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Abstract In this paper we consider the phenomenon of backward bifurcation in epi-
demic modelling illustrated by an extended model for Bovine Respiratory Syncytial
Virus (BRSV) amongst cattle. In its simplest form, backward bifurcation in epidemic
models usually implies the existence of two subcritical endemic equilibria for R0 < 1,
where R0 is the basic reproductive number, and a unique supercritical endemic equi-
librium for R0 > 1. In our three-stage extended model we find that more complex
bifurcation diagrams are possible. The paper starts with a review of some of the pre-
vious work on backward bifurcation then describes our three-stage model. We give
equilibrium and stability results, and also provide some biological motivation for the
model being studied. It is shown that backward bifurcation can occur in the three-stage
model for small b, where b is the common per capita birth and death rate. We are able
to classify the possible bifurcation diagrams. Some realistic numerical examples are
discussed at the end of the paper, both for b small and for larger values of b.

Keywords Backward bifurcation · Equilibrium and stability analysis · Basic
reproduction ratio · Simulation · Three stage model · Bovine Respiratory Syncytial
Virus
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1 Introduction and literature review

The dynamics of the spread of an infectious disease in a population of humans or
animals can, in many instances, be satisfactorily modelled by a system of determinis-
tic differential equations. In obtaining these equations it is usual to assume that the
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2 D. Greenhalgh, M. Griffiths

population can be partitioned into a set of distinct classes, each defining the state of an
individual with respect to the disease. In the simplest scenario an individual is either
susceptible to the disease or infected, and our population is split into just two classes.
To make things more realistic we might include further classes to take account of the
various stages in the progression of the disease.

For a particular set of model parameters, we may search for equilibrium solutions
of our system of differential equations. A bifurcation diagram provides a picture of
how these equilibrium solutions depend on the basic reproduction ratio R0, where R0
is defined as the expected number of secondary cases caused by a single infected case
entering the disease-free population at equilibrium. There is generally a change in the
qualitative behaviour of the system when R0 = 1 in that the disease-free equilibrium
(DFE) bifurcates into a branch representing the endemic equilibrium and a further
branch of the DFE. This point on the diagram is termed the bifurcation point, and
the curve emanating from it the bifurcation curve. For most simple epidemic models
no endemic equilibria are present when R0 ≤ 1. In these cases the bifurcation curve
is such that as we travel along it from the bifurcation point, the level of infection
increases as R0 increases. This is known as forward bifurcation. However, in more
complicated disease models the phenomenon of backward bifurcation has also come
to light, whereby the initial direction of the bifurcation curve is such that as we move
along it from the bifurcation point, R0 decreases as the level of infection increases.

It would appear that the first accounts of the presence of backward bifurcation in
an epidemic model were given in similar articles by Castillo-Chavez et al. [1,2] and
Huang et al. [12]. The phrase ‘backward bifurcation’ was not actually used in any of
these papers, although Fig. 1 in the article by Huang et al. [12] is a bifurcation diagram
that clearly demonstrates this phenomenon.

The continuous nature of a bifurcation curve means that the presence of back-
ward bifurcation generally indicates the existence of (at least) two subcritical endemic
equilibria for R∗ < R0 < 1, where R∗ corresponds to the value of R0 at which a ver-
tical turning point on the bifurcation curve occurs. It has been found in some models
exhibiting backward bifurcation that one of these subcritical endemic equilibria, gene-
rally the one corresponding to the higher level of infection, is locally asymptotically
stable (LAS). Thus the presence of backward bifurcation certainly has implications
for disease control since it is now possible for the disease to persist even when R0 < 1.
In other words, the classical requirement for the eradication of the disease is no lon-
ger satisfied. In order to ensure that the disease is eliminated from the population we
would require that R0 < R∗. It is also worth noting here that the presence of backward
bifurcation is not actually necessary for the existence of multiple endemic equilibria.
Indeed, as we shall show, it is possible for both multiple supercritical and multiple sub-
critical endemic equilibria to exist, even when a bifurcation diagram displays forward
bifurcation.

Over the last decade it has emerged that a wide range of epidemic models have the
potential for exhibiting multiple equilibria and, in particular, backward bifurcation.
We summarise here a number of important papers that are directly relevant to our work
here.

Greenhalgh et al. [7] studied a model for the spread of Bovine Respiratory Syncytial
Virus (BRSV) in cattle. The authors note that, although many models for the spread
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of infectious diseases amongst animals assume that any infected animal will transmit
the disease at the same rate as any other, there is evidence that this may not always be
the case. If recovery from an initial infection offers only partial immunity then it may
be possible for an animal to become lightly infected again, maybe even without any
observable clinical symptoms of the disease. It seems possible, for some diseases at
least, that such seropositive animals may still be able to pass on the infection, but at
a lower rate than animals experiencing infection for the first-time. The population in
this model is thus partitioned into four classes, consisting of susceptible individuals
that have never experienced the disease before, susceptible individuals that have been
infected at least once before but are now recovered, individuals experiencing infection
for the first time, and, finally infected individuals that have experienced infection
before (the seropositive class). A detailed analysis reveals that backward bifurcation
can occur, and that the higher of the two resulting subcritical endemic equilibria is
stable while the lower one is unstable. Several bifurcation diagrams are obtained by
fixing some of the parameter values for BRSV taken from de Jong et al. [4] while
varying the others. From these diagrams it would appear that there is the potential for
backward bifurcation to occur using realistic parameter values.

It should be noted that the decision to use a two-stage model was for the sake
of simplicity. In order to incorporate the idea that successive exposure to infectious
agents may cause decreased susceptibility and infectivity, this might be regarded as
an oversimplification. However, whilst in reality we probably need an infinite number
of stages, three stages will give a more realistic model than a two-stage one. Also it
is more important to model the first two stages separately as most of the important
biological differences will occur during the first two stages. Indeed, this is something
that we shall pursue in this paper.

The paper by Hadeler and Castillo-Chavez [10] considers the spread of a sexually
transmitted disease in a population split into a sexually active and relatively small core
group, and a weakly connected and largely inactive remainder, referred to as the non-
core group. An example of a particular disease they had in mind was HIV/AIDS, with
the population being homosexual males. The core group is the promiscuous element
of the homosexual community while the non-core group is regarded as completely
inactive sexually. The core group is further subdivided into susceptible, educated (or
vaccinated) and infected individuals. It was found that in the extreme cases where either
education leads to complete protection or where all recovered individuals proceed
immediately to the educated class, there is no backward bifurcation. The authors noted
that the sets of parameter values that did actually lead to the presence of backward
bifurcation are characteristic of a highly infective disease and a poor education program
so that some educated individuals do become infected, and recovered individuals have
a high risk of going back to the susceptible class. Again here, this model might be
made more realistic by incorporating various levels of education.

Dushoff [6] incorporates ideas from immunology into an epidemiological model.
The author presents a simple model with one susceptible class and two possible states
of infection, in which it is assumed that the more exposure an individual has to the
infection the more likely they are to acquire the severe state of infection. However, an
intermediate state might be more realistic giving a three stage model. That the intensity
of exposure can have an affect on the immunological outcome is given theoretical
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support via the models of Schweitzer and Anderson [16]. In their paper they suggest
that in some cases a low level of exposure to an infectious organism may lead to a mild
infection whilst a greater exposure may overwhelm the immune system and lead to a
far greater subsequent transmission of the disease. Three stages may be more accurate
here too.

Hadeler and van den Driessche [11] consider an SIRS model for two social groups
with different susceptibilities to the disease, referred to as ‘normal’ or ‘educated’.
A third intermediate class would be appropriate here also.

Greenhalgh et al. [7] examine the impact of condom use on the sexual transmission
of HIV and AIDS in a homosexual male population. To this end they initially consider a
general age-structured model for which the frequency of condom use is represented by
a continuous distribution. The age structure is collapsed by discretising the frequency
of condom use into N distinct levels. The case N = 2 is considered firstly in its most
general form and then specialised to the situation where all individuals in one of the
two groups are completely safe in their sexual practices. Infected individuals in the
high risk group can migrate to the zero risk group. However, we would obtain a more
realistic approximation by looking at a model with N = 3, incorporating a group with
an intermediate level of condom use.

On examining the available literature, it becomes clear that the investigation of
backward bifurcation in epidemic modelling is a relatively new research area, and
that there are still many aspects of this interesting phenomenon warranting further
study. A number of the papers reviewed stated that more complicated versions of the
epidemic model being studied would probably also exhibit backward bifurcation. This
would certainly seem plausible in general. Furthermore, other than a cursory comment
and accompanying diagram in a paper by van den Driessche and Watmough [17], it
does not seem to have been mentioned anywhere that more complex models could
possibly lead to bifurcation diagrams that are even more interesting than those already
considered. For relatively complicated (multi-stage, for example) disease models the
shape of the bifurcation diagram may allow subcritical endemic equilibria and multiple
supercritical endemic equilibria to exist while still displaying forward bifurcation. The
possibility for the existence of these more complex bifurcation diagrams in epidemic
modelling is something that we wish to investigate here. Should they exist, their
interesting geometry could have ramifications with regard to the dynamics of the
models in the regions of the parameter space near R0 = 1.

We consider here a disease model that is a natural extension, to three susceptible
and three infectious classes, of the two-stage BRSV model studied by Greenhalgh
et al. [7]. We have two good reasons for choosing this particular model:

(1) Its relative complexity will provide the potential for some of the more complex
bifurcation diagrams alluded to above. While the two-stage model is interesting in
its own right and does, under certain circumstances, exhibit backward bifurcation,
it does not allow the possibility for two subcritical endemic equilibria to exist in
the presence of forward bifurcation, nor does it allow the existence of multiple
supercritical equilibria.

(2) As we have argued previously, a three-stage model for the spread of BRSV in
cattle may actually be more realistic than the already-existing two-stage model.
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Backward bifurcation, equilibrium and stability phenomena 5

We probe our three-stage model analytically in order to determine which of these
more interesting bifurcation diagrams are possible, and then go on to pursue a more
in-depth analysis, with the intention of establishing a set of criteria (i.e. sets of condi-
tions on the parameter values) such that when they are satisfied these interesting
phenomena are able to occur. We then classify the possible shapes of the bifurcation
diagrams, along with the regions of the parameter space that give rise to them. We
would, of course, also want to consider whether any of our criteria for multiple ende-
mic equilibria to occur can be satisfied by a set of biologically meaningful parameter
values.

