review paper of Araujo and McElwain
[6] provides an excellent overview. See also the recent reviews by Quaranta et al.
[62], Byrne et al. [12], Sanga et al. [64], Graziano and Preziosi [31] and Roose et al.
[63]. Likewise, modeling tumour-induced angiogenesis has a well-established history
beginning with the work of Balding and McElwain [9]. The review papers of Mantzaris
et al. [49] and Chaplain et al. [18] provide an excellent overview of the work in this
area. However, unlike avascular growth and angiogenesis, vascular tumour growth
has received considerably less attention in the mathematical modeling literature. See
[17,52] for early work on vascular tumour growth and invasion.

Recently, Zheng et al. [71] developed and coupled a level-set method for solid
tumour growth with a hybrid continuous–discrete model of angiogenesis originally
developed by Anderson and Chaplain [4]. This work served as a building block for
studies of chemotherapy [65] and morphological instability and tumour invasion [20,
27]. Hogea et al. [34] have also begun to investigate tumour induced angiogenesis
and vascular growth using a level-set method coupled with a continuous model of
angiogenesis. Following the strategy pioneered by Zheng et al. [71], Frieboes et al. [26]
coupled a mixture model with a lattice-free continuous–discrete model of angiogenesis
(originally developed by Planck and Sleeman [55]) and studied vascular tumour growth
in three dimensions. In these works, however, the effects of blood flow through and
subsequent remodeling of the vascular network were not included. Recently, the effects
of blood flow through a vascular network on tumour growth were considered by
Alarcón et al. [1], Lee et al. [41], Bartha and Rieger [10], Welter et al. [70] using
cellular automaton (CA) tumour growth models coupled with network models for the
vasculature. These authors investigated vascular network inhomogeneities, the stress-
induced collapse of blood vessels and the implications for therapy. Because of the
computational cost of simulating cell growth using CA, these studies are limited to
small scales.

In this paper, we couple an improved continuum model of solid tumour invasion
(following [48]) that is capable of spanning the 102 µm-cm scale and accounts for
cell–cell, cell–ECM adhesion, ECM degradation, and tumour cell migration, prolif-
eration, and necrosis with a model of tumour-induced angiogenesis (following [50])
that accounts for blood flow through the vascular network, non-Newtonian effects and
vascular network remodeling, due to wall shear stress and mechanical stresses gen-
erated by the growing tumour, to produce a new multi-scale model of vascular solid
tumour growth. As in [71], the invasion and angiogenesis models are coupled thro-
ugh the tumour angiogenic factors (TAF), that are released by the tumour cells,
and through the nutrient extravasated from the neo-vascular network. As the blood
flows through the neo-vascular network, nutrients (e.g. oxygen) are extravasated and
diffuse through the ECM triggering further growth of the tumour, which in turn influ-
ences the TAF expression. In addition, the extravasation is mediated by the hydrostatic
stress generated by the growing tumour and, as mentioned above, the hydrostatic stress
also affects vascular remodeling by restricting the radii of the vessels. The vascular
network and tumour progression are also coupled via the ECM as both the tumour cells
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and the ECs upregulate matrix degrading proteolytic enzymes which cause localized
degradation of the ECM which in turn affects haptotactic migration.

We perform simulations of the multi-scale model that demonstrate the importance,
on tumour invasion of the host tissue, of the nonlinear coupling between the growth
and remodeling of the vascular network, the blood flow through the network and the
tumour progression. Consistent with clinical observations, the hydrostatic stress gen-
erated by tumour cell proliferation shuts down large portions of the vascular network
dramatically affecting the flow, the subsequent network remodeling, the delivery of
nutrients to the tumour and the subsequent tumour progression. In addition, ECM
degradation by tumour cells is seen to have a dramatic affect on both the development
of the vascular network and the growth response of the tumour. In particular, when the
ECM degradation is significant, the newly formed vessels tend to encapsulate, rather
than penetrate, the tumour and are thus less effective in delivering nutrients.

The outline of the paper is as follows. In Sect. 2, we present the mathematical mod-
els, and we briefly describe the numerical techniques in Sect. 3. In Sect. 4, we present
numerical results, and future work is discussed in Sect. 5. Details of the mathematical
modeling and numerical methods are presented in the supplementary materials.

2 The mathematical model

Here, we present the non-dimensional model, starting first with the model of tumour
invasion in Sect. 2.1 and followed by the model of tumour-induced angiogenesis in
Sect. 2.2. Here, time is non-dimensionalized by the characteristic tumour cell prolif-
eration time (i.e., 1/λm where λm ≈ 2/3 day−1 is the mitosis rate) and space is non-
dimensionalized by the characteristic diffusion penetration length (i.e.,

(
D∗

σ /λ∗
σ

)1/2 ≈
200 µm, where D∗

σ and λ∗
σ are characteristic values of the oxygen diffusion

coefficient and uptake rate in the proliferating tumour region, respectively). The
non-dimensionalization of the parameters and the corresponding values used in the
numerical simulations are presented in the supplementary materials.

2.1 The tumour invasion model

To accurately model tumour growth in heterogeneous tissues, we develop a mathemat-
ical model that accounts for spatially dependent cell necrosis, cell apoptosis, cell–cell
and cell–matrix adhesion, matrix degradation, cell proliferation and cell migration.
The model is based on continuum reaction–diffusion equations that describe these
processes and is a generalization and improvement of earlier models (see the reviews
listed previously and recent work by Macklin and Lowengrub [45–48]). We present
the model in 2D, but it is equally valid for the 3D case as well.

Let Ω denote a tumour mass, and let Σ denote its boundary. The tumour can
be divided into three regions: a proliferating rim ΩP where the tumour cells have
sufficient nutrient levels for proliferation; a hypoxic/quiescent region ΩH where the
nutrient levels are too low for normal metabolic activity but not so low that the cells
begin to die; and a necrotic region ΩN where the nutrient level has dropped so low
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Fig. 1 Schematic of the tumour
regions. ΩP, ΩH and ΩN are the
proliferating, quiescent/hypoxic
and necrotic regions,
respectively

that the tumour cells die and are degraded. Because necrosis is irreversible, we track
the necrotic core and its interface ΣN separately of the tumour interface. See Fig. 1.

2.1.1 Nutrient transport

We model the net effect of nutrients (e.g., oxygen and glucose) and growth-promoting
and –inhibiting factors with a single nutrient σ . Here, we focus our attention on the
role of oxygen which is supplied by the vascular network via the red blood cells. This
can be modelled using the haematocrit which represents the volume fraction of red
blood cells contained in the blood. Oxygen and other nutrients are supplied by the
preexisting bulk vasculature and the neo-vasculature at rates λσ

pre and λσ
neo, diffuses

throughout the cancerous and non-cancerous tissue, is uptaken in the non-necrotic
portions of the tumour, and decays elsewhere (see below). Wherever the oxygen level
inside the tumour drops below a threshold value σH, the tumour cells become hypoxic
(quiescent), cease proliferating and uptake nutrient at a lower rate. If the oxygen level
falls further below a threshold value σN, then the tumour cells become necrotic. Inside
the necrotic core, oxygen reacts with cellular debris to form reactive oxygen species
[29,38], which we model by a decay term. Since oxygen diffusion occurs more rapidly
than cell-mitosis (the time scale on which the equations are non-dimensionalized),
these processes are described by the quasi-steady reaction diffusion equation

0 = ∇ · (D∇σ) − λσ (σ ) σ + λσ
pre

(
x, t, Bpre, P, σ

) + λσ
neo (x, t, Bneo, P, σ, h) , (1)

where D is the diffusion coefficient, the parameter λσ combines the effects of oxygen
uptake and decay and takes the form

