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Abstract Driven by seasonality, many common recurrent infectious diseases are
characterized by strong annual, biennial and sometimes irregular oscillations in the
absence of vaccination programs. Using the seasonally forced SIR epidemic model,
we are able to provide new insights into the dynamics of recurrent diseases and, in
some cases, specific predictions about individual outbreaks. The analysis reveals a
new threshold effect that gives clear conditions for the triggering of future disease
outbreaks or their absence. The threshold depends critically on the susceptibility So
of the population after an outbreak. We show that in the presence of seasonality,
forecasts based on the susceptibility Sy are more reliable than those based on the
classical reproductive number Ry from the conventional theory.
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1 Introduction

Mathematical models of infectious diseases have contributed greatly to our understan-

ding of the dynamics of epidemics as they spread through large populations [1-13].
Here we are principally interested in modelling recurrent epidemics, best exemplified
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Fig. 1 Time series of reported measles infective cases (in thousands) from the largest cities in the US, UK
and Denmark in the pre-vaccination era. Data obtained from Ref. [2] and http://www.zoo.ufl.edu/bolker/

by childhood infectious diseases such as measles, mumps, whooping cough and
chickenpox, but also includes influenza, hepatitis, syphilis and many other high
impact diseases. Figure 1 shows three classical time series of reported cases of measles
in the United States (New York), the United Kingdom (London) and Denmark
(Copenhagen) in the pre-vaccination era. Major epidemics usually peak close to spring
each year and on many occasions every second year when the dynamics are biennial.
However, there is also a strong erratic and possibly chaotic component [5-7,9,11,14]
as seen in the variability of epidemic intensity, and in the intermittent jumps between
periods of annual and biennial dynamics.

It is now well understood that seasonality is often the primary factor responsible
for recurrent epidemic cycles. In the case of childhood infectious diseases, in which
infection is transmitted through contact, the seasonality is overtly apparent upon
visualising the average contact rate between individuals as it changes over the year
[2,7]. The number of contacts peak most strongly in winter reflecting the high disease
transmission rates amongst children which initiates at the beginning of the school
term. The complex disease oscillations that emerge are an outcome of the interaction
between the externally imposed annual seasonality as expressed in the contact rate
and the intrinsic oscillatory dynamics of the disease itself. It thus becomes natural to
model these diseases as periodically forced nonlinear systems [3,4,6,8,9].

The following analysis is based on the classical forced ‘SIR’ epidemic model. Des-
pite many efforts over the last decades, it has been difficult to gain general quantitative
or analytical insights into the operation of this model [9—13]. This is an outcome of the
complex synchronization effects that can evolve between the external forcing and the
natural oscillations of the nonlinear model [14]. The analysis advanced here attempts
to make progress in this direction by focusing on what we term “skipping” dynamics.
As the measles time series in Fig. 1 make evident, there are a significant number
of years in which major epidemics do not appear to trigger at all, i.e., they “skip.”
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Figure 2 indicate that these skipping events are also intrinsic to the forced SIR model
when parameterised in the chaotic regime. In fact, it is difficult if not impossible to
locate realistic chaotic parameter regimes in which outbreaks occur regularly each
year. This contrasts with the well known Rossler oscillator, and several ecological
foodweb models whose outbreaks recur regularly but whose amplitude vary chao-
tically in time (i.e., the Uniform Phase Chaotic Amplitude oscillations discussed in
[15]). The goal of the present paper is to develop a “language of skips” that makes it
possible to predict under what conditions the next outbreak is likely to occur, and how
many “skips” might be expected after any given outbreak.

The paper is organised as follows. We first give basic details describing the stan-
dard SIR model under conditions of forcing and very briefly overview its dynamics
via phase plane analysis. The model’s dynamics are categorized and studied in two
different regimes—the fast outbreak dynamics and the slow susceptible build up
regime where skips occur. In approximating the latter, threshold conditions are
derived that determine the presence or absence of skips in the years ahead. We then
provide an intuitive interpretation explaining the threshold result and relate this to the
better known predictor, the reproductive number Ry. Finally we discuss how predic-
tions based on the conventional reproductive number Ry may be misleading in systems
driven by seasonality.