2 The model

We define here a three-stage model for the spread of an infectious disease through
a population. This is an extension of the two-stage model for BRSV discussed by
Greenhalgh et al. [7] . The basic idea is that infection confers partial but not complete
immunity on individuals. We assume that the disease is not fatal. There are three
susceptible classes: those who have never previously been infected (S1), those who
have been infected just once (S2), and those who have suffered at least two previous
infections (S3). Similarly, I1 denotes the number of first-time infected individuals, I2
the number experiencing infection for the second-time, and I3 the number of infected
individuals for which this is at least their third period of infection. Thus, if N is the
total population size, we have that S1 + S2 + S3 + I1 + I2 + I3 = N .

For an individual in infectious class i, i = 1, 2, 3, the infectious period is assumed
to be exponentially distributed with parameter βi . First-time susceptible individuals
are infected by individuals in infectious class i at rate αi Ii/N , i = 1, 2, 3. Susceptible
individuals that have already experienced the disease will have partial immunity and
we model this using the parameters γ1 and γ2 which are respectively the factors
by which the infectivity is reduced for second and third-time susceptible individuals.
Thus, for example, γ1α2 I2/N gives the per capita rate at which second-time susceptible
individuals are infected by second-time infected individuals. We assume that 1 ≥ γ1 ≥
γ2 > 0.

We also assume that the population size remains constant. We say that b is the per
capita birth rate and also the per capita death rate for each of the six categories. We
also assume that φ is the proportion of individuals that are vaccinated at birth, and that
these individuals immediately enter the class of third-time susceptible individuals. We
have that 0 ≤ φ ≤ 1.

By defining s j = S j/N and i j = I j/N , j = 1, 2, 3, the spread of the infection in
the above model can be described by the following system of differential equations:

ds1

dt
= b(1 − φ) − (α1i1 + α2i2 + α3i3)s1 − bs1,

di1

dt
= (α1i1 + α2i2 + α3i3)s1 − (b + β1)i1,

ds2

dt
= β1i1 − γ1(α1i1 + α2i2 + α3i3)s2 − bs2,
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6 D. Greenhalgh, M. Griffiths

di2

dt
= γ1(α1i1 + α2i2 + α3i3)s2 − (b + β2)i2,

ds3

dt
= bφ + β2i2 + β3i3 − γ2(α1i1 + α2i2 + α3i3)s3 − bs3

and
di3

dt
= γ2(α1i1 + α2i2 + α3i3)s3 − (b + β3)i3, (2.1)

where s1(t)+s2(t)+s3(t)+i1(t)+i2(t)+i3(t) = 1 for all t ≥ 0, and si (0), i j (0) ≥ 0
for i, j = 1, 2, 3. We also assume that all parameter values, apart from φ are strictly
positive.

Simple models assume that all animals are equally susceptible or infectious, but
the reality is that is that successive exposure to infectious agents may cause decreased
susceptibility and infectivity. For the sake of simplicity Greenhalgh et al. [7] used a
two-stage model for BRSV in cattle, but whilst in reality we probably need an infinite
number of stages, three stages gives a more realistic model than does two. Also, it is
important to model the first two stages separately as most of the important changes will
be covered by them. The term β3i3 in the equation for s3 is justified as this represents
the return of individuals into the susceptible population after having recovered from
their third (and any subsequent) infectious period.

Ideally even more stages would be needed (indeed, this idea is examined by Griffths
[8]) but this greatly increases the difficulty in classifying the possible bifurcation
diagrams. Also, given that there are a large number of two-stage models which exhibit
backward bifurcation, all of which have qualitatively similar bifurcation diagrams,
and that most of these models are similarly approximations to a more general situation
where there are an infinite number of groups, it is of generic interest to examine how this
model extends to three stages. This may have implications for realistic extensions of
other two-stage models, such as the one studied by Hadeler and Castillo-Chavez [10].

2.1 Stability results for the disease-free equilibrium

We note that there is a unique disease-free equilibrium (DFE) (s1, i1, s2, i2, s3, i3) =
(1 − φ, 0, 0, 0, φ, 0). We first deduce the value of the basic reproduction ratio R0 for
this model. Note that R0 is the dominant eigenvalue of the next generation matrix at
the DFE (see [5]).

If there are k classes of infected individuals, the next generation matrix m is defined
to be the k × k matrix such that the entry mi j is the expected number of infections
caused in the j th susceptible class by the introduction into the population at the DFE
of a single individual from the i th infected class. It is straightforward to show that

m =

⎛
⎜⎜⎜⎝

α1(1−φ)
b+β1

0 γ2α1φ
b+β1

α2(1−φ)
b+β2

0 γ2α2φ
b+β2

α3(1−φ)
b+β3

0 γ2α3φ
b+β3

⎞
⎟⎟⎟⎠
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and hence R0 = α1(1−φ)
b+β1

+ γ2α3φ
b+β3

. Using the results in [5] we know that the DFE is
LAS when R0 < 1 and unstable when R0 > 1. We are also able to give a global
stability result for the DFE:

Theorem 2.1.1 The DFE, (s1, i1, s2, i2, s3, i3) = (1 − φ, 0, 0, 0, φ, 0), is globally
asymptotically stable (GAS) if 1 > (1 − φ)R01 + R02 + R03, where

R01 = α1

b + β1
, R02 = γ1α2

b + β2
and R03 = γ2α3

b + β3
.

Proof Because of the similarity of the equation for ds1/dt to the one for the
two-stage model [7] we can use a similar argument to obtain the result s∞

1 =
limt→∞ supT ≥t s1(T ) ≤ 1 − φ. Then, for any ε > 0 there exists some t0 such that
s1 ≤ 1−φ+ε for all t ≥ t0. Pick ε small enough so that 1 > (1−φ+ε)R01+R02+R03.
We now have, for t ≥ t0, using s1 ≤ 1 − φ + ε,

di1

dt
≤ i1{α1(1 − φ + ε) − (b + β1)} + i2{α2(1 − φ + ε)} + i3{α3(1 − φ + ε)}.

Also, since s2 ≤ 1 and s3 ≤ 1, we have that

di2

dt
≤ i1{γ1α1} + i2{γ1α2 − (b + β2)} + i3{γ1α3}

and
di3

dt
≤ i1{γ2α1} + i2{γ2α2} + i3{γ2α3 − (b + β3)}.

Thus di/dt ≤ Qi where i = (i1, i2, i3)
T and

Q =
⎛
⎜⎝

α1(1 − φ + ε) − (b + β1) α2(1 − φ + ε) α3(1 − φ + ε)

γ1α1 γ1α2 − (b + β2) γ1α3

γ2α1 γ2α2 γ2α3 − (b + β3)

⎞
⎟⎠.

Q+ MI is a matrix with strictly positive entries so long as M is a large enough real
number. Thus, by the Perron–Frobenius Theorem (see [18]), Q + MI has a simple
eigenvalue, λ say, equal to its spectral radius, and the corresponding left eigenvector
e has strictly positive entries. Then e is also an eigenvector of Q with corresponding
eigenvalue λ− M . Note that the eigenvalue corresponding to the spectral radius is the
dominant eigenvalue, and that the spectral radius, and hence λ, is always a positive
real number. If we let ω1 = λ − M , ω2 and ω3 be the eigenvalues of Q then the
eigenvalues of Q+ MI are ω1 + M, ω2 + M and ω3 + M . Thus ω1 is the dominant
eigenvalue of Q.
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8 D. Greenhalgh, M. Griffiths

The characteristic equation of Q is det[Q − ωI] = 0, and this is given by ω3 +
Aω2 + Bω + C = 0, where

A = (b + β1) + (b + β2) + (b + β3) − α1(1 − φ + ε) − γ1α2 − γ2α3,

B = (b + β1)(b + β2) + (b + β1)(b + β3) + (b + β2)(b + β3)

−α1(1 + φ + ε){(b + β2) + (b + β3)} − γ1α2{(b + β1) + (b + β3)}
− γ2α3{(b + β1) + (b + β2)},

and

C = (b + β1)(b + β2)(b + β3) − α1(1 − φ + ε)(b + β2)(b + β3)

−γ1α2(b + β1)(b + β3) − γ2α3(b + β1)(b + β2).

For all the roots ω1, ω2 and ω3 of det[Q−ωI] = 0 to have negative real parts then, by
the Routh–Hurwitz criteria, we need A and C positive with AB > C . Note that C > 0
if, and only if 1 > (1−φ+ε)R01+R02+R03. Next, as 1 > (1−φ+ε)R01+R02+R03
then b+β1 > α1(1−φ+ε), b+β2 > γ1α2 and b+β3 > γ2α3, implying that A > 0.

It remains, therefore, to check that AB > C . This is true as a consequence of
Lemma 2.1.2 below. Hence ω1 is a negative real number. Since e has strictly positive
entries then the fact that di/dt ≤ Qi tells us that d(e.i)/dt ≤ (eQ).i = ω1e.i. On
integrating we see that e.i → 0 as t → ∞. As e is strictly positive, we see that i → 0
as t → ∞. Then, as in [7], it can be shown that s1 → 1 − φ as t → ∞.

Since ds2/dt = β1i1 − γ1(α1i1 + α2i2 + α3i3)s2 − bs2, then the fact that i → 0 as
t → ∞ means that s2 → 0 as t → ∞. Finally, the above results imply that s3 → φ

as t → ∞, showing that the DFE (s1, i1, s2, i2, s3, i3) = (1 −φ, 0, 0, 0, φ, 0) is GAS
if 1 > (1 − φ + ε)R01 + R02 + R03 . ��

Lemma 2.1.2 If a, b, c, d, e and f are positive real numbers such that d
a + e

b + f
c < 1

then

(a + b + c − d − e − f ) {ab + bc + ac − d(b + c) − e(a + c) − f (a + b)}
> (abc − dbc − eac − f ab).

Proof See Appendix. ��

3 The existence of endemic equilibria

Letting (s∗
1 , i∗1 , s∗

2 , i∗2 , s∗
3 , i∗3 ) denote an endemic equilibrium solution then, with I =

α1i∗1 + α2i∗2 + α3i∗3 , we obtain, from the differential equations:
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s∗
1 = b(1 − φ)

I + b
= (b + β1)i∗1

I
,

s∗
2 = β1i∗1

γ1 I + b
= (b + β2)i∗2

γ1 I
,

and s∗
3 = bφ + β2i∗2 + β3i∗3

γ2 I + b
= (b + β3)i∗3

γ2 I
.

From these we have

i∗1 = b(1 − φ)I

(b + β1)(I + b)
,

i∗2 = γ1β1b(1 − φ)I 2

(b + β1)(b + β2)(I + b)(γ1 I + b)
,

and i∗3 = γ2φ I

(γ2 I + b + β3)
+ γ1γ2β1β2(1 − φ)I 3

(b + β1)(b + β2)(I + b)(γ1 I + b)(γ2 I + b + β3)
.

