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Abstract The prediction of RNA secondary structure including pseudoknots remains
a challenge due to the intractable computation of the sequence conformation from
nucleotide interactions under free energy models. Optimal algorithms often assume
a restricted class for the predicted RNA structures and yet still require a high-degree
polynomial time complexity, which is too expensive to use. Heuristic methods may
yield time-efficient algorithms but they do not guarantee optimality of the predicted
structure. This paper introduces a new and efficient algorithm for the prediction of
RNA structure with pseudoknots for which the structure is not restricted. Novel pre-
diction techniques are developed based on graph tree decomposition. In particular,
based on a simplified energy model, stem overlapping relationships are defined with
a graph, in which a specialized maximum independent set corresponds to the desired
optimal structure. Such a graph is tree decomposable; dynamic programming over
a tree decomposition of the graph leads to an efficient optimal algorithm. The final
structure predictions are then based on re-ranking a list of suboptimal structures under
a more comprehensive free energy model. The new algorithm is evaluated on a large
number of RNA sequence sets taken from diverse resources. It demonstrates overall
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sensitivity and specificity that outperforms or is comparable with those of previous
optimal and heuristic algorithms yet it requires significantly less time than the com-
pared optimal algorithms.

Keywords RNA secondary structure prediction · Pseudoknot · Thermodynamic
energy · Tree decomposition · Tree width · Maximum independent set

1 Introduction

The secondary structure of an RNA molecule is formed due to short or long distance
pairings between nucleotides in the sequence. Base pair regions either single, nes-
ted or parallel are called stem-loops; base pair regions crossing each other are called
pseudoknots [29]. Pseudoknots are important structures in RNA molecules and often
play important functional roles such as catalysis, RNA splicing, transcription regula-
tion [2,14,24]. Knowing the secondary structures of RNA molecules is critical for
determining their three dimensional structures and understanding their functions.
Automated prediction of RNA secondary structure is thus in demand since it is
expensive and time consuming to experimentally determine the structure.

It is computationally challenging to predict RNA secondary structure including
pseudoknots. In particular, the problem of predicting RNA pseudoknots with the
minimum free energy is provably NP-hard for the nearest neighbor model [16]. Practi-
cal approaches to cope with this computational challenge are either to restrict the class
of pseudoknots under consideration or to employ heuristics in the algorithms. Optimal
algorithms for restricted pseudoknot classes are usually thermodynamics-based exten-
ded from Zuker’s algorithm for the prediction of pseudoknot-free structures [32]. In
such algorithms, the predicted optimal structure of a single RNA sequence is the one
with the global minimum free energy based on a set of thermodynamical parameters.
For example, the recently developed PKNOTS [20] can handle the widest classes of
pseudoknots. However, its time complexity O(n6) makes it infeasible to fold RNA
sequences of a moderate length. The computational efficiency may be improved at the
cost of further restricting the structure of pseudoknots [3,16,30], but still with the time
complexity O(n5) or O(n4). Most such algorithms produce only the optimal solution,
while suboptimal ones that may reveal the true structure are often ignored. However,
the partition function approach, based on the calculation of equilibrium base-pairing
probabilities, captures the contributions of all suboptimal structures [8].

On the other hand, computationally efficient heuristic methods have also been
explored to allow unrestricted pseudoknot structures. Iterated loop matching (ILM)
[22] is one such method. It finds the most stable stem, adds it to the candidate secondary
structure and then masks off the bases forming the stem and iterates on the left sequence
segments until no other stable stem can be found. One structure is reported at the end.
Another algorithm, HotKnots [19], does the prediction in a slightly different way. It
keeps multiple candidate structures rather than only one and builds each of them in a
similar but more elaborate way. These methods can usually be fast, yet they often do
not provide an optimality guarantee for the predicted structure or a quality measure on
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Rapid ab initio prediction of RNA pseudoknots via graph tree decomposition 147

the predicted structure with respect to the optimal structure. Other heuristic methods
based on genetic algorithms usually do not address the optimality issue either [1,7].