2 The seasonally forced SIR model

In the traditional SIR model [1], each member of the population is considered to
belong to one of three classes: Susceptible individuals (S), Infected individuals (1),
and Removed individuals (R). Each individual begins in the susceptible class S, only
to move to the infected class / after coming into contact with an infected person.
Infected individuals eventually recover from the disease and then move on to the
recovered class R. Being “recovered” and unable to be infected once again, they are
essentially removed from the population and play no further role in the dynamics.
Epidemics are continuously fueled by the constant supply of new susceptibles that
arise due to the birth of new individuals.
The SIR model with vital rates (birth and death) takes the following form:

S=puN—puS—Bt)SI/N,
I =BSI/N —yI —pul, (D

R =yl — uR.

All classes of the population reproduce and die at the same per-capita rate u, so that an
average lifetime is 1/u years. The parameter y represents the rate at which infected
individuals recover giving mean infection time 1/y years. In practice u < y. For
homogeneously mixing populations, the rate of contact between S and / individuals is
proportional to the product S7, (the Law of Mass Action). Note that the total population
size S+ 1+ R = N is constant (V¢, S+I1+R= 0), and it is only necessary to work
with the first two equations in Eq. (1). By convention, we set N = 1, and S, I, and R
are proportions of the entire population.
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As mentioned, for childhood infectious diseases the contact rate (3(t)) is seasonal
and peaks strongly in winter reflecting the beginning of the school term. A commonly
used scheme takes () = Bo(1 + 8 sin(2x¢t)) where By gives the mean contact rate,
0 < & < 1 represents the strength of the seasonal forcing, and ¢ has units of years.
However, to help simplify the analysis, we initially make the approximation (see [9])
that there are only two seasons each year as follows:

[ BT = Bo(1 +8) High season
)= [,3_ = Bo(1 —§) Low season 2

Over time the seasons change sequentially High — Low — High — -. The Low
season begins at times t,,n = 0, 2,4, ..., with a low contact rate 8~ and lasts for a
time interval p %« T = T ~, where 7 is the period length (i.e., a year) and 0 < p < 1.
This is followed by the High season at times #,, n =1, 3,5, ..., with high contact
rate B, and lasts for (1 — p) x 7 = TT. We proceed to characterize the model
dynamics by developing maps that track the numbers of susceptibles and infectives
between seasons. Elements of this approach may be found in the work of [16-19],
although without the full accounting that is attempted here.

In simulations, we follow [12,20] and incorporate a small amount of immigration on
a continuous basis. The immigration helps reduce the population variability generated
by the forced model, especially the unrealistically large “peaks and valleys” that span
many orders of magnitude in the infective numbers during and between epidemics.
This is achieved by rewriting the mass action term S7 in Egs. (1) as S(I +€) where the
small immigration term is € = 10~!2 in the simulation of Fig. 2a. Other immigrations
schemes have been tested and yield similar results. In fact, all theoretical results
reported here have no dependence on the presence or absence of immigration.

For weak forcing (§), the model is characterized by small amplitude solutions of
period-1 annual oscillations [9]. As the forcing is increased, the solution bifurcates to
period-2 (biennial oscillations) where the model generates an epidemic every second
year and a “skip” every other year in which the outbreak is suppressed. As § is increased
further the familiar period-doubling route to chaos is observed [4,8].

The chaotic regime of the model has a strong tendency to “skip” for periods of
several consecutive years (see Fig. 2a,c).