Now, on using I = α1i∗1 +α2i∗2 +α3i∗3 , we obtain the following equation in I (that
we shall later transform into a cubic in I ):

(b + β1)(b + β2) = α1b(1 − φ)(b + β2)

I + b
+ α2β1b(1 − φ)I

(I + b)(I + b
γ1

)

+ α3β1β2(1 − φ)I 2

(I + b)(I + b
γ1

)(I + b+β3
γ2

)
+ α3φ(b + β1)(b + β2)

I + b+β3
γ2

.

(3.1)

It is straightforward to show that there is a one-to-one correspondence between the
endemic equilibria of the model and the positive real roots of equation (3.1) for I . We
note here that since 0 ≤ i∗1 + i∗2 + i∗3 ≤ 1 we have that 0 ≤ I ≤ max {α1, α2, α3}.

3.1 The existence of backward bifurcation and multiple endemic equilibria

Let us firstly deal with the case for which all individuals are vaccinated at birth. In this
case we have φ = 1 and our equation in I simplifies considerably to

α3(b + β1)(b + β2)

I + b+β3
γ2

= (b + β1)(b + β2).

This has the unique solution I = α3 − (b + β3)/γ2. For this to be an endemic equili-
brium, we require α3 − (b + β3)/γ2 > 0, which is equivalent to the condition R0 > 1.
We see, therefore, the usual forward bifurcation occurring here. There is a unique
endemic equilibrium if, and only if, R0 > 1.
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10 D. Greenhalgh, M. Griffiths

Having dealt with the special case φ = 1 we shall, from now on, assume that
0 ≤ φ < 1. The equation in I can be re-arranged to give

AI 3 + B I 2 + C I + D = 0, (3.2)

with A = (b + β1)(b + β2),

B = (b + β1)(b + β2)

(
b + b

γ1
+ b + β3

γ2

)
− α1b(1 − φ)(b + β2)

−α2β1b(1 − φ) − α3β1β2(1 − φ) − α3φ(b + β1)(b + β2),

C = b(b + β1)(b + β2)

(
b

γ1
+ b + β3

γ2
+ b + β3

γ1γ2

)

−α1b(1 − φ)(b + β2)

(
b

γ1
+ b + β3

γ2

)
− α2β1b (1 − φ)

(
b + β3

γ2

)

−α3bφ(b + β1)(b + β2)

(
1 + 1

γ1

)
,

and D = b2

γ1γ2
(b + β1)(b + β2)(b + β3){1 − R0}.

From the above we see that R0 < 1 if, and only if, D > 0. Thus, by considering the
shape of the graph y = AI 3 + B I 2 + C I + D (and noting that A > 0), we have that
there will either be zero or two subcritical endemic equilibria in this case.

In order to show that two subcritical endemic equilibria are actually possible
(accompanied by backward bifurcation), we firstly obtain the following result:

Lemma 3.1 Consider the function f (x, λ) = ax3 + bx2 + cx + d where a > 0 is
fixed but for which the coefficients b, c and d are each continuous functions of some
parameter λ where, in particular, d is a strictly decreasing function of λ. Suppose
that, for some λ = λd > 0, we have c(λd) < 0 and d(λd) = 0. Then there exists some
λ = λ1 > 0 (where d(λ1) > 0) such that f (x, λ) = 0 has two positive real roots for
all d in (0, d(λ1)).

Proof See Appendix. ��
Theorem 3.2 It is possible for backward bifurcation to occur when 0 ≤ φ < 1.

Proof We shall introduce the bifurcation coordinate α = (α1, α2, α3), and assume
that the remaining parameters are set at some fixed positive values. Now we choose

any value for α3, ᾱ3 say, such that b+β1
1−φ

(
1 − γ2ᾱ3φ

b+β3

)
> 0. We will consider the

3-dimensional parameter space comprising of all elements α = (α1, α2, α3) in
the positive octant. If we choose α1 as our bifurcation parameter, the expression on the
left hand side of the above inequality gives α1(R0 = 1), the value of α1 corresponding
to R0 = 1. Note that we have a free choice for α2.
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Backward bifurcation, equilibrium and stability phenomena 11

We have

C = b

{
(b + β1)(b + β2)

{(
b

γ1
+ b + β3

γ2

) (
1 − α1(1 − φ)

b + β1
− γ2α3φ

b + β3

)

+ α3φ

γ1

(
bγ2

b + β3
− 1

)}
+b + β3

γ1γ2
((b + β1)(b + β2) − γ1α2β1(1 − φ))

}
.

In particular C(R0 = 1)

= b

γ1

{
α3φ(b + β1)(b + β2)

(
bγ2

b + β3
− 1

)
+ b + β3

γ2
((b + β1)(b + β2)

− γ1α2β1(1 − φ))

}
.

We see that it is possible to choose some positive value of α2, ᾱ2 say, such that
C(R0 = 1) < 0. We now consider the behaviour of the graph y = AI 3+B I 2+C I+D,
with α = (α1, ᾱ2, ᾱ3), as we decrease α1 from the value α1(R0 = 1), noting that B, C
and D are each continuous functions of α1, D(R0 = 1) = 0, and D decreases with
α1. Lemma 3.1 tells us that there exists some α̂1 satisfying 0 < α̂1 < α1(R0 = 1)

such that our model possesses two subcritical endemic equilibria for α = (α1, ᾱ2, ᾱ3)

whenever, α̂1 < α1 < α1(R0 = 1). In other words, we have shown that it is possible
for there to exist two endemic equilibria when R0 < 1. ��

We have already noted that the existence of two subcritical endemic equilibria
does not necessarily imply the presence of backward bifurcation. However, so long
as C(R0 = 1) < 0, we will have backward bifurcation here. This may be explained
as follows: The graph of y = AI 3 + B I 2 + C I + D passes through the origin when
R0 = 1, and the gradient here is given by C(R0 = 1). Thus when C(R0 = 1) < 0 the
graph has a negative gradient at the origin. We also know that D is a decreasing function
of α1. Therefore, by continuity we see that for some ε > 0, there is only one endemic
equilibrium for α1 ∈ (α1(R0 = 1), α1(R0 = 1) + ε) but two endemic equilibria for
α1 ∈ (α1(R0 = 1) − ε, α1(R0 = 1)). Hence backward bifurcation is present when
C(R0 = 1) < 0. In fact it is clear that there exists some non-empty connected
subspace, S say, of 	3 such that backward bifurcation occurs for all (α1, α2, α3) ∈ S.

We note that the conditions C(R0 = 1) < 0 and C(R0 = 1) > 0 tell us backward
and forward bifurcation will occur respectively. The latter, however, does not preclude
the existence of subcritical endemic equilibria.

4 Determination of regions with different numbers of endemic equilibria
for the special case b small

We seek here regions of the parameter space P for which multiple endemic equilibria
can occur. We have already shown that this phenomenon does not occur when φ = 1,
and we assume here that 0 ≤ φ < 1. Our equilibrium equation 3.2 may be written as
I 3 + B̂ I 2 + Ĉ I + D̂ = 0, where
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12 D. Greenhalgh, M. Griffiths

B̂ = b + b

γ1
+ b + β3

γ2
− α1b(1 − φ)

b + β1
− α2β1b(1 − φ)

(b + β1)(b + β2)

− α3β1β2(1 − φ)

(b + β1)(b + β2)
− α3φ,

Ĉ = b

{
b

γ1
+ b + β3

γ2
+ b + β3

γ1γ2
− α1b(1 − φ)

γ1(b + β1)
− α1(b + β3)(1 − φ)

γ2(b + β1)

−α2β1(b + β3)(1 − φ)

γ2(b + β1)(b + β2)
− α3φ

(
1 + 1

γ1

)}

and D̂ = b2

γ1γ2
(b + β3)

{
1 − α1(1 − φ)

b + β1
− γ2α3φ

b + β3

}
= b2

γ1γ2
(b + β3) {1 − R0} .

In practice b tends to be numerically very small compared to the other parameters as
the disease spreads over a much shorter timescale than the lifetime of the animals.

For notational convenience we now define the following:

R1 = α1

β1
, R2 = γ1α2

β2
and R3 = γ2α3

β3
.

These expressions are independent of one another. Note that as b is small Ri ≈ R0i

and Ri = limb→0 R0i for i = 1, 2, 3. R01, R02 and R03 each have a biological
interpretation with regard to our disease model. R01 is the basic reproduction ratio
for an SIS model in which the per capita contact rate of susceptible animals is α1 and
the average infectious period is β−1

1 . Similarly, R02 is the basic reproduction ratio for
an SIS model in which the per capita contact rate of susceptible animals is α2, but for
which a contact between a susceptible and an infected animal results in an infection
with probability γ1. R03 has a corresponding interpretation. It should also be noted
that as bifurcation parameters, R1 and α1 can be regarded as essentially equivalent.

Using the above definitions and assuming that b is small we have that

B̂ = β3

γ2
(1 − R3) + O(b),

Ĉ = bβ3

γ1γ2
{(1 + γ1)(1 − φR3) − (1 − φ)(γ1 R1 + R2)} + O(b2)

and D̂ = b2β3

γ1γ2
{1 − (1 − φ)R1 − φR3} + O(b3).

Now let F(I ) = I 3 + B̂ I 2 + Ĉ I + D̂ so that F ′(I ) = 3I 2 + 2B̂ I + Ĉ . We already
know that there is a one-to-one correspondence between the positive roots of F(I ) = 0
and the endemic equilibria, and we next determine the regions in the parameter space
P for which there are different numbers of endemic equilibria.
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Backward bifurcation, equilibrium and stability phenomena 13

4.1 Subcritical endemic equilibria

We start by considering the case R0 < 1. In order to state the intervals of interest, we
now define certain ‘critical’ values of R1:

Ra
1 = 1−φR3

1−φ
arising from the requirement that R0 < 1,

Rb
1 = 1

γ1

{
(1 + γ1)Ra

1 − R2
}

from the upper limit on R3 in (A.3),
Rc

1 = R2 from the lower and upper limits on R2 in (A.3) and (A.4), respectively, and
Rd

1 = 1
γ1

{1 + γ1 − R2} from the upper limit on R2 in (A.3).

Finally, condition on R3 < 1 and,

1

1 − φ

{
(1 + γ1)(1 − φR3) + 2

√
γ1(1 − R3) (1 − φR3)

}
< R2 < Ra

1 .