In this paper, we introduce a novel approach for the optimal prediction of RNA
pseudoknots for which the structure is not restricted. Our method is based on a simpli-
fied free energy model without accounting for loop energies [18,22]. In this method,
stable stems are selected from an RNA sequence as vertices of a graph; vertices are
connected with edges if corresponding stems conflict (i.e., overlap) in their positions
in the sequence. The optimal structure of an RNA sequence corresponds to a collec-
tion of non-conflicting stable stems, which can be found by seeking the maximum
weighted independent set (WIS) from the graph. We observe that stable stems can be
so selected that the resulting graph is of a moderately small tree width t . Based on a
tree decomposition of the graph, a dynamic programming algorithm for WIS of the
worst-case time complexity O(2t n) is obtained, where n is the number of vertices
in the graph, at most quadratic in the length of the RNA sequence. This is an effi-
cient prediction algorithm parameterized on the tree width t , which is usually small.
In addition, the algorithm re-ranks a list of suboptimal structures based on the more
comprehensive energy functions used in PKNOTS [20].

We implemented our algorithm TdFOLD and evaluated its performance on various
RNA sequence sets from different sources. The test results showed high efficiency
and high accuracy for our algorithm. TdFOLD was tested against PKNOTS, ILM
and HotKnots on a set of 50 tRNA’s, a set of 50 small RNA sequences containing
pseudoknots with length ranging from 23 to 113, and a set of 11 large RNA’s with length
range from 210 to 412. The results showed that overall, in terms of the sensitivity and
specificity of the prediction, TdFOLD outperforms the optimal algorithm PKNOTS
and the heuristic algorithms ILM and HotKnots. In time efficiency, it outperforms
PKNOTS and HotKnots, and is comparable with ILM.

Graph theoretic methods have previously been explored for RNA structure pre-
diction [29]. Our method is different from the previous ones in two respects. Our
graphs constructed from the RNA sequence contain vertices describing stems instead
of nucleotides; making stem to be the smallest structural unit can greatly simplify the
complexity of the problem. More importantly, our graph algorithm takes advantage
of the tree decomposition technique on the formulated graphs. In fact, it has been
demonstrated that the RNA secondary structure can be profiled with a conformational
graph of small tree width [26]. The underlying graph constructed for the ab initio struc-
ture prediction is essentially an augmentation of the conformational graph in which
additional vertices and edges are added only for the overlapping stems, thus inheriting
the tree decomposability which makes the algorithm efficient.

We note that our algorithm, like other ab initio ones, is suitable for predicting the
structure of single RNA sequence. When related structurally homologous sequences
are available, the accuracy of RNA structure prediction can usually be improved
through the use of comparative analysis. This uses the information of the covarying
residues in a set of multiple sequences or additional phylogenetic relationship of these
sequences and may produce the most reliable prediction for the consensus structure
[10,13,15,23,28]. Because such methods inevitably involve multiple sources of data
or computational tools, they usually rely on human intervention. Nevertheless, a fully
automated comparative analysis process was proposed [9,10] for RNA consensus
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structure prediction. Due to its computational complexity, the process has only been
implemented for pseudoknot-free RNAs [10]. With algorithm TdFOLD, and a tree
decomposition based structure-sequence alignment algorithm we developed earlier
[26], the efficient implementation of this fully automated process for pseudoknots
becomes possible. The paper concludes with a presentation of how TdFOLD could be
used in automatid comparative RNA analysis.

2 Methods and algorithm

Given an RNA sequence, our algorithm first builds a pool of stable stems. A secondary
structure is indeed a set of compatible stems (i.e., the stems do not share one or more
bases between each other). Based on the observation that a set of compatible stems
with minimum or near minimum total stem energies tend to be in the true structure, our
algorithm first finds a number of secondary structures with minimum or near minimum
total stem energies by a tree decomposition based procedure for a graph formed by
the stable stems. These secondary structures are then reordered by counting the stem
stabilizing and loop destabilizing energies together, and reported as the predicted
structures.

2.1 Problem formulation

A (canonical) base pair is either a Watson–Crick pair (A-U or C-G) or wobble pair
G-U . A stem is a set of stacked nucleotide base pairs on an RNA sequence s. In general
a stem S can be associated with four positions (i l , j l , ir , jr ), where i l < j l < ir < jr ,
on the sequence s such that (a) (s[i l ], s[ jr ]) and (s[ j l ], s[ir ]) are two canonical base
pairs; and (b) for any two base pairs (s[x], s[y]), (s[z], s[w]) in the stem S, either
i l ≤ x < z ≤ j l and ir ≤ w < y ≤ jr , or i l ≤ z < x ≤ j l and ir ≤ y < w ≤ jr .
Region s[i l ..s jl ] is the left region of the stem and s[ir .. jr ] is the right region of the stem.
Stem S is stable if the formation of its base pairs allows the thermodynamic energy
�(S) of the stem to be below a predefined threshold parameter E < 0. Figure 1a
shows all the stable stems in Ec_Pk4 with E = −5 kcal/mol, the fourth pseudoknot
in Escherichia coli tmRNA [31], and their corresponding free energy values.