λσ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λtissue pσ (E0) outside Ω

λσ in ΩP

qσ (σ ) in ΩH

λN in ΩN

(2)
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where pσ and qσ are smooth interpolating functions (the precise forms are given in
the supplementary materials) and E0 is the density of the original ECM which is used
to assess changes in uptake/decay in the host microenvironment (see Sect. 2.1.3). The
interpolating function qσ satisfies qσ

(
σH+σN

2

) = λH, where σH and σN are the oxygen
concentration thresholds for quiescence and necrosis, respectively and λH is the rate
of oxygen uptake by quiescent cells in the hypoxic tumour. Further, λtissue and λσ

are the rates of oxygen uptake in the host microenvironment and in the proliferating
tumour regions respectively, and λN is the rate of oxygen decay in the necrotic portion
of the tumour. We note that because the location of the viable, hypoxic, and necrotic
tumour regions depends upon the oxygen concentration σ , the uptake/decay term λσ

introduces nonlinearity.
The two remaining terms λσ

pre

(
x, t, Bpre, P, σ

)
and λσ

neo (x, t, Bneo, P, σ, h) in
Eq. 1 reflect the oxygen-tissue transfer from the pre-existing and neo-vascular blood
vessels respectively, and are given by:

λσ
pre = λ

σ

pre Bpre (x, t) (1 − σ) (1 − 1Ω) , (3)

and

λσ
neo = λ

σ

neo Bneo (x, t)

(
h

HD
− hmin

)+
(1 − c (Pvessel, P)) (1 − σ) , (4)

where λ
σ

pre and λ
σ

neo are constant transfer rates from the pre-existing and neo-vascular
vessels. Here, Bpre is the (non-dimensional) blood vessel density of the pre-existing
vessels whose locations are assumed to be unchanging in time. In fact, we take a
uniform distribution of pre-existing vessels in the host tissue and Bpre satisfies Eq. 19
below where MDE is assumed to degrade the pre-existing vasculature. The function
Bneo (x, t) = 1neo is the characteristic or indicator function of the neo-vasculature
(i.e., equal to 1 at the locations of the new vessels), and 1Ω is the characteristic
function of the tumour region Ω (i.e., equal to 1 inside the tumour and 0 in the tumour
exterior). Further, P is the oncotic (solid/mechanical/hydrostatic) pressure, Pvessel
and h are the dimensional pressure and the haematocrit in the neo-vascular network,
respectively. The constants H D and hmin reflect the normal value of haematocrit in
the blood (generally about 0.45) and the minimum haematocrit needed to extravasate
oxygen, respectively. The haematocrit is modelled via the blood flow in the vascular
network and is determined from the angiogenesis model. This provides one aspect of
the coupling between the tumour growth and angiogenesis models. A second mode
of coupling between the two models occurs through the cutoff function c (Pvessel, P)

which is given by:

c (Pvessel, P) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 ∆P < 0

pcutoff (∆P) 0 ≤ ∆P ≤ 1

1 ∆P ≥ 1

, (5)
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where pcutoff is a cubic, interpolating polynomial given in the supplementary materials.
Namely, large oncotic pressures may prevent extravasation and transfer of oxygen from
the vessels into the tissue. Later, we will discuss how the oncotic pressure may also
constrict the neovessels. Further, in Eq. 5,

∆P = 1

Pscale

(
P − Pvessel

Pvessel

)
, (6)

where Pvessel is a characteristic pressure scale and Pscale is a scale factor. Note that we
could have analogously taken the oxygen transfer rate from the pre-existing vessels
to also be coupled to the haematocrit and blood vessel pressure. This will be explored
in a future work.

The oxygen source terms in Eqs. 3 and 4 are designed such that for sufficiently
large transfer rates λ

σ

pre and λ
σ

neo, the oxygen concentration σ ≈ 1 the spatial locations

of the pre-existing and neo- vessels. In practice, we will take λ
σ

neo large but λ
σ

pre small
which models the supply of only a small amount of oxygen in the host tissue from
pre-existing vessels. We will assume a parent vessel, located at the boundary of the
computational microenvironment domain as discussed below, supplies the bulk of the
oxygen in the host tissue. Note that oxygen flux conditions across the pre-existing and
neo-vasculature could be imposed (e.g., see [1]).

The boundary conditions for Eq. 1 are taken to be a combination of Dirichlet and
Neumann conditions. In particular, in the simulations we present below, we assume a
parent vessel coincides the upper boundary of the computational domain and therefore
we impose σ = 1 (a Dirichlet condition). Zero Neumann conditions, ∂σ/∂n = 0, are
imposed along the other boundaries of the computational domain.

2.1.2 Tumour mechanics and the cell velocity

The tumour cells, the ECM and host (non-cancerous) cells are influenced by a combi-
nation of forces which contribute to the cellular velocity field. The proliferating cells
generate an oncotic mechanical pressure (hydrostatic stress) that also exerts force
on the ECM and host cells. The cells respond to pressure variations by overcoming
cell–cell and cell–ECM adhesion and migrating through the microenvironment. The
ECM may also deform, degrade and remodel in response to pressure and to enzymes
released by the cells. The cells may respond haptotactically to adhesion gradients in
the ECM.

Following previous work, we assume that all solid phases move with a single cellular
velocity field and we model the cellular motion within the ECM as incompressible
fluid flow in a porous medium. In the future, we plan to use mixture models (e.g.,
[2,7,8,11,21]) to relax these assumptions. In this simplified description of tumour
mechanics used here, Darcy’s law is taken as the constitutive assumption and thus the
velocity is proportional to the forces in the problem. See [2] and [11] for a motivation of
this approach from a mixture modeling perspective. Accordingly, the non-dimensional
velocity is given by

u = −µ∇ P + χE∇E, (7)
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where µ is the cell-mobility which models the net effects of cell–cell and cell–matrix
adhesion, E is the ECM density (e.g. a non-diffusible matrix macromolecule such as
fibronectin, collagen or laminin) and χE is the haptotaxis coefficient. Models for µ

and χE are given in Sect. 2.1.3. Further assuming that the density of tumour cells is
constant in the viable region, the growth of the tumour is then associated with the rate
of volume change:

∇ · u = λp, (8)

where λp is the non-dimensional net proliferation rate. This implies that the non-
dimensional pressure satisfies:

−λ · (µ∇ P) = λp − ∇ · (χE∇E) . (9)

We assume that in the proliferating region, cell-mitosis is proportional to the amount
of nutrient present and that apoptosis may occur. Volume loss may occur in the
necrotic core and there is no proliferation in either the host microenvironment or
the hypoxic/quiescent regions. We therefore take

λp =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if x /∈ Ω

σ − A if x ∈ ΩP

0 if x ∈ ΩH

−G N if x ∈ ΩN

, (10)

where A is the non-dimensional apoptosis rate (“pre-programmed” cell death); and
GN is the non-dimensional rate of volume loss in the necrotic core as water is removed
and cellular debris are degraded. Assuming a uniform cell–cell adhesion throughout
the tumour, cell–cell adhesion can be incorporated as a surface-tension like jump
boundary condition at the tumour–host interface Σ :

[P] = (Pinner − Pouter) = 1

G
κ, (11)

where G is a non-dimensional parameter that measures the aggressiveness of the
tumour (the strength of cell proliferation relative to cell–cell adhesion) and κ is the
mean curvature of the interface. At the necrotic boundary ΣN we assume P is contin-
uous. We assume that no voids form and therefore we take

[u · n] = 0 which implies that [µ∇ P · n] = [χE∇E · n] , (12)

where n is the unit outward normal to Σ . For simplicity, we will also assume that
[∇E · n] = 0. At necrotic boundary, we assume analogous conditions. The velocity
of the tumour–host interface Σ is then given by:

V = −µ∇ P · n + χE∇E · n, (13)
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and the velocity of the necrotic boundary ΣN is

VN = −µ∇ P · nN + χE∇E · nN , (14)

where nN is the outward unit normal vector along ΣN. In the far-field at the bound-
aries of the computational domain, the pressure is assumed to satisfy zero Neumann
boundary conditions ∂ P/∂n = 0.