Let Re
1 be the unique positive root of

R2 = 1

1−φ

{
(1 + γ1)(1−φR3) + 2

√
γ1(1−R3) (1 − (1−φ)R1 − φR3)

}
− γ1 R1,

in (0,Ra
1 ]. Re

1 arises from the lower limit on R2 in (A.8).

Theorem 4.1 For sufficiently small b:

(1) If R3 > 1/φ then there are no subcritical endemic equilibria.
(2) If 1 < R3 < 1/φ then there are two subcritical endemic equilibria for all

R1 ∈ (0, Ra
1 ), and two subcritical endemic equilibria for all R1 ∈ (0, Ra

1 ] except
possibly when R2 = Ra

1 .
(3) If R3 ≤ 1 and R2 ≤ Ra

1 then there are no subcritical endemic equilibria for all
R1 ∈ (0, Ra

1 ), and no subcritical endemic equilibria for all R1 ∈ (0, Ra
1 ] except

possibly when R2 = Ra
1 .

(4) If R3 ≤ 1 and Ra
1 < R2 < 1

1−φ

{
(1 + γ1)(1 − φR3) + 2

√
γ1(1 − R3) (1 − φR3)

}
then there are two subcritical endemic equilibria for all R1 ∈ (Re

1, Ra
1 ] and no

subcritical endemic equilibria for all R1 ∈ (0, Re
1).

(5) If R3 ≤ 1 and R2 ≥ 1
1−φ

{
(1 + γ1)(1 − φR3) + 2

√
γ1(1 − R3) (1 − φR3)

}
then

there are two subcritical endemic equilibria for all R1 ∈ (0, Ra
1 ].

Proof See Appendix. ��

In the conclusions section we consider the possibility of interpreting biologically
the conditions given above. They cover all possible regions of the parameter space P ,
with the exception of a finite number of special case equalities, defining curves and
surfaces in P . The analysis is not sufficient to tell us whether or not there exist two
subcritical endemic equilibria in these cases. We would need to consider higher order
terms in b.
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14 D. Greenhalgh, M. Griffiths

4.2 Multiple supercritical endemic equilibria

Let us go on to consider the case R0 > 1. We define

Rt
1 = 1

1 − φ

(
1 − φR3 + 1

γ1

{
(2 − φ)R3 − 1 − 2

√
(1 − φ)R3(R3 − 1)

})
.

Theorem 4.2 For b sufficiently small:

(1) If R3 > 1/φ then there is only one supercritical endemic equilibrium for all
R1 ∈ (Ra

1 ,∞).
(2) If 1 < R3 < 1/φ and R2 < Ra

1 then there are three supercritical endemic
equilibria for all R1 ∈ (Ra

1 , R∗
1) and only one supercritical endemic equilibrium

for all R1 ∈ (R∗
1 ,∞), where R∗

1 is the unique root in (Ra
1 , Rt

1) of the equation

R2 = 1

1−φ

{
(1+γ1)(1−φR3)−2

√
γ1(R3−1) ((1−φ)R1+φR3−1)

}
−γ1 R1.

(4.1)

The uniqueness of R∗
1 is due to the right hand side of (4.1) being a decreasing

function of R1 on this interval.
(3) If 1 < R3 < 1/φ and R2 ≥ Ra

1 then there is only one supercritical endemic
equilibrium for all R1 ∈ (Ra

1 ,∞).
(4) If R3 < 1 then there is only one supercritical endemic equilibrium for all R1 ∈

(Ra
1 ,∞).

Proof See Appendix. ��

The above covers all possible regions of the parameter space P , with the exception
of a finite number of special case equalities, such as R3 = 1. If R3 = 1, for example,
then the preceding analysis is not sufficient to tell us whether or not there exist three
supercritical endemic equilibria. We would need, in these special cases, to consider
higher order terms in b. Again, we may extend the analysis of the proof to cover the
case R3 = 1 if required. Further details are given in Griffiths [8].

Although the proofs of Theorems 4.1 and 4.2 assume that φ > 0, the results are also
valid for φ = 0, with the obvious interpretations. Again this is shown in Griffiths [8].

Our calculations have been based on the assumption that b is small. It is interesting
to see what happens therefore when we take this one stage further and set b = 0. In this
case we do not observe backward bifurcation. There is a unique endemic equilibrium
given by

(s∗
1 , i∗1 , s∗

2 , i∗2 , s∗
3 , i∗3 ) =

(
0, 0, 0, 0,

β3

γ2α3
, 1 − β3

γ2α3

)
.

This endemic equilibrium is possible if and only if R3 > 1.
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Backward bifurcation, equilibrium and stability phenomena 15

5 Limited consideration of the stability of the endemic equilibria

We can eliminate one of the equations in (2.1) by setting s3 = 1−(s1+s2+i1+i2+i3).
However, this leads to a characteristic equation which is a quintic and in general it
is difficult to draw analytical conclusions, although it is possible to deduce that the
unique endemic equilibrium is always LAS in the cases φ = 1 or b = 0. As analytical
results seem elusive instead we used numerical methods to analyse stability using
both R [14] and SOLVER [9]. This involved both simulations and the application of
the Routh–Hurwitz criteria. We have found some interesting stability patterns, which
could form the basis of a future paper.

6 A consideration of the possible bifurcation diagrams

We consider values of φ with 0 ≤ φ < 1. We discuss the possible shapes of the curves
that may arise on the bifurcation diagrams when using α1 as a bifurcation parameter.
The endemic equilibrium solutions correspond to the positive roots of Eq. (3.2).

If we keep all of the parameters fixed other than α1 then we may regard the solutions
of this equation as functions of α1, and hence write them as I (α1). Thus

AI (α1)
3 + B I (α1)

2 + C I (α1) + D = 0 (6.1)

defines, implicitly, a curve of I against α1. We shall refer to this as a bifurcation curve.
We now differentiate both sides of the equation with respect to α1 to obtain

(3AI 2+2B I +C)
d I

dα1
− b(b+β2) (1−φ)

{
I 2+

(
b

γ1
+ b+β3

γ2

)
I + b(b+β3)

γ1γ2

}
= 0,

giving us

d I

dα1
=

b(b + β2) (1 − φ)
{

I 2 +
(

b
γ1

+ b+β3
γ2

)
I + b(b+β3)

γ1γ2

}

3AI 2 + 2B I + C
,

noting that this derivative is a function of both I and α1, since B and C are both
functions of α1. We know that there is a bifurcation point when R0 = 1, i.e. when

α1 =
(

1 − γ2α3φ

b + β3

)
b + β1

1 − φ

and I = 0. The sign of d I/dα1 at this point will indicate to us the possibility for
backward bifurcation. We have

d I

dα1

∣∣∣∣
R0=1,I=0

= b2(b + β2)(b + β3)(1 − φ)

γ1γ2C(R0 = 1)
,
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16 D. Greenhalgh, M. Griffiths

where

C(R0 = 1) = b(b + β1)(b + β2)(b + β3)

γ1γ2
− bβ1(b + β3)α2(1 − φ)

γ2

+α3φ b (b + β1)(b + β2)

γ1

(
bγ2

b + β3
− 1

)
.

Backward bifurcation will occur when C(R0 = 1) < 0 (see the discussion following
the proof of Theorem 3.2), i.e. when

bβ1(b + β3)α2(1 − φ)

γ2
+ α3φb(b + β1)(b + β2)

γ1

>
b(b + β1)(b + β2)(b + β3)

γ1γ2
+ α3φb2(b + β1)(b + β2)

γ1

γ2

b + β3
.

A typical bifurcation curve for this situation is given in Sect. 6.1 as Fig. 1, although
we note that it is also possible for the situation in Fig. 2 to arise in this case.

A simpler type of curve, as in Fig. 3, could arise when C(R0 = 1) > 0. Here there is
forward bifurcation. For many relatively simple epidemic models this is the only type
of bifurcation curve that can result, for which there is always a unique supercritical
endemic equilibrium but where there is no possibility for subcritical endemic equilibria
to exist. We note, however, that in our case this does not preclude the possibility that
two subcritical endemic equilibria exist when C(R0 = 1) > 0. Indeed, the preceding
analysis has already shown that this is possible. In this case the bifurcation curve could
be of the type shown in Figs. 4 or 5 (noting that, by continuity, there will necessarily
then be three endemic equilibria for some region of the parameter space for which
R0 > 1). The bifurcation curve in Fig. 6 may also be possible, in which there exist
three endemic equilibria for some region of the parameter space such that R0 > 1, but
for which no backward bifurcation is exhibited.

All of the bifurcation diagrams shown in Figs. 1, 2, 3, 4, 5 and 6 possess either zero,
one or two vertical turning points. Where present, these turning points are denoted
on the diagrams by Rmin

1 and/or Rmax
1 , alternatively αmin

1 and/or αmax
1 when using α1

as the bifurcation parameter. We show below that it is in fact possible to calculate
the exact values of αmin

1 and/or αmax
1 . We now consider whether there is the potential

for more than two vertical turning points, which would give rise to more complicated
bifurcation diagrams.

Firstly, let us rearrange the Eq. (6.1) in the form

α1 = AI 3 + B̃ I 2 + C̃ I + D̃

b(b + β2)(1 − φ)
{

I 2 +
(

b
γ1

+ b+β3
γ2

)
I + b(b+β3)

γ1γ2

} ,

where B̃ = (b + β1)(b + β2)

(
b + b

γ1
+ b + β3

γ2

)
− α2β1b(1 − φ)

−α3β1β2(1 − φ) − α3φ(b + β1)(b + β2),
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C̃ = b

{
(b + β1)(b + β2)

(
b

γ1
+ b + β3

γ2
+ b + β3

γ1γ2

)

− α2β1

(
b + β3

γ2

)
(1 − φ) − α3φ(b + β1)(b + β2)

(
1 + 1

γ1

)}

and D̃ = b2

γ1γ2
(b + β1)(b + β2)(b + β3)

(
1 − α3φγ2

b + β3

)
.

We then have

dα1

d I

=
F(I )

{
3AI 2+2B̃ I +C̃

}
− b(b+β2)

{
2I +

(
b
γ1

+ b+β3
γ2

)}
(1−φ)(AI 3+ B̃ I 2+C̃ I + D̃)

{F(I )}2 ,

where

F(I ) = b(b + β2)(1 − φ)

{
I 2 +

(
b

γ1
+ b + β3

γ2

)
I + b(b + β3)

γ1γ2

}
,

noting that {F(I )}2 > 0 when I > 0 and φ < 1. The values of I corresponding to
the vertical turning points on the bifurcation diagram are the real positive solutions of
the quartic equation

F(I )
{

3AI 2 + 2B̃ I + C̃
}

− b(b + β2)

{
2I +

(
b

γ1
+ b + β3

γ2

)}

×(1 − φ)(AI 3 + B̃ I 2 + C̃ I + D̃) = 0.