Figures 2b,d and 3 show trajectories of the seasonally forced model (Egs. 1) as
they rotate counter-clockwise around the S — w phase-plane (w = log /) when the
dynamics are chaotic and biennial respectively. As the seasons change, the trajectory
is attracted to the quasi-equilibrium associated with each season. Non-equilibrium
behaviour arises as the trajectory is attracted to each quasi-equilibrium but kicked
away before ever reaching it. The trajectory is thus kicked away from one quasi-
equilibrium to the next. Figure 3 shows biennial behaviour with a large outbreak in
the upper portion of the phase plane (UPP) in the first year, followed by a “skip” in
the lower portion of phase plane (LPP) in the second year. The trajectory is kicked
between the two equilibria marked as circles. The S nullcline (where dS/dt = 0)
divides the phase-plane into its two regimes, the UPP and LPP. For realistic
parameters, each regime is characterized by its own specific time scale.
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Fig. 2 a,b Time series and phaseplane diagram of a chaotic simulation of the forced SIR model with
parameters: © = 0.02, y = 66, fp = 1600, § = 0.18, ¢ = 10-12 High season = 0.5 year; Low
season = 0.5 year. ¢,d Time series and phaseplane diagram of a chaotic simulation of the forced SIR model
with sinusoidal forcing parameters: u = 0.016, y = 66, fp = 1590, = 0.2,¢ = 0.12 x 1072
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Fig. 3 Phase plane diagram for a biennial cycle with infectives (w = log/) plotted as a function of
susceptible numbers (S). The SIR model’s (1) trajectory rotates counter-clockwise around the phase plane.
The trajectory is attracted to the quasi-equilibrium associated with each season (the null-cline intersection,
circles). As the season (and contact-rates S¥) change, the trajectory is kicked away from one equilibrium
to the next

I. Fast Epidemic Dynamics: When a major epidemic is in progress the mortality
and birth rate terms p in (1) are relatively small and have little influence on the
dynamics. The outbreak takes place in the UPP seen in Fig. 3. Thus when I > #

(above the S null-cline dS/dt = 0) it is possible to approximate Eqgs. (1) as
§=-BWSI, 1=1BNOS~y—w. 3)
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For a given value of g (i.e., over a single season) it is possible to approximate S(z),
I1(t) and R(¢) analytically (see, e.g., [22,23]) if the initial conditions are known in
advance.

II. Slow buildup dynamics: During a major epidemic, the number of infectives
drop rapidly. In the phase-plane (Fig. 3), when I <« #f and the trajectory has fallen
below the S null-cline (i.e., in the LPP), then Eq. (1) may be approximated as

S=pn, I=1BOS—y—w), )

where (Sg, Ip) are initial conditions. Note that in the susceptible buildup regime the
rate of change of S is solely due to new births and is slow compared to the very fast
changes experienced during an outbreak. Therefore, the system spends most of its time
in the LPP. It is useful to set Sop as the minimum value of susceptibles reached in the
wake of an epidemic (see Fig. 3). We show that this new epidemiological parameter
is of great importance.

3 Enumerating the number of skips as a function of Sy

A skip is the absence of an outbreak that would normally be expected in the High
Season. Skips necessarily occur in the LPP (Fig. 3), and are governed by approximat-
ing Egs. (4) which we proceed to study further. Each year is taken to have only two
seasons. It begins in the Low season at times #,, n = 0,2, 4, ..., with a low contact
rate B~ = Po(l — &) and lasts for a time interval p x T = T, where 7 is the
period length (i.e., a year) and 0 < p < 1. This is followed by the High season at
times t,, n = 1,3,5, ..., with high contact rate B+ = By(1 + 8), which lasts for
(I1—p)xt=TT.

The overall strategy for solving system (4) is to calculate the solution in the time
intervals between t,, and 7,,+1. Each time interval will have a constant contact rate (i.e.,
either 87 or f7) and initial values S, and I,,. The scheme stops whenever I, > ﬁLSn
which is the S null-cline curve in the (S, I) phase plane. At this point we return back
to the outbreak solutions generated by Eqs. (3).

The sharp points where the infected population reach the local maxima 7, lying
below the S null-cline are defined as skipping points (see Fig. 3). These maxima arise
because the trajectory is curtailed in the phase plane whenever there is a change of
season, and is prevented from continuing on to form a large amplitude epidemic.

The difference between a skipping point and an epidemic peak is not just a question
of magnitude. During a skip the susceptible population always continues to increase
despite the fact that the number of infectious individuals pass through a maximum. In
contrast, during a major epidemic, the susceptible population declines. This provides
a natural topological criterion to distinguish “skips” from outbreaks.