2.1.3 Tumour-microenvironment interaction

We model tumour microenvironment by introducing an extracellular matrix den-
sity E that represents the density of non-diffusible matrix macromolecules such as
fibronectin, collagen, elastin and laminin, etc. In addition, as mentioned earlier, we
keep track of the density E0 of the original ECM and the pre-existing blood ves-
sel density Bpre to assess the level of oxygen uptake and supply, respectively, in the
microenvironment.

The tumour interacts with the microenvironment by responding to the nutrients
supplied by the pre-existing and the neo-vasculature (e.g. see Eq. 1), remodeling the
ECM locally by secreting both MDE and ECM macromolecules and by a hetere-
ogeneous response to pressure and ECM adhesion gradients through non-constant
cell-mobility and haptotaxis coefficients. In order for tumours cells to migrate into the
porous matrix, they must overcome cell–matrix adhesion. However, in experiments, a
maximum migration speed is obtained that depends on the level of integrin expression
(e.g. [24,53]) and correspondingly a non-monotonic dependence of cell migration
velocity on integrin expression and adhesion gradients in the ECM has been predicted
[23,24]. This has been explained by the fact that while some integrins are required
for focal adhesion based migration, too much focal contact strength can retard the
detachment of cell’s trailing edge from the ECM. While we do not model integrin
expression directly here, we take this effect into account by making the haptotaxis
coefficient a non-monotone function of E :

χE =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

χ E,min E < E
χ

min cutoff

pχ (E) E
χ

min cutoff ≤ E ≤ E
χ

max cutoff

χ E,min E > E
χ

max cutoff

, (15)

where χ E,min is the non-dimensional haptotaxis in low/high-density ECM, pχ is
a non-monotone interpolating function with a maximum χ E,max located at E =
1
2

(
E

χ

min cutoff + E
χ

max cutoff

)
. See the supplementary materials for the precise form

of pχ . Although the mobility µ may also be non-monotone, for simplicity, we take a
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monotone decreasing function of E here:

µ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

µmax E < E
µ

min cutoff

pµ(E) E
µ

min cutoff ≤ E ≤ E
µ

max cutoff

µmin E > E
µ

max cutoff

, (16)

where pµ is a smooth interpolating function (see the supplementary materials for a
precise form). In a future work, we will investigate non-monotonic cell mobilities µ. In
addition, the mobility and chemotaxis parameters may also be functions of oxygen con-
centration σ as hypoxic conditions may result in upregulation of HIF-1α target genes
that may result in decreased cell–cell adhesion, among other effects, and therefore
enable cells to more easily migrate through and invade the tumour microenvironment
(e.g., see [25,36,56]). These effects will also be explored in a forthcoming work.

In order to migrate through the ECM and invade the host tissue, tumour cells secrete
matrix degrading proteolytic enzymes (MDE), e.g. matrix metalloproteases and uroki-
nase plasminogen activators, which cause the degradation of the ECM, provide space
for the cells, and enhance the attachment of the cells to ECM macromolecules enabling
the cells to exert traction forces to propel themselves through the ECM. In addition,
the tumour cells remodel the ECM by secreting insoluble matrix macromolecules and
possibly reorienting them. We note that during the angiogenic response of the host
vasculature, an analogous molecular cascade occurs as tumour angiogenesis factors
(TAF) and ECM macromolecules (e.g. fibronectin, collagen, laminin) bind to specific
membrane receptors on ECs and activate the cells’ migratory machinery. This leads to
a remodeling of ECM similar to that described above for tumour cells. Here, we will
not consider the effect of orientational remodeling. We model the remaining processes
as follows. For the MDE, we take

∂ M

∂t
= ∇ · (DM∇M) + λ

M
prod. (1 − M) 1ΩV − λ

M
decay M + λ

M
spr. prod.1sprout tips (17)

where M is the nondimensional MDE concentration, DM = DM is the diffusion
coefficient (assumed to be constant), λ

M
prod. and λ

M
spr. prod. are the non-dimensional

rates of production of MDE by the viable tumour cells (ΩV = ΩP ∪ ΩH) and the

sprout tip ECs, respectively. Further, λ
M
decay is the rate of decay (it is assumed that

MDE is not used up as a result of the interaction with the ECM (Quaranta, private
communication)). Finally, 1sprout tips is the characteristic function of the sprout tips. In
particular, 1sprout tips = 1 in small circle centered at each sprout tip and tends to zero
smoothly, and rapidly, outside these circles. Because the diffusion coefficient of MDE,
DM, is much smaller than that for oxygen diffusion the full time-dependent diffusion
equation is used [67]. In the far-field (boundary of the computational domain), we take
the zero Neumann boundary conditions ∂ M/∂n = 0.
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The ECM density satifies:

∂ E

∂t
= −λ

E
degradation E M + λ

E
prod. (1 − E) 1ΩV + λ

E
spr. prod.1sprout tips, (18)

where λ
E
prod. and λ

E
spr. sprod. are the non-dimensional rates of production of ECM by

the viable tumour cells and sprout-tip ECs and λ
E
degradation is the non-dimensional rate

of matrix degradation by the MDE.
Finally, the original ECM and the pre-existing blood vessel density are assumed to

be degraded by the MDE:

∂ Bpre

∂t
= −λ

B
degradation M Bpre and

∂ E0

∂t
= −λ

E
degradation M E0, (19)

where λ
B
degradation and λ

E
degradation are non-dimensional degradation rates.

2.1.4 Tumour angiogenic factors

When tumour cells become hypoxic/quiescent, they are assumed to secrete tumour
angiogenic factors (TAF), which diffuse into the surrounding tissue and attract ECs.
ECs respond to the TAF by binding with it, proliferating and chemotaxing up the TAF
gradient. The diffusion coefficient of TAF is similar to that of oxygen and so we model
the production, diffusion, decay, and binding of TAF by

0 = ∇ · (DT ∇T ) + λ
T
prod. (1 − T ) 1ΩH − λ

T
decayT − λ

T
bindingT 1sprout tips (20)

where T is the non-dimensional TAF concentration, DT = DT is the diffusion
coefficient (assumed to be constant) and λ

T
prod., λ

T
decay, and λ

T
binding denote the non-

dimensional production, natural decay and binding rates of TAF. In the far-field at
the boundary of the computational domain, we also take zero Neumann boundary
conditions ∂T/∂n = 0.

2.2 Angiogenesis model

We begin with a description, in Sect. 2.2.1, of an initial mathematical model for the
growth of a hollow capillary network in the absence of any blood flow. This follows
[4]. Then, following [50], we will add the effects of blood flow and vascular network
remodeling in Sects. 2.2.2 and 2.2.3, respectively.