In order to obtain the values of α1 at these turning points we substitute the real positive
solutions of the above quartic back into

α1 = AI 3 + B̃ I 2 + C̃ I + D̃

b(b + β2)(1 − φ)
{

I 2 +
(

b
γ1

+ b+β3
γ2

)
I + b(b+β3)

γ1γ2

} , (6.2)

although see the caveat in (2) below in this regard.
Before proceeding further, there are several things that are worth noting at this

stage, with regard to the above equation:

(1) On restricting the domain to non-negative values of I , it defines the bifurcation
curve. In actual fact bifurcation diagrams tend to be drawn with the bifurcation
parameter on the horizontal axis, so the usual convention of drawing the graph
of y = f (x) so that x is on the horizontal axis would give us the bifurcation
curve ‘on its side’. In other words, the bifurcation curve is given by the graph,
restricted to the positive quadrant, of the above equation.
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18 D. Greenhalgh, M. Griffiths

(2) We see that α1 is a rational function of I . In fact α1 = s(I )/t (I ) where s is a
cubic and t is a quadratic. This function is defined for all non-negative values of
I since t is non-zero (more specifically, positive) for all I ≥ 0. This means that
the curve defined by α1 = s(I )/t (I ) will not possess any vertical asymptotes
when I ≥ 0, and will thus be continuous for these values of I , although there
may exist positive values of I for which s(I )/t (I ) is negative (see Figs. 2, 4).
So, in calculating αmin

1 via the method given above, it is possible that a negative
value would result.

(3) The bifurcation curve has an oblique asymptote with equation

I = b(1 − φ)

b + β1
α1. (6.3)

From the above we see that, in Figs. 1, 4, 5 and 6, we would be able to calculate the
exact values of Rmin

1 and/or Rmax
1 by performing a similar procedure with R1 instead

of α1, noting that it is possible to obtain (via radicals) the exact solutions to any quartic
equation.

The fact that the number of vertical turning points on our bifurcation diagram is
determined by the number of real positive solutions to a quartic may lead us to believe
that it might be possible to obtain bifurcation curves that possess three or even four
turning points. However, we now show that neither of these situations is possible.

Theorem 6.1 The bifurcation diagrams for the epidemic model we are currently consi-
dering cannot have more than two vertical turning points.

Proof We may write (6.2) in the form α1 = a(I 3+bI 2+cI+d)

I 2+eI+ f
where, because of the

parameter expressions they represent, a, e and f must be positive. We then have

dα1

d I
= a

(
I 4 + 2eI 3 + (3 f + be − c)I 2 + 2(b f − d)I + (c f − de)

)
(
I 2 + eI + f

)2 ,

and we are thus looking for the real positive solutions of

I 4 + 2eI 3 + (3 f + be − c)I 2 + 2(b f − d)I + (c f − de) = 0. (6.4)

A quartic equation with real coefficients and at least three positive real roots must
actually possess four real roots, s, t, u and v say. Now

(I − s)(I − t)(I − u)(I − v) = I 4 − (s + t + u + v)I 3

+ (st + su + sv + tu + tv + uv)I 2

− (stu + stv + suv + tuv)I + stuv.

Let us compare the coefficients of this quartic expression with (6.4).
We see immediately that four turning points are not possible, since in that case we

would have 2e = −(s + t + u + v) < 0.
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Now say that there are three turning points. Then three of the roots s, t, u and v are
positive, while the remaining one is non-positive. Say that s is the non-positive root.
Since we require 2e = −(s + t + u + v) > 0 we see that −s > t + u + v. Then
stuv < 0, st + su + sv + tu + tv + uv < 0 and stu + stv + suv + tuv < 0.

The above tells us that

(i) 3 f + be − c < 0, (ii) b f − d > 0, (iii) c f − de < 0.

Thus from (ii) b > d/ f . Moreover c > be + 3 f > (de/ f ) + 3 f > c + 3 f . This is a
contradiction, thereby completing the proof of the Theorem. ��

6.1 Possible shapes of bifurcation diagrams

We consider here the possible shapes of the bifurcation curves discussed in the previous
section. These will depend on the existence of Rmin

1 and/or Rmax
1 (alternatively αmin

1
and/or αmax

1 ) and, should either of them exist, their values. However, although we have
demonstrated how to calculate these numbers analytically, we would also like to gain
an idea of the regions of the parameter space P that lead to particular diagrams. We
use the inequalities obtained in Section 4 with 0 < φ < 1 to classify the bifurcation
diagrams, bearing in mind that the various shapes result under the given conditions on
the parameters provided that b is sufficiently small.

Figure 1

R3 < 1 and
1 − φR3

1 − φ
< R2 <

1

1 − φ

{
(1 + γ1)(1 − φR3) + 2

√
γ1(1 − R3) (1 − φR3)

}
.

Figure 2

1 < R3 <
1

φ
and R2 ≥ 1 − φR3

1 − φ

or R3 < 1 and R2 ≥ 1

1 − φ

{
(1 + γ1)(1 − φR3) + 2

√
γ1(1 − R3) (1 − φR3)

}
.

Figure 3

R3 >
1

φ

or R3 < 1 and R2 ≤ 1 − φR3

1 − φ
.

Figure 4

1 < R3 <
1

φ
and R2 <

1 − φR3

1 − φ
.

The bifurcation diagrams in Figs. 1, 2 and 3 are similar to the ones obtained for
the two-stage model studied by Greenhalgh et al. [7], in which backward bifurcation
is and is not present, respectively. In our case Fig. 1 corresponds to the situation
in which there exist two subcritical endemic equilibria but only one supercritical
endemic equilibrium. Figure 3 demonstrates the situation in which there are no multiple
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Fig. 1 A bifurcation diagram
exhibiting backward bifurcation

I

1R0                
 

min
1R

Fig. 2 A bifurcation diagram
exhibiting backward bifurcation.
There are endemic equilibria
present for all positive values of
R1 (and hence also for all
positive values of R0)

1R

 I

0

Fig. 3 A bifurcation diagram
exhibiting forward bifurcation.
There is a unique supercritical
endemic equilibrium

1R

I

 0

equilibria at all. Figures 4, 5 and 6 display more complicated bifurcation curves that
cannot arise in the two-stage model.

Note that in Fig. 2, once the disease is established it cannot be eradicated by simply
decreasing the value of the bifurcation parameter. On the other hand, the bifurcation
curve in Fig. 3 is the type observed in most simple models, for which there are no
subcritical endemic equilibria and exactly one supercritical endemic equilibrium.

There are two more obvious candidates for the possible shapes of our bifurcation
curves. These are given in Figs. 5 and 6. All that we can say here is that the bifurcation
curves given in Figs. 5 and 6 cannot occur if b is sufficiently small, although we note
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1R

I

0  max
1R

Fig. 4 A bifurcation diagram exhibiting forward bifurcation as well as multiple subcritical and supercritical
endemic equilibria. There are endemic equilibria for all positive values of R1 (and hence for all positive
values of R0)

Fig. 5 A bifurcation diagram
exhibiting forward bifurcation as
well as multiple subcritical and
supercritical endemic equilibria.
There exists a positive value of
R1, Rmin

1 , below which no
endemic equilibria are possible

I

1R0              min
1R max

1R

1R

I

0            min
1R max

1R

Fig. 6 A bifurcation diagram exhibiting forward bifurcation as well as multiple supercritical endemic
equilibria, but no subcritical endemic equilibria

here that there are degenerate points where, as has been previously pointed out, we
cannot be certain what happens, so we cannot strictly rule out Figs. 5 and 6 for these
degenerate parameter values.

Despite this limitation, the analysis we have carried out with b small does demons-
trate the existence of at least four differently shaped bifurcation curves, and does not
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preclude the existence of a further two. We do, however, plot some bifurcation curves
in the next section, and, guided by the conditions that we have obtained for two or
three endemic equilibria to exist for sufficiently small b, it turns out to be very easy
to find regions in the parameter space that give bifurcation curves as in Figs. 5 and 6.

6.2 Plotted bifurcation diagrams

It turns out that the sets of conditions obtained in Sect. 4 in order to classify the shapes
of the bifurcation diagrams do not generally require b to be unrealistically small. This
may be noted by considering the various bifurcation diagrams plotted in the remainder
of this section, along with their corresponding sets of parameter values. In fact, prior
knowledge of the shapes of these diagrams was, in each case, acquired by using the
sets of inequalities given in Sect. 4.

We now show that it is possible to find sets of parameter values that give bifurcation
diagrams of the types shown in Figs. 5 and 6. The bifurcation diagram in Fig. 7a is
similar to the one shown in Fig. 5. It was obtained for the parameter values given
below:

b = 0.001, α2 = 0.03, α3 = 0.255, β1 = β2 = β3 = 0.1, γ1 = γ2 = 0.5

and φ = 0.001,

where the parameters γ1, γ2 and φ are dimensionless, whilst the remainder all possess
the units days−1. These parameters were motivated by realistic parameter values used
for BRSV. We kept our parameter values similar to those used by Greenhalgh et al.
[7] in their two-stage BRSV model, who had themselves used values based on the
estimates given by de Jong et al. [4]

We can see that both multiple subcritical and supercritical endemic equilibria are
present. All bifurcation diagrams were plotted by writing programmes in R. In all
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Fig. 7 a A bifurcation diagram exhibiting both multiple subcritical and supercritical endemic equilibria.
b A bifurcation diagram exhibiting multiple supercritical endemic equilibria but no subcritical endemic
equilibria
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bifurcation diagrams a solid line represents a locally stable endemic equilibrium and
a dotted line an unstable equilibrium.

On the other hand, the bifurcation diagram in Fig. 7b arose from the following
parameter values, where the units are the same as those above:

b = 0.001, α2 = 0.03, α3 = 0.238, β1 = β2 = β3 = 0.1, γ1 = γ2 = 0.5

and φ = 0.001.

It is similar in shape to the bifurcation diagram shown in Fig. 6. There are multiple
supercritical endemic equilibria but no subcritical endemic equilibria present here.

It should be noted that our bifurcation diagrams have the variable I along the
vertical axis, rather than any of the variables i∗1 , i∗2 or i∗3 . Also, the curves on bifurcation
diagrams utilising i1, i2 or i3 have a horizontal asymptote by virtue of the fact that each
of these variables are bounded above by 1. However, since I = α1i∗1 + α2i∗2 + α3i∗3 ,
the bifurcation diagrams for I have oblique asymptotes instead. We gave this oblique
asymptote in Eq. (6.3).