To simplify the analysis the model variables are rescaled as follows:

Po s wetogl, m=-LY and T=y4p (5)

y+u y+u

S =
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An equivalent system to (4) is
) w
s =m, F:(I:I:S)s—l. (6)
Observe that the susceptibles increase linearly with a constant rate m:

s(t) = mt + co (7)
where cg = so—mty. From the phase plane (Fig. 3) define (s1, w1) as the coordinates of
the sharp skipping point that results from the change of () as it jumps from 8~ to 8.
All sharp points (s,, wy,) are produced by this mechanism. By integrating system (6)

between two neighboring sharp points and assuming that #y occurs during the low
season (B(t) = B~ ) we obtain

-
@ =(1-9) /(mt +coydt — T + 1o, ®)
fo
The analytic manipulation is more transparent when the forcing function is taken
to be symmetric, 7~ = T+ = T.In this case:
w1 — wo mT?
T:(1_5)7+T[CO(1_5)_1]_61 ©)

2
where ¢; = (1 — S)MTI" + tolco(1 — &) — 1]. For general n > 0 we obtain

(n+1T
Wp41 — Wy n
—r ={0—-(—D"%) / (mt + co)dt — T, (10)
nT
and thus
Wn+1 — Wy n mT? n
—r = (I = (=1)"%3) T(Zn + 1|+ Tleo(1 = (=1)"8) —1]. (A1)

The w, may now be written in recursive form to ultimately obtain

% = % —c+ %ﬂ[fﬂ +(=D)"n81+T [n(co -+

(=D" -1

5 5c0}. (12)

To simplify the analysis, it is reasonable to make the approximation g = 0, resulting
in ¢; = 0, and ¢y = s¢. Since the forcing period is taken to be T = 27 = lyear, the
formula for w;, may be rewritten as

Wy, — wo = g(ngTQ + (=D)"m7t% + 4[so — 1]1)n + 2((—= )" — Ddsot). (13)
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Thus the sharp points w,,, for even and odd n, follow two parabolas in the phase plane,
and effectively envelope the dynamics of the forced model. The trajectory moves from
one parabola to the other with every change of season.

After a major epidemic the trajectory is seen to shadow the w,, first dropping down
the (s, w) phase plane, only to later rise while susceptibles build up to fuel the next
outbreak. Note that as susceptibles increase linearly in time (see Eq. (7)) in the LPP,
then plotting w,, against either s or time (n) yields the same parabola.

As observed in Fig. 3, the s null-cline (/ <« %{) in the phase plane in the vicinity of
the attractor can be approximated as a reasonable horizontal line for realistic parame-
ters. (This is because infectives decrease exponentially by several orders of magnitude
as the trajectory circuits the LPP while s changes linearly.) Thus this recursive scheme
stops whenever w,, > log(#) ~~ wy. Let us define n ~ 2(k + 1) to be the smallest n

where w,, > log(#) A wy. Then the overall number of skips is given by k ~ [%] -1
where [x] is the integer value of x. From 13 it follows that we look for the smallest
even value of n that fulfills:

mi® 4+ mdh + 4(so — i/t > 0, (14)

or 4
A>—( —so) — 6. (15)
mt

Recalling that 7 ~ 2(k + 1) then the threshold can be calculated in terms of sq as

mk+ 1)t Smrt

1 — . 16
50 > > ) (16)
Changing back to the natural variables (5) we arrive at
+u  wuk+Dr  dut
Setky = L - Ly (17)

Bo 2 4

where again the forcing period is T = 1 — year. Then S.(k) acts as a threshold such
that:

o if Sop > S.(k) the trajectory must continue on to have less than or equal to k
consecutive skips in the coming years.

o if Sy < S.(k),the trajectory must be greater than k consecutive skips in the coming
years.

For the important case of k = 0, let S = S.(0) giving the threshold condition:

e if So > S.(0) there is an outbreak in the following year (i.e., zero skips).
o if Sy < S.(0), the trajectory must have at least one or more consecutive skips in
the coming years.