A stem graph Gs = (V, E) can be defined for the RNA sequence s, where each
vertex in V uniquely represents a stable stem on s, and E contains an edge between
two vertices if and only if the corresponding two stems (a, b, c, d) and (x, y, z, w)

conflict in their positions, i.e., one or both of the regions s[a . . . b] and s[c . . . d]
overlap with at least one of the regions s[x . . . y] and s[z . . . w]. Figure 1b shows the
stem graph for Ec_Pk4 constructed according to the stable stems given in Fig. 1a. The
stem graph is a weighted graph, with a weight on every vertex. Usually, the weight of
a vertex can simply be absolute value of the thermodynamic energy �(S) of the stem
S corresponding to the vertex. The weight may also be adjusted by scaling it (non-)
linearly according to the length of the corresponding stem or the distance between the
left and right regions of the stem.

The problem of predicting the optimal structure of the RNA then corresponds to
finding a collection of non-conflicting stems from its stem graph which achieves the
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(a) (b) (c)

Fig. 1 a Ten stable stems in Ec_Pk4, the fourth pseudoknot in E. coli tmRNA molecule, including their
left and right regions, and thermodynamic energies; b stem graph for Ec_Pk4; and c a tree decomposition
of the stem graph with tree width 4

maximum total weight. This is exactly the same as the graph theoretic problem: finding
the maximum weighted independent set (WIS) in the stem graph.

Note the optimality of the secondary structures depends on the total stem energies
only (this was previously adopted by both the primitive method [18] and the more
elaborate one [22] too). In order to rectify the possible bias caused by not counting
the loop energies, we output optimal as well as a number of sub-optimal structures.
These structures are then re-ordered according to the whole energies including stem
stabilizing and loop destabilizing energies, and reported as the predicted structures.

2.2 Identifying stable stems

For our purpose, stable stems are defined according to a set of parameters (in addition to
the energy threshold parameter E). In particular, a stem contains at least P base pairs;
the loop length in between the left and right region of the stem is at least L; free energy
using only Turner’s base stacking energy parameters is at most E . Bulges within a stem
are allowed, for which the stem essentially becomes a set of substems separated by the
bulges. In addition, parameter T limits the minimum substem length, and parameter
B limits the maximum bulge length. The thermodynamic energy �(S) of stem S
is calculated by taking into account both the stacking energies and the destabilizing
energies caused by bulges. The default values for parameters P, L , E, T, and B are
set to 3, 3,−5, 3, 0 according to our previous experiments, but they may be adjusted
according to different class of RNA’s. We set B to 0 since it works well for a lot of
RNAs. Besides 0, 1 and 2 are good choices for B for some other RNAs. We leave the
choice to the users. A procedure similar to the one used in [13] is employed to identify
all the stable stems. These stable stems are called the initial stable stem pool.

If two stems only share a few bases, we may resolve the conflict by considering
some maximal substems of these two stems. For example, one stem A formed by
s[a . . . a+9] and s[b−9 . . . b] conflicts with another stem B formed by s[b−1 . . . b+8]
and s[c . . . c + 9], we could add two more stems formed by s[a + 2 . . . a + 9] and
s[b − 9 . . . b − 2], s[b + 11 . . . b + 8] and s[c . . . c + 7], which are shortened from A
and B respectively. This is controlled by a switch parameter S. If it is on, an extended
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stable stem pool will be built: all the stems in the initial stem pool will be imported
into it; for each pair of conflict stems, get the maximal sub-stems that can resolve the
conflict and meet the requirements defined by the parameters P, L , E, T, B and add
them to the extended pool. If it is off, we just use the initial pool as all of the stable
stems. According to our experiments, the use of the extended pool can improve the
accuracy for some but not all of the RNAs. We also noticed that the longer a sequence
is, the more the spurious stems will be produced. We incorporated some biological
knowledge to reduce the spurious stems for long sequences, e.g. parameter adjusting
according to the properties of some RNAs, not allowing G–U pairs at the ending of a
stem.