It is interesting to see an example of the way that a bifurcation diagram changes if,
starting from the type as in Fig. 4, we gradually increase b. A program was written in R
to produce dynamic bifurcation diagrams. These are animated diagrams demonstrating
how the bifurcation curve changes as one of the parameters, other than the bifurcation
parameter, is varied. The diagrams in Fig. 8a–d shows snapshots of such a dynamic
bifurcation diagram with b as the dynamic parameter. The remaining parameter values
were

α2 = 0.03, α3 = 0.24, β1 = β2 = β3 = 0.1, γ1 = γ2 = 0.5 and φ = 0.3.

It can be seen that as b increases we go from the type of bifurcation diagram in Fig. 4
to those in Figs. 5 and 6.

6.3 A bifurcation diagram demonstrating multiple endemic equilibria for realistic
parameter values

It could be argued that, in order for our model to be biologically meaningful, the
infectivity levels should be such that α1 > α2 > α3. In other words, first-time infected
individuals are more effective at spreading the infection than are second-time infected
individuals who, in turn, are more effective at spreading the infection than are third-
time infected individuals.

By using our conditions for the existence of two endemic equilibria, we obtained
the bifurcation diagram below with the following set of parameter values

b = 0.001, α2 = 0.05, α3 = 0.04, β1 = 0.07, β2 = 0.08, β3 = 0.025,

γ1 = 1.0, γ2 = 0.9 and φ = 0.0,

where γ1, γ2 and φ are dimensionless, while the rest of the parameters possess the
units days−1. It can be seen, from Fig. 9, that two subcritical endemic equilibria do

123



24 D. Greenhalgh, M. Griffiths

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Dynamic Stability Bifurcation Diagram

alpha1

I

b = 0.00072

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Dynamic Stability Bifurcation Diagram

alpha1

I

b = 0.001

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Dynamic Stability Bifurcation Diagram

alpha1

I

b = 0.0015

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Dynamic Stability Bifurcation Diagram

alpha1

I

b = 0.0022

(a) (b)

(d)(c)

Fig. 8 A series of bifurcation diagrams showing how the shape can change as b is increased

exist for some values of α1 greater than 0.05. Three supercritical endemic equilibria
are also possible.

Greenhalgh et al. [7] give a stability result for the two-stage BRSV model that is
equivalent to stating that a particular endemic equilibrium is LAS if, and only if, the
gradient of the bifurcation curve at that point is positive. On considering the bifurcation
diagrams in this section it might appear that the same could be said for the three-stage
model, but this turns out not to be the case. We have obtained bifurcation diagrams
for which sections of the curve possess a positive gradient yet display instability
there. Stability is thus clearly a far more complex issue in the three-stage model. It is
interesting to note, on considering Fig. 8b for example, that multiple LAS endemic
equilibria are possible.

7 Conclusions

We have extended, in a natural way, a deterministic epidemic model for which back-
ward bifurcation was already known to be present. The original two-stage model
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Fig. 9 A bifurcation diagram to illustrate the fact that multiple subcritical and supercritical endemic
equilibria are possible for what are arguably a realistic set of parameter values

allows for the possibility that individuals who recover from the disease but subse-
quently become re-infected may, as a result of partial immunity, possess different
characteristics from first-time infected individuals in terms of their recovery and infec-
tivity. We argued that the inclusion of a third stage might further enhance its realism.
Our main purpose has been to investigate the potential for more complicated bifurca-
tion diagrams to exist. Such diagrams might allow us to foresee, for certain regions
of the parameter space, some particularly interesting dynamic behaviour in epidemic
models such as subcritical invasions, and could also have repercussions with regard
to disease control.

By performing a detailed equilibrium analysis of the extended model, we have
found that there is indeed the possibility for the appearance of some unusual bifurca-
tion curves. We have been able to classify these bifurcation diagrams geometrically,
in terms of the regions of the parameter space in which they occur. In particular,
we have found bifurcation diagrams for which subcritical endemic equilibria occur,
even in the presence of forward bifurcation. We have also demonstrated the possibility
for multiple supercritical endemic equilibria to exist. Furthermore, there is the poten-
tial for such diagrams to exist with realistic parameter values. We have also been able
to say something about the types of bifurcation curve that definitely may not occur for
our model.

As a consequence of the above, our investigations would appear to shed light on
the potential dynamics of diseases such as BRSV and Aujesky’s disease in which
resistance to infection is gained in several stages. Indeed we have shown that complex
bifurcation diagrams are possible with parameter values based on BRSV. There are
also potential implications for control of these diseases, as the proportion φ vaccinated

123



26 D. Greenhalgh, M. Griffiths

at birth is a key parameter in determining the shape of the bifurcation diagrams. As
discussed by Greenhalgh et al. [7], de Jong et al. [4] build a stochastic model for BRSV
and estimate parameters from serological data on antibodies against BRSV in sera
from cattle in six dairy herds. They conclude that persistence of the infection amongst
seropositive cattle is still plausible although no-one has yet succeeded in isolating the
virus in re-infected cattle. The model is equally applicable to Aujesky’s disease in
pigs. de Jong and Kimman [3] and Sabó and Blaškovič [15] obtained experimental
evidence that the two-stage model is more suitable for this disease than a single stage
model.

Bearing in mind the comments made towards the beginning of Sect. 4, the building
blocks of our three-stage model are essentially three modified SIS submodels. From
this it becomes clear that our model may be regarded as a series of three interconnec-
ted one-stage submodels, two of which are similar to SIR and the other is SIS. The
presence, or otherwise, of backward bifurcation will depend in a very sensitive way
on the interaction between them. Furthermore, whether or not a subcritical invasion of
the disease actually takes place is sensitive both to the number of infected individuals
introduced into the disease free population and to the initial ratio of the types of these
individuals.

The conditions for the different shapes of bifurcation diagram which can occur
are parsimoniously cast in terms of the easily biologically identifiable parameters
R1, R2 and R3, the limiting basic reproduction numbers for the three submodels, φ,
the vaccination proportion at birth and the infectivity reduction factor γ1. It does not
seem easy to give a more concise biological explanation of precisely when different
types of bifurcation diagram are possible. However, we might consider the situation
whereby all of the parameters are kept fixed except for α1, α2 and α3, for example.

In a classical epidemic model reducing R0 to below one is sufficient to eliminate the
disease. For our model this tendency can be counteracted if R2 or R3 are sufficiently
large. In these cases disease can persist in the population when R0 = 1 due to back-
ward bifurcation. When this happens we may regard one of the submodel infection
processes as in some sense playing a dominant role with regard to the overall dyna-
mics of the system. Of course, for a realistic model we might expect α1 > α2 > α3.
Note, however, that such a condition does not preclude the possibility for backward
bifurcation. For example, since R3 = α3/β3 then even if α3 is not particularly large
it is still possible that R3 is large enough for backward bifurcation provided that β3
is sufficiently small. Indeed, [7] note that the average length of subsequent infectious
periods in BRSV appear to exceed that of the first.

There is scope for plenty of further work in this area. Firstly, a more detailed stability
analysis could be carried out, both analytically and numerically. From this we would
be able to consider in more depth the possibilities for eradicating the disease from
the population. Our initial numerical investigations have revealed that the situation is
considerably more complex than was the case for the two-stage BRSV model in that
the upper branch of the bifurcation curve is not now necessarily LAS along its entire
length.

Secondly, we can investigate further epidemic models to see whether refining or
extending them leads to the similar sort of phenomena that we have demonstrated in
this paper. Again here, our preliminary studies in this direction corroborate many of

123



Backward bifurcation, equilibrium and stability phenomena 27

the findings presented here, and have also unearthed some apparently new stability
phenomena.

Finally, we have already started looking at stochastic versions of these models in
order to consider possible connections between the presence of the more unusual
bifurcation curves and any unexpected stochastic phenomena that we observe. In
particular, we have found that a very interesting avenue of enquiry has been to consider
whether we can relate in any way the deterministic concept of a bifurcation curve to
the stochastic concept of the probability of extinction of the disease, given that one
infected person is introduced into the population at the DFE.

Appendix

Proof of Lemma 2.1.2

(
1

a
+ 1

b
+ 1

c

)
(a + b + c − d − e − f )

= 3 −
(

d

a
+ e

b
+ f

c

)
+ (a − d)

(
1

b
+ 1

c

)
+ (b − e)

(
1

a
+ 1

c

)

+ (c − f )

(
1

a
+ 1

b

)
,

> 2,

since
(

d
a + e

b + f
c

)
< 1. Hence (a + b + c − d − e − f ) ≥ abc

ab+bc+ca . But

ab + bc + ca

abc
(abc − dbc − eac − f ab)

< ab + bc + ca − d (b + c) − e (a + c) − f (a + b) .

The result follows. ��
Proof of Lemma 3.1 Let us consider the graph of y = f (x, λd). This passes through
the origin, and, since dy/dx = 3ax2 + 2b(λd)x + c(λd), we see that the gradient
at the origin, c(λd), is negative (by assumption). Then, since a > 0, we have that
f (x, λd) = 0 has a positive root. Now, as we decrease λ (and thus increase d from 0),
the fact the coefficients are continuous functions of λ guarantees that there will be
some open interval, (λ1, λd) say, for which f (x, λ) = 0 has two positive real roots
for all d in (0, d(λ1)), thereby completing the proof. ��
Proof of Theorem 4.1 R0 < 1 implies that D̂ > 0 so that F(I ) = 0 possesses at
least one real negative root and there will either be zero or two positive roots. In other
words, there will either be zero or two subcritical endemic equilibria. For there to be
any possibility at all for two endemic equilibria to exist, the graph of y = F(I ) must
possess two distinct real turning points so we require that B̂2 > 3Ĉ .

Suppose that � = 4
(

B̂2 − 3Ĉ
)

> 0, and let λ and µ be the distinct roots of

F ′(I ) = 0. We have that λ+µ = −2B̂/3. Then, as F ′(0) = Ĉ , we have, for example,
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that λ and µ are both non-negative if, and only if, B̂ < 0 and Ĉ ≥ 0. Now, by writing
�̄ = F(λ)F(µ), putting all of the above together and considering the possible shapes
of the graph y = F(I ) we arrive at the following:

If R0 < 1 there are two endemic equilibria if, and only if, either

� > 0, B̂ < 0, Ĉ ≥ 0 and �̄ < 0 (A.1)

or � > 0, Ĉ < 0 and �̄ < 0. (A.2)

We have, since B̂ = β3(1 − R3)/γ2 + O(b) and Ĉ = O(b), that

�

4
= B̂2 − 3Ĉ =

(
β3

γ2
(1 − R3)

)2

+ O(b).