@ Springer
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4 Testing the threshold and its robustness

The effectiveness of the threshold prediction may be demonstrated through the study
of simulated epidemic time series. By integrating the forced SIR model in the chaotic
regime it was possible to generate time series with skips and variability similar to
real world data. That is, where the epidemics are erratic and may skip unpredictably
from one year to the next as seen in the time series of Fig. 1. The main advantage of
the chaotic time series lies not in their (possibly controversial) realism, but in their
variability—a feature which facilitates checking the legitimacy of the above threshold
point S,.

Figure 4 shows explicitly how the parameter Sp, which characterizes population
susceptibility, gives accurate predictions of future outbreaks. In Fig. 4a (inset), the time
T between two successive large-scale epidemics A and B, is plotted as a function of
the minimum number of susceptibles Sy left in the wake of the first outbreak A. For the
given model parameters (Fig. 4 legend), the theoretical critical susceptible threshold

a 0.015 c (b,
3[®ay, - 001 125 %
0.005| A B 2 {\"L*.Q
e 2r koS 1 e et
S 0 l A 1.5 :
0 5
1t Lt ST IPY v-q._t.ime 1 1 e .
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0 : : : : : 05
0.015 0.02 0.025 0.03 0.035 0.04 0.02 0.03 0.04 0.0
SO S0

Fig. 4 Testing the threshold prediction equation (17). a The forced SIR epidemic model (1) using the
forcing of (2) was integrated in the chaotic regime to generate simulated time series of infectives (see inset)
and susceptibles. The time 7 between two successive large-scale epidemics. (e.g., A and B) plotted as a
function of the susceptibles Sy left in the wake of the previous epidemic (parameters for the simulated
chaotic regime: u = 0.02, y = 66, By = 1600, § = 0.34; Forcing with High and Low seasons both =
0.5 years). b As in a but with parameters as in Fig. 2a, ¢ parameters as in b but the onset of Hi and Lo
season varies randomly (uniformly) by up to £10% and also the mean B of the seasonal forcing varies
randomly (uniformly) also by up to £10% at each time step. d The same threshold but using sinusoidal
forcing. Parameters as in Fig. 2c
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(S¢(0) = 0.030 from Eq. (17)) corresponds to the critical susceptible numbers seen in
Fig. 4 that separates the annual dynamics (t =~ 1) from the biennial dynamics (t & 2)
having a single skip. Also according to Eq. (17), S.(1) = 0.020, corresponding to the
critical number of susceptibles required to generate two consecutive skips.

The threshold is robust to changes in the form of the seasonal forcing B(¢). This
can be seen in Fig. 4d which displays the same threshold effects but taking sinusoidal
forcing B(t) = Bo(1+6 sin(2m¢)). For the given parameters (Fig. 4 legend) the critical
susceptible numbers as determined by Eq. (17) is S = 0.033, which sits very close to
the threshold level seen in the simulation results of Fig. 4. The same threshold can be
observed when more complicated term-time forcing (see [9]) is used (details available
upon request). Moreover, we have investigated the influence of noise perturbations to
the seasonal forcing term in several different ways and have found the results unusually
robust even for relatively high intensity perturbations (see Fig. 4c for details).

5 Intuitive interpretation of threshold

Further insights regarding the formula for the threshold and the number of skips can be
gained by analysing the model in the lower portion of the phase plane in the absence
of forcing. Scaled equations (6) with § = 0 in the susceptible buildup regime, has as
solutions

s(t) =mt +s9, w()=Ttmt/2+s9— 1)+ wo. (18)

Again, the (log) infectives, w(t), follow a parabolic trajectory with time. To find the
model’s recovery time (¢, ) between epidemics we seek the value of r where w () returns
to its initial value wy i.e., where w(t) = wop, and must occur when W (t) = t (mt/2 +
so — 1) = 0 (cf. Eq. (14) taking t = 2n). Now W (¢) = 0 has roots at o = 0 and
t1 = 2(1 —s0)/m. Thus the model’s recovery time between epidemics is approximated
as t, = 2(1 — s9)/m years. The number of skipsisk = [t,] — 1 = [2(1 — s9)/m] — 1
which gives so = 1 —m(k + 1)/2. Changing back to the natural variables (5) we arrive

at:
y+u (k+Du

Bo 2

This criterion equation (19) (note the similarity to Eq. (17)) may be understood as
follows. Firstly, consider the proportion of available susceptibles S’ in the population
precisely at the turning point of the parabola in the phase plane (see Fig. 5). S must
equal the initial amount of suseptibles Sy at time #( plus the additional new susceptibles
created from the birth process since time #y. Since ¢ new suspectibles are created each
year, having k skips requires