2.2.1 Basic network model

As described earlier, TAF and ECM macromolecules bind to specific membrane recep-
tors on ECs and activate the cells’ migratory machinery. The model of EC migration
given below describes how capillary sprouts emerging from a parent vessel migrate
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towards a tumour, leading to the formation of a vascular network that supplies nutri-
ents for continued development. (See the supplementary materials for a schematic
diagram). At this level, since there is no flow or vessel remodeling, this model may
perhaps be considered more appropriate at describing in vitro endothelial cell migra-
tion and capillary sprout formation. The model, inspired by the tumour angiogen-
esis model developed by Anderson and Chaplain [4], assumes that endothelial cells
migrate through (i) random motility, (ii) chemotaxis in response to TAF released by the
tumour and (iii) haptotaxis in response to ECM gradients. If we denote by n the non-
dimensional endothelial cell density per unit area, then the non-dimensional equation
describing EC conservation is given by

∂n

∂t
= ∇ · (D∇n) − ∇ ·

(
χT

sprout(T )n∇T
)

− ∇ ·
(
χ E

sproutn∇E
)

. (21)

See [50] and the supplementary materials for the non-dimensionalization. The dif-
fusion (random migration) coefficient is D = D (assumed to be constant), and the
chemotactic and haptotactic migration are characterised by the functions χT

sprout =
χT

sprout/ (1 + δ · T ), which reflects the decrease in chemotactic sensitivity with increa-

sed TAF concentration and χ E
sprout = χ E

sprout, where for simplicity we have taken the
haptotactic migration parameter to be constant. In a future work, we will investigate
the heterogeneous response of the ECs to the ECM as discussed earlier in Sect. 2.1.3.
The coefficients D, χT

sprout and χ E
sprout characterise the non-dimensional random,

chemotactic and haptotactic cell migration, respectively.
The displacement of each individual EC, located at the tips of each growing sprout, is

given by the discretised form of the EC mass conservation equation (21) on a regular
Cartesian mesh. The migration of each cell is consequently determined by a set of
coefficients (P0–P4) emerging from this equation, which relate to the likelihood of the
cell remaining stationary, moving left, right, up or down. These coefficients incorporate
the effects of random, chemotactic and haptotactic movement and depend upon the
local chemical environment (ECM density and TAF concentration). Proliferation of the
endothelial cells at the capillary tips and branching at capillary tips are implemented
in the model at the discrete level. Tip branching depends on the TAF concentration at
a given spatial location. (See the supplementary materials and [4] for details). Using
the above model it is possible to generate “hollow” capillary networks which are
structurally similar to those observed experimentally.

2.2.2 Modelling blood flow in the developing capillary network

Blood is a complex multiphase medium, composed of many different constituents,
including: red blood cells (erythrocytes), white blood cells (leukocytes), and platelets
involved in clotting cascades. These solid elements represent approximately 45% of
the total blood composition—red cells are predominant—and are carried in the plasma,
which constitutes the fluid phase. A measure of the solid phase is given by the blood
haematocrit, which represents the volume fraction of red blood cells contained in the
blood. The average human haematocrit has a value of around 0.45. Because of its
multiphasic nature, blood does not behave as a continuum and the viscosity measured
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while flowing at different rates in microvessels is not constant. The direct measurement
of blood viscosity in living microvessels is very difficult to achieve with any degree
of accuracy. However, by comparing the flow distribution in a numerical network
(generated by a mathematical model) with a similar experimental system, Pries et al.
[60] obtained

µapparent = µplasma · µrel,

where µplasma is the plasma viscosity, and µrel is the relative viscosity that accounts
for the effects of the blood haematocrit and the radius of the vessel. The apparent
blood viscosity generally increases with decreasing capillary radius, although the
precise relationship is nonlinear since it is actually haematocrit-dependent. See the
supplementary materials for the precise form of µrel.

In order to calculate the flow within the entire interconnected network of capillaries,
it is first necessary to decide upon a local relationship between the pressure gradient
vessel ∆P and flow rate Q̇ at the scale of a single capillary element of length L and
radius R. Such a relationship in the case of a non-Newtonian fluid can be approximated
by the following Poiseuille-like expression:

Q̇ = π R4∆Pvessel

8µapparentL
. (22)

In order to determine the pressure (and flow rate) and in the vascular network of
interconnected capillary elements having distributed radii, one simply conserves mass
(or flow if the fluid is incompressible) at each junction where capillary elements meet.
(See the supplementary materials for a schematic diagram.) Hence, for each node (i, j)
the following expression can be written:

N∑

k=1

Q̇(i, j),k = 0 (23)

where the index k refers to adjacent nodes and N = 4 in a fully connected regular
2D grid as considered in this paper (or N = 6 in 3D). This procedure leads to a set
of linear equations for the nodal pressures (Pvessel,i ) which can be solved numerically
using any of a number of different algorithms including successive over-relaxation
(SOR). Once the nodal pressures are known, Eq. 22 can be used to calculate the flow
in each capillary element in turn. A more complete discussion of the procedure can
be found in McDougall et al. [51,66]. The evolution of haematocrit h in the vessels is
also calculated using mass conservation once the flow is determined.

2.2.3 Capillary vessel adaptation and remodeling

Blood rheological properties and microvascular network remodeling are interrelated
issues, as blood flow creates stresses on the vascular wall (shear stress, pressure, tensile
stress) which lead to adaptation of the vascular diameters via either vasodilatation
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or constriction. In turn, blood rheology (viscosity, haematocrit, etc.) is affected by
the new network architecture. Consequently, we should expect adaptive angiogenesis
to be a highly dynamic process. We follow the work of Pries et al. [57,59–61] in
incorporating vessel adaptation into our model. In particular, we consider a number
of stimuli that affect the vessel diameters. We account for the influence of the wall
shear stress (Swss), the intravascular pressure (Sp), a metabolic mechanism depending
on the blood haematocrit (Sm), as well as the natural tendency for vessels to shrink
(Ss). These stimuli form a basic set of requirements in order to obtain stable network
structures with realistic distributions of vessels diameters and flow velocities. The
theoretical model for vessel adaptation assumes that the change in a flowing vessel
radius ∆R over a time step ∆τ , where time is scaled by the rate of the response of the
vessel to wall shear stress ( kw ), is proportional to both the global stimulus acting on
the vessel and to the initial vessel radius R, i.e.

∆R = (
Swss + Sp + Sm + Ss

)
R∆τ. (24)

We refer the reader to the supplementary materials for the definitions of the stimuli
and a brief discussion. More details may be found in [50].

After the radius of the vessel is updated according to Eq. 24, the effect of the
oncotic mechanical pressure P , generated by the proliferating and invading tumour,
on the vessel radius is then taken into account. The tendency of the oncotic pressure
to shrink the vessel is modelled by the simple cutoff:

R → Rmin + (R − Rmin) · (1 − c (P, Pvessel)) , (25)

where c (P, Pvessel) is the cutoff function introduced earlier in Eq. 5 and Rmin is a
threshold minimum radius. This provides another means of coupling tumour invasion
(and mechanics) with the angiogenic response and the developing neo-vascular net-
work. In particular, the solid/mechanical pressure may constrict and cut off vessels
in the neovasculature. To prevent singularities in practice, the radius of the vessel is
constrained to lie between 2.0 and 14 µm which is the size of the parent capillary.

Inclusion of the above mechanisms into our modeling framework now allows us to
simulate dynamic remodeling of a flowing vasculature. This significant improvement
in angiogenesis modeling, introduced by McDougall et al. [50], allows us to describe
vascular growth in a far more realistic manner, with areas of the capillary network
dilating and constricting in response to variations in perfusion-related stresses, stimuli
and pressure mechanical forces exerted on the host microenvironment by the invading
tumour. The final step in the development of the complete dynamic adaptive tumour-
induced angiogenesis (DATIA) model is to couple the network flow modeling approach
outlined in this Section to the “hollow capillary” model derived from the endothelial
cell migration equations described earlier. This is achieved through the role of wall
shear stress.

Wall shear stress is known to play a leading role in the growth and branching of
capillary vessel networks [57,58]. In order to “bring the morphological and the phys-
iological concepts together” [68], the cell migration and flow models are coupled
by incorporating the mechanism of shear-dependent vessel branching in addition to
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sprout-tip branching via local TAF concentrations. This enables the capillary network
structures to adapt dynamically through adjuvant vessel branching in areas of the net-
work experiencing increased shear stresses following anastomosis elsewhere in the
system. We note that because the shear stress is due to the blood flowing through
the capillaries, vessel branching can only occur after some degree of anastomosis has
taken place. Therefore, the early stages of angiogenesis are primarily characterised
by branching at the capillary tips which depends only on the TAF concentration. The
combined effects of the local wall shear stress and TAF concentration upon vessel
branching probability have been implemented in the model as described in the sup-
plementary materials.