Also, as is shown by Khan and Greenhalgh [13], we have

�̄ = 4

27
Ĉ3 − 1

27
B̂2Ĉ2 + 4

27
B̂3 D̂ − 2

3
B̂Ĉ D̂ + D̂2,

from which, since Ĉ3 = O(b3), B̂2Ĉ2 = O(b2), B̂3 D̂ = O(b2), B̂Ĉ D̂ = O(b3)

and D̂2 = O(b4), we obtain

�̄ = B̂2

27
{4B̂ D̂ − Ĉ2} + O(b3).

We now want to translate the inequalities on the coefficients given in (A.1) and
(A.2) into inequalities concerning regions of the parameter space P:

Let α1 ∈
(

0,
β1

1−φ

{
1 − γ2α3φ

β3

}]
or, in other words,R1 ∈ (0, Ra

1 ]. We then have,

for b > 0,

1 ≥ (1 − φ)R1 + φR3 = α1(1 − φ)

β1
+ γ2α3φ

β3
>

α1(1 − φ)

b + β1
+ γ2α3φ

b + β3
= R0.

We firstly consider (A.1). Unless R3 = 1 we certainly have that � > 0 for b suffi-
ciently small. At this point we introduce the notation x ≺ y to represent the statement:

‘x < y for sufficiently small b’,

so the above becomes � � 0 unless R3 = 1. Also, R3 > 1 implies B̂ ≺ 0. Note that:

(1) For the above interval to exist we require that R3 < 1/φ, if φ > 0.
(2) When R1 is in this interval then R3 > 1 implies that R1 < 1.

Using the expression for Ĉ gives us that R3 < 1
φ

{
1 − 1−φ

1+γ1
(γ1 R1 + R2)

}
implies

that Ĉ � 0. For the above inequality to be compatible with R3 > 1 we require that
φ < 1 − 1−φ

1+γ1
(γ1 R1 + R2) which gives, on rearranging, that R2 < γ1(1 − R1) + 1.
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Since R1 < 1 when R3 > 1, γ1(1 − R1) + 1 > 0. We also require that �̄ < 0. We
have

�̄ = B̂2

27
{4B̂ D̂ − Ĉ2} + O(b3)

= B̂2

27

{
4

(
β3

γ2
(1 − R3) + O(b)

) (
b2β3

γ1γ2
{1 − (1 − φ)R1 − φR3} + O(b3)

)

−
(

bβ3

γ1γ2
{(1 + γ1)(1 − φR3) − (1 − φ)(γ1 R1 + R2)} + O(b2)

)2
}

+ O(b3)

= B̂2b2β2
3

27γ 2
1 γ 2

2

{
4γ1(1 − R3) (1 − (1 − φ)R1 − φR3) − ((1 + γ1)(1 − φR3)

− (1 − φ)(γ1 R1 + R2))
2
}

+ O(b3).

Therefore if

R3 > 1, R1 ≤ Ra
1 and R3 <

1

φ

{
1 − 1 − φ

1 + γ1
(γ1 R1 + R2)

}

then �̄ ≺ 0.
We now need to combine all the inequalities involving R3. We have that the least

upper bound imposed on R3 by the condition R1 ≤ Ra
1 is at most that imposed by the

condition

R3 <
1

φ

{
1 − 1 − φ

1 + γ1
(γ1 R1 + R2)

}

if, and only if, R1 ≥ R2, giving us that, for R1 ∈ (0, Ra
1 ], (A.1) is satisfied, for

sufficiently small b, when

1 < R3 <
1

φ

{
1− 1 − φ

1 + γ1
(γ1 R1 + R2)

}
and R1 < R2 <1+γ1(1 − R1) (A.3)

or 1 < R3 ≤ 1

φ
{1 − (1 − φ)R1} and R2 ≤ R1, (A.4)

noting that 1 + γ1(1 − R1) > 1 when R1 < 1, as is the case when R3 > 1, so that
there always exists an R2 satisfying the latter inequality in (A.3).

It is clearer to combine the above conditions to give that, when R1 ∈ (0, Ra
1 ], (A.1)

is satisfied, for sufficiently small b, when

R2 < 1 + γ1(1 − R1) and 1 < R3 <
1

φ

{
1 − 1 − φ

1 + γ1
max (γ1 R1 + R2, (1+γ1)R1)

}
,
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noting that the upper inequality on R3 could be either < or ≤, depending on which of
γ1 R1+ R2 or (1+γ1)R1 is actually the larger. The remaining conditions on R2 in (A.3)
and (A.4) will automatically be implied by the relative sizes of these expressions.

We now consider the set of inequalities on the coefficients in (A.2), again with
R1 ∈ (0, Ra

1 ]. Once more we require that R3 < 1/φ, and we also have that � � 0

unless R3 = 1. Next, R3 > 1
φ

{
1 − 1−φ

1+γ1
(γ1 R1 + R2)

}
or the equivalent inequality,

R2 > (1 + γ1)Ra
1 − γ1 R1, implies that Ĉ ≺ 0.

As with (A.1) above we have that

4γ1(1 − R3) (1 − (1 − φ)R1−φR3)<((1+γ1)(1 − φR3)−(1 − φ)(γ1 R1 + R2))
2

implies that �̄ ≺ 0. Thus if R1 ≤ Ra
1 and R3 > 1 then we have that �̄ ≺ 0.

Finally, if R1 ≤ Ra
1 and R3 < 1 then, in order that �̄ ≺ 0, we require either

(1+γ1)(1−φR3) − (1−φ)(γ1 R1+R2) > 2
√

γ1(1−R3) (1−(1−φ)R1−φR3)

(A.5)

or (1−φ)(γ1 R1+R2)−(1+γ1)(1−φR3) > 2
√

γ1(1−R3) (1−(1−φ)R1−φR3).

(A.6)

(A.5) rearranges to

R2 <
1

1 − φ

{
(1 + γ1)(1 − φR3) − 2

√
γ1(1 − R3) (1−(1−φ)R1 − φR3)

}
− γ1 R1,

which contradicts the requirement that R2 > (1+γ1)Ra
1 −γ1 R1, while (A.6) rearranges

to

R2 >
1

1 − φ

{
(1 + γ1)(1 − φR3) + 2

√
γ1(1 − R3) (1 − (1 − φ)R1 − φR3)

}
−γ1 R1.

Summarising, for R1 ∈ (0, Ra
1 ] with sufficiently small b, condition (A.2) is satisfied

when either

1 < R3 <
1

φ
and R2 > (1 + γ1)Ra

1 − γ1 R1 (A.7)

or R3 < 1 and R2 >
1

1 − φ

{
(1 + γ1)(1 − φR3)

+ 2
√

γ1(1 − R3) (1 − (1 − φ)R1 − φR3)
}

− γ1 R1.

(A.8)

We would now like to provide an overall summary, using R1 as the bifurcation
parameter, of the conditions on the parameter space appearing in (A.3), (A.4), (A.7)
and (A.8). Thus we will need to obtain sets of inequalities, each of which is independent
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of R1 and accompanied by an interval for which two subcritical endemic equilibria
can exist when R1 is contained in that interval.

We note here that, in order for two subcritical endemic equilibria to exist, it is
enough that any one of these sets of conditions is satisfied. It is important to mention
that, so long as we disregard the ‘boundary sets’ in P such as R3 = 1, a necessary and
sufficient condition for a point in P to allow the existence of two subcritical endemic
equilibria is that it satisfies at least one of these sets of conditions.

We will show that the conditions in (A.3), (A.4) and (A.7) can be combined to give
a particularly simple set of criteria for two subcritical endemic equilibria to exist in
the case where 1 < R3 < 1/φ. The conditions in (A.8) then cover the situation for
which R3 < 1. Since the situation is complicated, we build the picture up gradually.
First we consider the conditions in each of (A.3), (A.4), (A.7) and (A.8) separately.
Here we state only the conditions under which two subcritical endemic equilibria do
exist, and it may therefore be assumed that, with the possible exception of a finite
number of special case equalities defining lines, planes and surfaces in P (that are on
the boundaries of the regions we discuss, some of which will be highlighted later on)
two subcritical endemic equilibria are not present for any set of conditions not covered
in the following summary:

We have that, for sufficiently small b:

From (A.3)

(1) If 1 < R3 < 1
φ

{
1 − 1−φ

1+γ1
R2

}
and R2 < 1 + γ2 then there are two subcritical

endemic equilibria for all R1 ∈ (0, min{Ra
1 , Rb

1 , Rc
1, Rd

1 }). It is straightforward to
show that min{Ra

1 , Rb
1 , Rc

1, Rd
1 } > 0. Note also that there exists an R3 satisfying

1 < R3 < 1
φ

{
1 − 1−φ

1+γ1
R2

}
if, and only if, R2 < 1 + γ1.

From (A.4)
(2) If 1 < R3 < 1

φ
and R2 ≤ Ra

1 then there are two endemic subcritical equilibria
for R1 ∈ [Rc

1, Ra
1 ], noting that Rc

1 ≤ Ra
1 if, and only if, R2 ≤ Ra

1 .

From (A.7)
(3) If 1 < R3 < 1

φ
and R2 ≥ (1 + γ1)Ra

1 then there are two subcritical endemic
equilibria for R1 ∈ (0, Ra

1 ].
(4) If 1 < R3 < 1

φ
and Ra

1 < R2 < (1 + γ1)Ra
1 then there are two subcritical

endemic equilibria for R1 ∈ (Rb
1 , Ra

1 ]. We also see that Rb
1 < Ra

1 if, and only if,
R2 > Ra

1 , which is always satisfied in this case.

From (A.8)
(5) If R3 < 1 and R2 ≥ 1

1−φ

{
(1 + γ1)(1 − φR3) + 2

√
γ1(1 − R3) (1 − φR3)

}
then there are two subcritical endemic equilibria for all R1 ∈ (0, Ra

1 ].
(6) If R3 < 1 and Ra

1 < R2 < 1
1 −φ

{
(1 + γ1)(1 − φR3)+ 2

√
γ1(1 − R3) (1−φR3)

}
then there are two subcritical endemic equilibria for all R1 ∈ (Re

1, Ra
1 ].