Sc (k) =

19)

S =S+ (k + Du/2. (20)

Define g
Ro= 20 @1)

Y+ u

where here By is the contact rate averaged over a year. Although not the exact epide-
miological reproduction number [1,23], it is apparent that Ry may be viewed as the
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6 4

0.02 0.03 0.04 S’ 0.05 0.06

Fig. 5 A simulation of the forced model in the periodic regime (parameters used in the simulation: u =
0.018, y = 66, By = 1600, § = 0.18, ¢ = 0 ). One sees how w(t) = log(/) descends in the phase
plane reaching a minimum at §" = 0.0433 (marked by arrow). This value is approximately as predicted by
Eq. (20) S” = 0.0413 for the unforced model according to the parameters used in the simulation. The solid
circles sitting on the model trajectory indicate those points in time when the season changes

average number of secondary infections produced by a single infective individual in
a population having a proportion of S susceptibles.

Equations (18) and (19) reveal that S = (y + u)/Bo when Sy = S.(k), so that
Ry = 1 when S = S§’. Thus we see that the tendency of the w, to reduce in the
phase plane changes to a tendency of increase at the point where Ry = 1, that is,
where the average number of secondary infections is equal unity. Figure 5 displays
a periodic orbit of the forced model where the turning point occurs very close to
the prediction S = (8 + w)/y = 0.0413. For the forced model, the reproductive
number Ry acts as a control on the trajectories rotation around the phase plane. The
above reasoning clarifies how the epidemiological parameter Sy, which is a proxy
for population susceptibility in the wake of a large epidemic, allows prediction of the
occurrence or the inhibition of future epidemics.

6 Discussion

The simplified two-season forced model gives new insights that help explain the impact
of seasonality in epidemiological systems. Perhaps the most important feature is the
manner in which the transition from High to Low season often acts to curtail potential
epidemics. This, in fact, is the mechanism that leads to skips—the sharp points in the
LPP of Fig. 3. These sharp points are characterized by the initiation of an epidemic
(infective numbers increasing), which is rapidly cut short (infectives decreasing) by
the change to Low season. According to classical theory, increasing small numbers
of infectives is suggestive that the reproductive number Ry is greater than unit, a
characteristic that is typically diagnosed as an epidemic scenario. Hence, this would
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838 R. Olinky et al.

wrongly diagnoses skips induced by seasonality as large scale outbreaks. The classical
predictions based on the reproductive number R are thus misleading in the presence
of seasonality. The threshold predictions of Eq. (17,19), however, appear to correctly
predict whether a skip or epidemic will appear in the coming year.

The analysis demonstrates the importance of population susceptibility Sy as mea-
sured after an outbreak and its usefulness in forecasting future epidemics or skips in
the years ahead. The work goes beyond existing theories on the regular and irregu-
lar cycles of recurrent diseases in that it offers accurate epidemic predictions using
a widely studied model otherwise considered analytically intractable. Moreover,
because of the complex dynamics induced by seasonality, these predictions can differ
from expectations obtained from the unforced model. The concepts presented here
have particular relevance for seasonal diseases such as influenza A whose genetically
based immunological properties drift in time, thereby continuously modifying the sus-
ceptibility of the host population [24,25]. In this case, the immunity of hosts depends
on both previous exposure to the disease and immune memory. Hosts may be rein-
fected with the disease every few years due to evolutionary changes in the influenza
viral antigens, with years of skips in between. The methods presented here provide a
powerful technique for characterizing the dynamics of skips in diseases with antigenic
evolution and/or host populations with waning immunity. Our results from this line of
enquiry will shortly be reported.
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