3 Numerical schemes

3.1 Tumour invasion model

The tumour invasion model described in Sect. 2.1 consists of a coupled system of
nonlinear, elliptic and parabolic (reaction–diffusion) differential equations that must
be solved on a complex, moving domain where the motion of the tumour/host bound-
ary depends on gradients of the solutions to these equations. Further, one of these
solutions—the pressure—is discontinuous across the tumour/host interface where the
discontinuity depends on the geometry (i.e. the curvature) of the interface which is
an additional source of nonlinearity. Therefore, standard finite difference methods
cannot be used to accurately solve the system. Instead, specialized methods that can
accurately take into account discontinuities in solutions and complex domains must be
used. Here, we use a ghost-cell/level-set method and adapt and extend the numerical
techniques we recently developed to solve this system [45–48]. In this approach, the
equations are discretized on a regular Cartesian mesh and the difference stencils near
discontinuities are modified. We note that other alternatives exist (see the discussion in
[48]), but an advantage of our approach is that it can be implemented in a dimension-
by-dimension manner, making the extension to 3D straightforward, and our algorithm
is simpler to implement than the alternative approaches.

In this approach, the interface is captured as the zero set of an auxiliary function
(the level-set function) φ satisfying φ < 0 inside Ω , φ > 0 outside Ω , and φ = 0 on
the tumour/host interface Σ . Typically φ is taken to be an approximation to the signed
distance function, i.e. |∇φ| ≈ 1. See the supplementary materials for a schematic
diagram. The interface normal and curvature can easily be calculated from φ. The
interface ΣN separating viable tumour cells from the necrotic cells is also captured
using additional level set function boundary φN that satisfies the same properties as
φ, only with ΩN and ΣN in place of Ω and Σ .

Away from Σ , the elliptic/parabolic equations can be discretized using centered
finite differences. However, near the interface, the difference stencils need to be mod-
ified to account for possible jumps in solutions and in their normal derivatives. To
do this, ghost cells on either side of the interface are introduced and the variables
are extrapolated across the interface to ensure that the difference stencil effectively
does not include nodes on the other side of the interface. The resulting nonlinear
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system is solved using an iterative algorithm. These techniques are described in the
supplementary materials. See also [48] for additional detail.

3.2 The dynamic tumour-induced angiogenesis model

For a fixed tumour geometry and TAF distribution, the tumour vasculature is first
grown using the basic network model given in Sect. 2.2.1; capillary tips may branch
or anastomose during this stage. Further, the Cartesian mesh for the tumour growth
system coincides with that used for the neo-vascular network. After a certain period
of time, referred to as the capillary growth duration time, the fluid flow is solved in the
fixed neovascular network and then the network is dynamically remodelled, following
the algorithm described in Sects. 2.2.2 and 2.2.3, respectively. During the simulation of
the flow, a CFL condition is imposed on the time step: ∆τ ≈ min

(
Vcap, Q̇cap

)
where

Vcap and Q̇cap are the velocity and flow rate in a capillary element. The minimum
is taken over the neo-vascular network. This ensures haematocrit remains conserved
during the simulation (e.g., [51]). Then process of blood flow, followed by remodeling,
is repeated for an amount of time referred to as the flow duration time.

3.3 Overall computational solution technique

Initially, the avascular tumour, the pre-existing vascular network, the oxygen, ECM
and MDE concentrations are given. We will consider a single parent vessel placed
at the top of the computational domain. The algorithm then consists of iterating the
following steps.

1. Solve Eq. 1 for the oxygen concentration where the oxygen source in Eq. 4 is
obtained from the haematocrit and the pressure in the existing vascular network
and the tumour mechanical pressure from the previous time step. We then use the
solution σ to update the position of the necrotic core:

Ω
updated
N = Ω

previous
N ∪ ({x : σ(x, t) < σN } ∩ Ω) ,

and to identify the hypoxic region ΩH. As described above, the necrotic core is
expanded to include previously necrotic tissue plus any tumour tissue where the
oxygen level has dipped below the necrotic threshold ΣN. We then rebuild φN as
a level set function that represents the updated region ΩN. (Please see the supple-
mentary materials, [45,48] and the level set references above for information on
initializing a new level set function.)

2. Solve Eq. 20 for the tumour angiogenic growth factor (TAF) and update the MDE
and ECM according to Eqs. 17 and 18, respectively.

3. Determine the cellular mobility and solve for the tumour biomechanical pressure
from Eq. 9.

4. Update the position of the tumour/host interface Σ and the necrotic/viable ΣN

by advecting the level set functions φ and φN with the appropriate velocities as
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described in the supplement). If necessary, the level-set functions are re-initialized
to be local distance functions to Σ and ΣN . (See the supplementary materials for
further details.)

5. From the updated tumour position, TAF, MDE and ECM fields, the neo-vascular
network is grown using the basic network model.

6. The process (1)–(5) is repeated until the growth duration time interval is reached.
At this point, the fluid flow in the neo-vascular network is determined and the
network is adapted. The hydrostatic pressure P and the TAF are held fixed during
this process. The flow and network adaption are repeated (for fixed tumour and
capillary tip positions) until the flow duration time is reached.

7. Go to (1) and repeat the algorithm.

4 Computational results

In this work, we shall focus upon tumour growth coupled to angiogenesis in a square
4 × 4 mm region. Although we solve the non-dimensional equations, we present
dimensional results using the length scale � ≈ 200 µm and the time scale 1/λm ≈ 1.5
day. A parent capillary vessel is located at the top of the computational domain. A
pre-existing vasculature is assumed to exist and provides a small level of nutrient
uniformly throughout the host tissue domain. Initially, a small cluster of proliferating
cells is placed approximately 3 mm from the parent vessel. The initial ECM is taken
to be nearly constant (=1) but with small random perturbations uniformly distributed
throughout the computational domain. See the time t = 0 plot in Fig. 2. Accord-
ingly, whenever we calculate gradients of E , we actually calculate the gradient of a
smoothed version of E where a Gaussian smoothing with standard deviation 3.0 is
used (see [45,48]). We begin by demonstrating that in the absence of tumour-induced
angiogenesis, the small tumour cluster grows to an avascular tumour (2D) spheroid.
Actually, since there is a pre-existing vasculature this is an abuse of notation, how-
ever, we still refer to this case as avascular since there is no neo-vascular network.
Then, tumour-induced angiogenesis is initiated and we present several simulations of
angiogenesis and vascular growth. Finally, we examine the effect of increased ECM
degradation by MDE and its effect on avascular and vascular growth. The parameters,
and non-dimensionalization, used in the simulations are given in in the supplementary
materials.