Before attempting to combine the above inequalities, we consider the special case
R1 = Rb

1 , which will be useful in due course. We have that

�̄ = 4B̂2b2β2
3

27γ1γ
2
2

(1 − R3)(1 − (1 − φ)R1 − φR3) + O(b3)
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from which we see that if R3 > 1 then �̄ ≺ 0 provided that R1 < Ra
1 , i.e. provided

that R1 ∈ (0, Ra
1 ) rather than R1 ∈ (0, Ra

1 ]. Thus (A.1) will be satisfied when Ĉ ≥ 0,
bearing in mind that � � 0 and B̂ ≺ 0 whenever, R3 > 1. However, if R3 > 1 and
Ĉ < 0 then we see that (A.2) will be satisfied. Thus two subcritical endemic equilibria
exist when 0 < R1 = Rb

1 < Ra
1 and R3 > 1.

Now we combine (1) and (2) to give us that if 1 < R3 < 1/φ and R2 ≤ Ra
1 then

there are two subcritical endemic equilibria for all R1 ∈ (0, min{Ra
1 , Rb

1 , Rc
1, Rd

1 }) ∪
[Rc

1, Ra
1 ]. Under the above conditions we have that min{Ra

1 , Rb
1 , Rc

1, Rd
1 } = Rc

1 (as
easily checked) so that there are two subcritical endemic equilibria for all R1 ∈ (0, Ra

1 ].
Next we combine (1) and (4) to obtain the result that if

1 < R3 <
1

φ
and Ra

1 < R2 < (1 + γ1)Ra
1

then there are two subcritical endemic equilibria for all R1 ∈ (0, min{Ra
1 , Rb

1 ,

Rc
1, Rd

1 }) ∪ (Rb
1 , Ra

1 ]. Under the above conditions, min{Ra
1 , Rb

1 , Rc
1, Rd

1 } = Rb
1 so

that there are two subcritical endemic equilibria for all R1 ∈ (0, Rb
1) ∪ (Rb

1 , Ra
1 ].

Using the result we obtained for the special case R1 = Rb
1(in the paragraph imme-

diately after (6)), we have that, under the above conditions, there are two subcritical
endemic equilibria for all R1 ∈ (0, Ra

1 ).
Now (3), in conjunction with the results from the previous two paragraphs, tells

us that, for sufficiently small b, two subcritical endemic equilibria can occur when
R1 < Ra

1 and 1 < R3 < 1/φ.
Via some further analysis we may extend the conditions to cover the case R3 = 1.

Details are given in Griffiths [8]. Then, with the results from (5) and (6), we deduce
that Theorem 4.1 is true. ��
Proof of Theorem 4.2 As R0 > 1 we have that D̂ < 0 so that F(I ) = 0 possesses
either one or three positive roots (i.e. there will either be one or three supercritical
endemic equilibria). Once more, by considering the possible shapes of the graph
y = F(I ) we obtain: If R0 > 1 there are three endemic equilibria if, and only if,

� > 0, B̂ < 0, Ĉ > 0 and �̄ < 0. (A.9)

The above conditions are the same as those in (A.1) for the subcritical case, other
than the fact that we cannot now have Ĉ = 0. Now, however, we have that D̂ < 0 and
R0 = α1(1−φ)

b+β1
+ γ2α3φ

b+β3
> 1. The latter implies that

(1 − φ)R1 + φR3 = α1(1 − φ)

β1
+ γ2α3φ

β3
> 1,

and hence that R1 > Ra
1 . However, we also note here that

α1(1 − φ)

β1
+ γ2α3φ

β3
> 1 implies that R0 = α1(1 − φ)

b + β1
+ γ2α3φ

b + β3
> 1

for sufficiently small b.
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Once more we have that R3 > 1 implies that B̂ ≺ 0 and � � 0. Also,

R3 <
1

φ

{
1 − 1 − φ

1 + γ1
(γ1 R1 + R2)

}

or equivalently,

R2 < (1 + γ1)Ra
1 − γ1 R1, (A.10)

implies that Ĉ � 0, but, for

R3 > 1 and R3 <
1

φ

{
1 − 1 − φ

1 + γ1
(γ1 R1 + R2)

}

to be compatible we require that

R2 < γ1(1 − R1) + 1. (A.11)

This provides us with the restriction R1 < 1 + (1/γ1). For R3 > 1 this is compatible
with R1 > Ra

1 .
However, since D̂ < 0 and we require B̂ < 0 for there to be any possibility of

three endemic equilibria occurring, then B̂ D̂ must be positive and we cannot therefore
assume now that �̄ ≺ 0 as we did in case (A.1) for when R0 < 1. This time we require
that

�̄ = B̂2b2β2
3

27γ 2
1 γ 2

2

{
4γ1(1 − R3) (1 − (1 − φ)R1 − φR3)

− ((1 + γ1)(1 − φR3) − (1 − φ)(γ1 R1 + R2))
2
}

+ O(b3)

< 0

subject to the conditions R1 > Ra
1 and R3 > 1. In this case we have that

(1 − R3) (1 − (1 − φ)R1 − φR3) > 0

so, in order that �̄ ≺ 0 we require, as in case (A.2) for R0 < 1, that

(1+γ1)(1−φR3)−(1−φ)(γ1 R1+R2) > 2
√

γ1(R3−1) ((1−φ)R1+φR3−1)

(A.12)

or (1−φ)(γ1 R1+R2)−(1+γ1)(1−φR3) > 2
√

γ1(R3−1) ((1−φ)R1+φR3−1).

(A.13)
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(A.12) rearranges to

R2 <
1

1 − φ

{
(1+γ1)(1−φR3) − 2

√
γ1(R3 − 1) ((1−φ)R1+φR3 − 1)

}
− γ1 R1,

(A.14)

while (A.13) is incompatible with (A.10).
Now, since R2 must be positive, we require from (A.12) that

1

1 − φ

{
(1+γ1)(1−φR3) − 2

√
γ1(R3 − 1) ((1−φ)R1+φR3 − 1)

}
−γ1 R1 >0.

(A.15)

If we write x = γ1(1 − (1 − φ)R1 − φR3) then the quadratic inequality in x given by

(x + 1 − φR3)
2 > −4x(R3 − 1) (A.16)

will furnish us with solutions to (A.15) provided that x + 1 − φR3 > 0, which, as is
easily checked, is equivalent to (1 + γ1)Ra

1 − γ1 R1 > 0. However, using (A.10) this
must be true.

(A.16) rearranges to

x2 + 2 ((2 − φ)R3 − 1) x + (1 − φR3)
2 > 0

and is satisfied when either x < −c − √
c2 − d2 or x > −c + √

c2 − d2, where
c = (2 − φ)R3 − 1 and d = 1 − φR3. We have that

c2 − d2 = 4(1 − φ)R3(R3 − 1),

and the above inequalities then give us that

γ1(1−φ)R1 >γ1(1−φR3)+(2−φ)R3 − 1+2
√

(1−φ)R3(R3−1) (A.17)

or γ1(1−φ)R1 <γ1(1−φR3)+(2−φ)R3−1 − 2
√

(1−φ)R3(R3−1). (A.18)

(A.17) implies that

γ1(1 − φ)R1 > γ1(1 − φR3) + (2R3 − 1) − φR3,

which gives us, since R3 > 1, that

γ1(1 − φ)R1 > γ1(1 − φR3) + 1 − φR3 = (1 + γ1)(1 − φR3).

This is incompatible with (A.10).
For (A.18) we have that ((2 − φ)R3 − 1)2−4(1−φ)R3(R3−1) = (φR3−1)2 > 0,

so that (2−φ)R3 −1 > 2
√

(1 − φ)R3(R3 − 1), noting that (2−φ)R3 −1 is certainly
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positive since R3 > 1 and 0 < φ < 1. We therefore see that (A.18) is compatible with
R1 > Ra

1 .
Before summarising the conditions under which there exist three supercritical

endemic equilibria we need to compare the following three requirements on R2:
(A.10), (A.11) and (A.14). We have that R3 > 1 implies that (1 + γ1)Ra

1 − γ1 R1 <

γ1(1 − R1) + 1. Also, the right hand side of (A.14) is smaller than the right hand of
(A.10) so it is (A.14) that we need.

We now have the result that, for R0 > 1 and b sufficiently small, three endemic
equilibria occur when

1−φR3

1−φ
< R1 <

1

1−φ

(
1−φR3 + 1

γ1

{
(2−φ)R3−1−2

√
(1−φ)R3(R3−1)

})
,

R2 <
1

1−φ

{
(1+γ1)(1−φR3)−2

√
γ1(R3−1) ((1−φ)R1+φR3−1)

}
−γ1 R1

and 1 < R3 <
1

φ

{
1− 1−φ

1 + γ1
(γ1 R1 + R2)

}
.

These inequalities are not in a particularly pleasant form as they stand, so we now
unravel them somewhat. Let us define

Ru
2 (R1) = 1

1 − φ

{
(1 + γ1)(1 − φR3) − 2

√
γ1(R3 − 1) ((1 − φ)R1 + φR3 − 1)

}

− γ1 R1.

Now, for R3 > 1, Ru
2 (R1) is a decreasing function on (Ra

1 , Rt
1) with Ru

2 (Ra
1 ) = Ra

1
and Ru

2 (Rt
1) = 0. In order to show that Ru

2 (Rt
1) = 0 we note that

(1 − φ)Rt
1 + φR3 − 1 = 1

γ1

(√
(1 − φ)R3 − √

R3 − 1
)2

,

and that R3 < 1/φ implies that (1 − φ)R3 > R3 − 1 so we have

√
(1 − φ)Rt

1 + φR3 − 1 = 1√
γ1

(√
(1 − φ)R3 − √

R3 − 1
)

,

giving us, after some simplification,

(1 − φ)Ru
2 (Rt

1) = (1 − φR3) −
(√

(1 − φ)R3 − √
R3 − 1

)2

− 2
(√

(1 − φ)R3 − √
R3 − 1

)√
R3 − 1 = 0

as required.
Next, note that Ra

1 and 0 are greatest lower bounds for R1 and R2 respectively (in the
situation we are currently considering), so that, as is easily checked, three supercritical
endemic equilibria are possible for any R3 such that 1 < R3 < 1/φ.
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We also note that since Ru
2 (Rt

1) = 0 the inequality

R2 ≤ 1

1 − φ

{
(1 + γ1)(1 − φR3) − 2

√
γ1(R3 − 1) ((1 − φ)R1 + φR3 − 1)

}
− γ1 R1

cannot be satisfied for any positive values of R2 when R1 = Rt
1. We are assuming that

all parameters are positive so this allows us to state in (2) of Theorem 4.2 that there is
only one supercritical endemic equilibrium for all R1 ∈ (R∗

1 ,∞), rather than just for
all R1 ∈ (R∗

1 , Rt
1) ∪ (Rt

1,∞). This completes the proof of Theorem 4.2. ��
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