4.1 Avascular growth to a multicellular (2D) spheroid

In Fig. 2, we present the growth of an avascular tumour. The spatial grid is 200 × 200
and the time step ∆t = 0.05 which is adapted to satisfy the Courant–Friedrichs–Lewy
(CFL) condition (see [45,46,48]). The red, blue and brown colors denote ΩP, ΩH, ΩN
which are the proliferating, hypoxic/quiescent and necrotic regions, respectively. The
non-dimensional oxygen and ECM concentrations and the solid (oncotic) pressure
are also shown. The oxygen diffuses only a short distance (about 0.2 mm) from the
parent vessel as can be observed from the figure. However, the pre-existing vasculature
(which yields a background oxygen concentration of approximately 0.4), provides
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Fig. 2 The evolution towards a steady-state avascular multicell (2D) spheroid. The tumour regions
(black proliferating ΩP, dark grey hypoxic/quiescent ΩH, light grey necrotic ΩN), the oxygen, mechan-
ical pressure and ECM are shown at times t = 0, 15 and 45 days. An animation is available with the
supplementary materials

enough oxygen for the tumour to grow. As the tumour grows, the pressure in the
proliferating region increases, the oxygen is depleted in the tumour and the ECM is
degraded. A hypoxic/quiescent core forms at about 9 days when the tumour radius
is approximately 0.34 mm (not shown). While the tumour continues to grow and
degrade the extracellular matrix, the pressure decreases and the tumour growth starts
to slow, as can be seen in Fig. 2. A necrotic core forms around day 15 when the radius
of the tumour is approximately 0.5 mm. The pressure drops significantly to reflect
the volume loss in the necrotic core associated with the break-down of the necrotic
cells and the growth of the tumour slows even further as the tumour approaches a
steady state. As the growth of the tumour slows, the ECM degradation becomes more
pronounced. This actually causes a competition between two effects: the pressure-
induced motion, which becomes more effective since the mobility increases when the
ECM decreases, and haptotaxis which tends to inhibit growth of the tumour into the
less dense ECM outside the tumour (recall that haptotaxis induces motion up ECM
gradients). Further, the MDE also degrades the pre-existing vessels which results in a
reduction in the supply of oxygen. As a result of haptotaxis and the reduced oxygen
supply, the tumour actually shrinks slightly after reaching a maximum radius of about
0.64 mm, see Fig. 3.

4.2 Tumour-induced angiogenesis and vasular growth: no solid pressure-induced
neovascular response

We next consider tumour-induced angiogenesis where there is no effect of the solid
pressure on either the radius of the new vessels or the extravasation of nutrient. In
particular, we take c (Pvessel, P) = 0 in Eqs. 4 and 25. Angiogenesis is initiated from
the avascular tumour configuration at t = 45 days from Fig. 2. At this time, ten
sprout tips are released from the parent vessel. The initial vessel radii are 6 µm. The
inlet pressure and outlet pressures in the parent vessel are Pvessel,in = 3, 660 Pa and
Pvessel,out = 2, 060 Pa, respectively. The growth duration is t = 0.05 which means that
the intravascular flow and vessel adaption algorithms are called nearly every tumour
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Fig. 3 The areas (mm2) of the total tumour (solid line), proliferating region (open circle), hypoxic region
(closed dot) and the necrotic region (inverted triangle) as a function of time for the simulation in Fig. 2

growth time step. The flow duration is τ = 0.25 with a time step approximately equal
to ∆τ = 0.005 (again ∆τ is adaptive to satisfy an intravascular CFL condition). This
means that 50 iterations of the flow and vascular adaptation algorithms are performed
every tumour growth time step. By flowing and adapting the vascular network so fre-
quently, we hoped that a relatively short flow duration time could be used to get a
reasonable approximation of the blood flow in the network. Indeed, preliminary simu-
lations showed that increasing the flow duration did not change the results qualitatively
or, in some cases depending on the vascular network configuration, quantitatively. In
a future work, we will quantify the effect of the flow duration upon the results.

The evolution of the tumour and the neo-vascular network is shown in Figs. 4
and 5. As can be seen from the figures, it takes some time for flow to develop after
angiogenesis is initiated; flow first occurs after about 7 days (52 days of total growth
time) in a region near the parent vessel. This can be seen from the plots of haematocrit
and oxygen which are signatures of blood flow. Little additional oxygen diffuses to the
tumour. Accordingly, the tumour maintains a steady size (or shrinks a little due to the
reasons described above). This may be seen in Fig. 6. Some of the vessels continue to
lengthen, branch and migrate towards the tumour heading in particular for the hypoxic
region where TAF is released.

After about 10 days (55 days of total growth time), a large loop forms through which
blood flows. The loop penetrates the tumour and provides the tumour cells with a direct
source of oxygen. The tumour responds by rapidly growing along the oxygen source
and co-opts the neo-vasculature and the hypoxic region shrinks and changes shape. As
the tumour grows, the hypoxic and necrotic regions start to grow again as well and the
new vessels near the tumour/host interface branch in response to wall shear stresses
and increased TAF levels. This results in increased anastomosis and blood flow. The
increased oxygen supply in turn causes large pressures to form in the proliferating
region and the tumour to grow even more rapidly, enhancing this effect. Because
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Fig. 4 Tumour-induced angiogenesis and vascular tumour growth. The vessels do not respond to the solid
pressure generated by the growing tumour. The tumour develops a microvascular network that provides it
with a direct source of oxygen and results in rapid growth with a compact (sphere-like) shape. The colour
scheme is the same as in Fig. 2 and the times shown are t = 48 (3 days after angiogenesis is initiated), 52.5,
55.5, 58.5, 63 and 67.5 days. An animation can be found online with the supplementary materials

Fig. 5 Dimensional intravascular radius (m) and pressure (Pa) along with the nondimensional ECM and
TAF concentrations from the simulation shown in Fig. 4. The times are the same as in Fig. 4
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Fig. 6 The areas (mm2) of the total tumour (solid line), proliferating region (open circle), hypoxic region
(closed dot) and the necrotic region (inverted triangle) as a function of time for the simulation in Fig. 4

there is no response of the new vessels to these large pressures, the tumour simply
continues to co-opt the vessels creating an effective tumour microvasculature. This
microvasculature provides a nearly uniform source of nutrient in the upper two thirds
of the tumour; the lower third is primarily hypoxic and quiescent. As a consequence,
the tumour shape remains compact as the tumour grows.

In Fig. 5, the dimensional neo-vasculature radii (in m) and intravascular pressures
(in Pa) are shown together with the non-dimensional ECM and TAF concentrations.
At early times, the radii are small and TAF diffuses from the quiescent zone. The
ring of lowered ECM surrounding the tumour is clearly seen. The pressure is highest
in the neo-vasculature closest to the inlet of the parent capillary where the highest
pressures are. As blood flow starts, the radii increase and the overall pressure decreases
while the pressure in some vessels increases as blood spreads throughout the network.
This process continues as the tumour grows and the vasculature continues to branch,
anastomose and carry more and more flow. As the hypoxic and necrotic regions shrink,
the TAF distribution changes and the vessels respond accordingly. Observe that the
degraded ECM just outside the tumour does not prevent the vessels from penetrating the
tumour even though the sprout-tips have to migrate up ECM gradients to accomplish
this.

The first vessels that penetrate the tumour do not carry blood and thus the tumour
does not respond to their penetration. Instead, these vessels migrate towards the
hypoxic region where they tend to get stuck. This occurs because the TAF concen-
tration is nearly uniform (T = 1) and so the sprout-tips to move randomly and tend
to collide with their own trailing vessel preventing further migration. At later times
though, new vessels grow into the tumour center and anastomose. This leads to blood
flow and oxygen extravasation deep in the tumour interior. Further, observe that the
tumour grows so fast that it outruns the ring of degraded ECM around its boundary
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and is growing into only very slightly degraded ECM. The ECM in the tumour inte-
rior degrades rather slowly and the ECM signature of the original avascular tumour
spheroid can still be seen at late times.

This simulation shows that when the new vessels are not affected by the tumour
solid pressure, dramatic growth occurs as the tumour co-opts the host vasculature to
create its own microvasculature and receives a direct source of oxygen. In addition, the
tumour growth and angiogenesis processes are nonlinearly coupled as the vasculature
responds to the growth by migrating towards the ever changing TAF distributions and
by branching and anastomosing near the tumour–host interface. This leads to increased
blood flow. At the same time, the increased blood flow in the vascular network affects
how the tumour grows, and in particular speeds growth up. This then affects the
response of the vasculature.

4.3 Tumour-induced angiogenesis and vasular growth: the effect of solid
pressure-induced neovascular response

Next, we consider, in Figs. 7, 8 and 9, the effect of solid/mechanical pressure-induced
vascular response on tumour-induced angiogenesis and vascular growth. We repeat the
simulation in Sect. 4.2 except with c (Pvessel, P) non-zero as given in Eq. 5. This means
that transfer of oxygen from the neo-vasculature to the tissue may be significantly
reduced and the vessel radii may be correspondingly constricted. With the values of

Fig. 7 Tumour-induced angiogenesis and vascular tumour growth. The vessels respond to the solid pressure
generated by the growing tumour. Accordingly, strong oxygen gradients are present that result in strongly
heterogeneous tumour cell proliferation and shape instability. The color scheme is the same as in Fig. 2 and
the times shown are t = 48 (3 days after angiogenesis is initiated), 52.5, 67.5, 82.5, 105 and 150 days. An
animation is available online with the supplementary materials
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Fig. 8 Dimensional intravascular radius (m) and pressure (Pa) along with the nondimensional ECM and
TAF concentrations from the simulation shown in Fig. 7. The times are the same as in Fig. 7

Fig. 9 The areas (mm2) of the total tumour (solid line), proliferating region (open circle), hypoxic region
(closed dots) and the necrotic region (inverted triangle) as a function of time for the simulation in Fig. 7

the parameters used here (see the supplementary materials), a solid pressure-induced
vascular response begins to occur when the solid pressure P ≈ 0.8.

At early times, the angiogenic response and the tumour growth is similar to the case
presented earlier in Figs. 4, 5 and 6. The newly developing vessels migrate, prolifer-
ate, branch and anastomose. It also takes some time for flow to begin with significant
flow developing only after about 10 days (55 days of total growth time). Blood flow
in the neo-vasculature starts near the parent capillary and eventually the flow reaches
the tumour. Because the initial ECM is slightly different than that in Fig. 4 (due to the
random component) and due to the random component of the sprout tip motion,
the vascular network at early times is not identical to that obtained previously in
Fig. 4.

In contrast to the case considered in Fig. 4, here the solid pressure prevents any
delivery of oxygen internally to the tumour and thus the delivery of oxygen is
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heterogeneous and significant oxygen gradients persist in the tumour interior. There
is no functional microvasculature internal to the tumour. While the tumour responds
by growing towards the oxygen-delivering neo-vasculature, the solid pressure gener-
ated by tumour cell proliferation also constricts the neo-vasculature in the direction
of growth (where pressure is highest) and also correspondingly inhibits the transfer of
oxygen from those vessels. As a consequence, the overall solid pressure is significantly
lower than that in Fig. 4. This makes the tumour grow much more slowly than that in
Fig. 4 as can be seen in Fig. 9. Note the vertical scale in Fig. 9 is one half of that in
Fig. 6.

The neo-vasculature in other areas of the host microenvironment then provide
a stronger source of oxygen. This triggers tumour-cell proliferation and growth in
regions where proliferation had been decreased previously. The heterogeneity of oxy-
gen delivery and the associated oxygen gradients cause heterogeneous tumour cell
proliferation. Unlike the case in Fig. 4, proliferation is confined to regions close to the
tumour–host interface. This results in morphological instability that leads to the forma-
tion of invasive tumour clusters (e.g. buds) and a complex tumour morphology. This
result is consistent with the theory and predictions made earlier (see, for example,
Cristini et al. [20,22,42], Anderson et. al. [3,5,30], and Macklin and Lowengrub
[45–48]), that substrate inhomogeneities in the tumour microenvironment tend to cause
morphological instabilities in growing tumours.

Although nutrient-providing, functional vessels are not able to penetrate the tumour
during growth, the growth of the tumour elicits a strong branching and anastomosis
response from the nearby neo-vasculature in the host microenvironment. Although
there is an analogous neo-vascular response seen in Fig. 4, the effect here is much
more pronounced as the levels of TAF are higher in these regions (because tumour
hypoxia is increased) and thus the wall shear stresses initiate more significant
branching.

In Fig. 8, the dimensional neo-vasculature radii (in m) and intravascular pressures
(in Pa) are shown together with the non-dimensional ECM and TAF concentrations. As
before, blood flow causes a dilation of the vessels and an overall decrease of pressure as
branching, anastomosis and increased blood flow occurs throughout the neo-vascular
network. The constriction of neo-vessels in response to the solid pressure is clearly
seen.

The tumour-secreted MDE degrades the ECM in the host microenvironment near
the tumour and in the tumour interior. As before (recall Fig. 5), the new vessels are
still able to migrate through the region of lower ECM even though this acts against
haptotaxis. Because the tumour grows more slowly than that in Fig. 5, only the tips
of the invasive clusters outrun the degraded ECM. As can be seen in Fig. 8, the host
ECM is degraded in the region between the invading clusters. The ECM signature of
the original avascular tumour spheroid can no longer be seen at later times.

This simulation shows even stronger nonlinear coupling between the tumour-
induced angiogenesis and the progression of the tumour compared to the prior case
shown in Fig. 7, 8 and 9. The pressure-induced vascular response of constricting
the radii of the neo-vasculature and inhibiting blood-tissue oxygen transfer not only
affects the tumour growth dramatically, but also significantly affects the growth of the
neo-vascular network, and vice-versa.
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Fig. 10 The evolution towards a steady-state avascular multicell (2D) spheroid with enhanced ECM degra-
dation. The MDE production and degradation parameters are larger than those used in Fig. 2. See the sup-
plementary materials where there is also an animation available online. The times shown are t = 0, 15 and
45 days

4.4 Avascular growth to a multicellular (2D) spheroid with enhanced ECM
degradation and production

We next examine the effect of ECM degradation upon the results. In Fig. 10, we repeat
the simulation in Sect. 4.1 except that both the MDE degradation and production
parameters are increased (see the supplementary materials).

The tumour grows by uptaking oxygen delivered by the pre-existing (uniform)
vasculature and growth is more rapid than that for the avascular tumour shown in
Sect. 4.1 (Fig. 2). This occurs because the mobility is larger here due to the enhanced
degradation of ECM. This effect overcomes the tendency of haptotaxis to keep the
tumour away from the degraded ECM.

The tumour reaches a nearly steady size, containing both a hypoxic and a necrotic
core, that is significantly larger than that shown in Figs. 2 and 3; the radius at 45 days
is approximately 0.78 mm (see Fig. 11). At the final time shown (45 days), the ECM is
significantly degraded in the host microenvironment and in the tumour necrotic core to
the point that there is even a thin annular “hole” in the ECM immediately surrounding
the spheroid, and a circular hole in the necrotic region where the density of ECM
E ≈ 0.

4.5 Tumour-induced angiogenesis and vascular growth: The effect of solid
pressure-induced neovascular response and enhanced ECM degradation
and production

Next, we consider, in Figs. 12, 13 and 14, the effect of enhanced ECM degradation
on tumour-induced angiogenesis and vascular growth. We repeat the simulation shown
in Sect. 4.3 except that the initial condition is the t = 45 day simulation from
Fig. 10 and the MDE parameters are the same as in that figure. (See the supplementary
materials for the parameter values.)

As in the simulation shown in Sect. 4.2, the new vessels grow and form loops
near the parent capillary. However, now because of the growing ECM annular hole
surrounding the tumour, the new vessels are not able to reach the tumour and are instead
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Fig. 11 The areas (mm2) of the total tumour (solid line), proliferating region (open circle), hypoxic region
(solid dot) and the necrotic region (inverted triangle) as a function of time for the simulation in Fig. 10

Fig. 12 Tumour-induced angiogenesis and vascular tumour growth with enhanced ECM degradation. The
times shown are t = 48 (3 days after angiogenesis is initiated), 52.5, 67.5, 82.5, 105 and 150 days. An
animation is available online with the supplementary materials

trapped by the ECM hole due to haptotaxis. The vessels then encapsulate roughly the
upper half of the tumour.

As blood flows through the neo-vascular network and approaches the tumour, the
tumour responds by growing towards the flowing neo-vasculature that provide the
oxygen source, as in Sect. 4.3. The tumour elongates, constricts the neo-vasculature in
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Fig. 13 Dimensional intravascular radius (m) and pressure (Pa) along with the nondimensional ECM and
TAF concentrations from the simulation in Fig. 12. The times are the same as in Fig. 12

Fig. 14 The areas (mm2) of the total tumour (solid line), proliferating region (open circle), hypoxic region
(solid dot) and the necrotic region (inverted triangle) as a function of time for the simulation in Fig. 12

its path and prevents the transfer of oxygen from the neo-vasculature to the host. This
limits tumour cell proliferation and results in a roughly steady maximum solid pressure.
Correspondingly, there is heterogeneous oxygen supply, heterogeneous tumour cell
proliferation and there are strong oxygen gradients. As in Sect. 4.3, this results in a
morphological instability of the growing solid tumour.

As the tumour continues to grow, the neo-vasculature respond by increasing branch-
ing and anastomosing near the tumour–host interface; similar dense blood vessel
growth near the tumour periphery has been observed clinically in glioma [35]. The
denser vascular network results in a broader supply of oxygen in the part of the tumour
closest to the parent capillary. Proliferation is increased and the top of the tumour flat-
tens. The increased proliferation leads to large solid pressures which then constrict
the nearby new vessels and inhibit oxygen supply. The tumour then begins to grow
towards other vessels near the parent capillary and the top of the tumour becomes
unstable. Further, there is instability along the side of the tumour that leads to the

123



Multiscale modelling and nonlinear simulation of vascular tumour growth 793

1 50    100

0.25

1

50

D

µ

25 units

Fig. 15 Left predicted tumour morphological response to microenvironmental nutrient availability
(increases along horizontal axis) and biomechanical responsiveness (increases along vertical axis) from
[47] (reprinted with permission from Elsevier). Right Tumour morphology and ECM profile at 150 days
with enhanced matrix degradation (top, Sect. 4.5) and lower matrix degradation (bottom, Sect. 4.3)

encapsulation of host domain inside the tumour. Also observe that a small amount of
oxygen is able to be delivered into the tumour interior at very late times as haematocrit
is trapped in a constricted vessel at a location where the pressure is sufficiently low to
allow extravasation.

Figure 13 shows the dimensional neo-vasculature radii (in m) and the intravascular
pressures (in Pa) together with the non-dimensional ECN and TAF concentrations.
The results are similar to those obtained before except that the tumour does not outrun
the ECM hole although at the top of the tumour, the hole is quite shallow.

Interestingly, even though the initial tumour in Fig. 12 is larger than that in Fig. 7,
the final tumour size at t = 150 days is roughly the same for both cases (see Figs. 14
and 9). The ECM hole present in the simulation in Fig. 12 prevents the new vessels
from getting close to the tumour during the early stages of growth; this allows the
tumour in Fig. 7 to catch up and even grow slightly larger than that in Fig. 12.

Furthermore, the enhanced matrix degradation increases the mobility µ in the
tumour microenvironment relative to inside the tumour, resulting in a biomechani-
cally responsive microenvironment; the observed relatively compact morphology is
consistent with the predictions of Macklin and Lowengrub in [47] for this growth
regime. (See the analogous tumor-shapes in the upper row of the morphology diagram
in Fig. 15, compared with the upper right plot). Similarly, the lower matrix degrada-
tion in Sect. 4.3 decreases the mobility in the tumour microenvironment relative to
the tumour, yielding a biomechanically-unresponsive microenvironment; the observed
fingering morphology matches the predictions in [47] for this growth regime. (Com-
pare the tumor-shapes in the lower right figures of the morphology diagram in Fig. 15
with the lower right plot).
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Fig. 16 Average vessel radii. Simulation from Fig. 7 (solid), simulation from Fig. 4. (solid dots), simulation
from Fig. 12 (diamond)

Finally, in Fig. 16, we compare the average radii in the neo-vascular networks for
the simulations in Figs. 4, 7 and 12. At early times, the radii for the simulation in
Fig. 4, where the neo-vasculature does not respond to solid pressure, grows the fastest
as blood flows uninhibited through the network. Later, however, the simulation with
lower ECM degradation shows the most rapid radii increase. This occurs because the
EC sprout-tips are able to move more freely through the host domain and do not get
caught by degraded ECM. This provides the vascular network with a more widely
varying flow response.

5 Conclusions and future directions

In this paper, we have coupled an improved continuum model of solid tumour inva-
sion (following [48]) with a model of tumour-induced angiogenesis (following [50])
to produce a new multi-scale model of vascular solid tumour growth. The invasion
and angiogenesis models were coupled through the tumour angiogenic factors (TAF)
released by the tumour cells and through the nutrient extravasated from the neo-
vascular network. As the blood flows through the neo-vascular network, nutrients
(e.g. oxygen) are extravasated and diffuse through the ECM triggering further growth
of the tumour, which in turn influences the TAF expression. In addition, the extrava-
sation is mediated by the hydrostatic stress (solid pressure) generated by the growing
tumour. The solid pressure also affects vascular remodeling by restricting the radii of
the vessels and thus the flow pattern and wall shear stresses. The vascular network and
tumour progression were also coupled via the ECM as both the tumour cells and ECs
upregulate matrix degrading proteolytic enzymes which cause localized degradation
of the ECM which in turn affects haptotactic migration.
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We performed simulations of the multi-scale model that demonstrated the
importance of the nonlinear coupling between the growth and remodeling of the vas-
cular network, the blood flow through the network and the tumour progression. The
solid pressure generated by tumour cell proliferation effectively shuts down large por-
tions of the vascular network dramatically affecting the flow, the subsequent network
remodeling, the delivery of nutrients to the tumour and the subsequent tumour pro-
gression. In addition, ECM degradation by tumour cells was seen to have a dramatic
affect on both the development of the vascular network and the growth response of
the tumour. In particular, when the ECM degradation is significant, the newly formed
vessels tended to encapsulate, rather than penetrate, the tumour and were thus less
effective in delivering nutrients.

There are many directions in which this work will be taken in the future both in
terms of modeling additional biophysical effects as well as algorithmic improvements.
Regarding the algorithm, we plan to upgrade the solid pressure/nutrient solver by
solving for P and σ as a coupled system. This will prevent oscillations that may occur
by lagging P in the source term for nutrient. We also plan to accelerate the solver for
the intravascular pressure to improve performance of the coupled algorithm.

Regarding the model, we plan to develop a more detailed analysis of the effect of
solid pressure on the constriction and collapse of vessels in the microvasculature and
on the corresponding response of the microvascular network. We also plan to include
the effects of the venous system. Other features, such as the recruitment of pericytes
by the vascular ECs will also be investigated. In addition, we will incorporate more
realistic models for soft tissue mechanics.

The work presented here demonstrates that nonlinear simulations are a powerful
tool for understanding phenomena fundamental to solid tumour growth. A biophysi-
cally justified computer model could provide an enormous benefit to the clinician, the
patient, and society by efficiently searching parameter space to identify optimal, or
nearly optimal, individualized treatment strategies involving, for example, chemother-
apy and adjuvant treatments such as anti-angiogenic or anti-invasive therapies. This
is a direction we plan to explore in the future.
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