2.3 Tree decomposition based algorithm

Definition [21] A tree decomposition of graph G = (V, E) is a pair (T, X ) if it
satisfies:

1. T = (I, F) is a tree with node set I and edge set F ,
2. X ={Xi : i ∈ I, Xi ⊆ V }, ⋃

i Xi = V and ∀u ∈ V , ∃i ∈ I such that u ∈ Xi ,
3. ∀(u, v) ∈ E , ∃i ∈ I such that u, v ∈ Xi ,
4. ∀i, j, k ∈ I , if k is on the path that connects i and j in tree T , then Xi ∩ X j ⊆ Xk

The width of a tree decomposition (T, X ) is defined as maxi∈I |Xi |−1. The tree width
of the graph G is the minimum tree width over all possible tree decomposition of G.
If T is restricted to be a path, we refer to (T, X ) as a path decomposition and the best
width over all of the path decompositions as the path width of G.

The tree decomposition is rooted in the deep graph minor theorems by Robertson
and Seymour [21]. It provides a topological view on a graph and the tree width measures
how much the graph is “tree-like”. Figure 1c shows a tree decomposition for the stem
graph given in Fig. 1b.

Many computationally intractable graph problems can be easily solved on graphs of
small tree width. In particular, a large number of such graph problems, while intractable
on general graphs, can be solved in linear time, given a tree decomposition of tree width
≤ t , for a fixed t . Maximum weighted independent set (WIS) is one such problem [5];
it has the time complexity O(2t n). The factor 2t is due to the dynamic programming
enumeration, in each node of the tree decomposition, of all partial independent sets
formed by the t vertices.

2.3.1 Algorithm details

Now we describe the tree decomposition based dynamic programming algorithm that
finds the maximum weighted independent set from the stem graph G = (V, E). It
assumes a binary tree decomposition (T, X), where X = ∪Xm

i=1, for the stem graph,
where m = O(|V |), |Xi | = t , for i = 1, . . . , m. We only discuss the process for
achieving the optimal solution. The technical details for getting suboptimal solutions
are similar.
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Fig. 2 Dynamic programming table construction over tree decomposition. Table mi is computed also
based on the computed tables mk and m j . Row f = (x0, . . . , xh , . . . , xm , . . . , xr , . . . , xt ) in table mi is
computed from row g in table mk and row h of table m j , Row g is the optimal for columns Xk − Xi given
the value (x0, . . . , xm ) for columns Xk ∩ Xi . Similarly, row h is the optimal for columns X j − Xi given
the value (xh , . . . , xr ) for columns X j ∩ Xi

The algorithm constructs one dynamic programming table mi for every tree node
Xi = {v1, . . . , vt }. Table mi records all possible partial independent sets in the sub-
graph induced by the set of all the vertices in the subtree rooted at i of the tree
decomposition. There are t columns in the table mi , one for each vertex in the corres-
ponding tree node Xi . Rows are the combinations of these vertices; a vertex is selected
if and only if the corresponding column takes value 1. There are additionally three
columns V, S, Opt in the table. Column V records whether each row represents a
valid independent set, column S is the weight of the valid independent set represented
by each row. Column Opt , more sophisticated, is explained in the following.

These tables are constructed in a bottom-up fashion, from leaves to the apex of
the tree decomposition (see Fig. 2). Every table contains rows, with each being some
combination of the vertices in the corresponding node. Column V is set to be 1 if the
row represents a valid independent set. Column Opt is set 1 if and only if:

• The row represents a valid independent set.
• S in this row is optimal among all the rows with different choices in the columns

corresponding to the vertices in Xi − X p, given the chosen values same as this
row in the columns corresponding to the vertices in Xi ∩ X p, where node p is the
parent of node i .

Column S is set differently based on whether the current node is a leaf or an
internal node in the tree decomposition. For a leaf node, S is 0 if the row is not a valid
independent set; otherwise S is the corresponding weight of the set. For an internal
node i that has two children j and k whose tables m j , mk have been computed, for
each row in table mi , column S is computed as S = w1 + w2 + w3 − w4, where

• w1 is the weight of the row in table m j with the same combination in the columns
corresponding to the vertices in X j ∩ Xi that has column Opt = 1;

• w2 is the weight of the row in table mk with the same combination in the columns
corresponding to the vertices in Xk ∩ Xi that has column Opt = 1;
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• w3 is the weight of the independent set formed by the choices in columns corres-
ponding to the vertices in Xi − X j − Xk ; and

• w4 is the weight of the independent set formed by the same combination in the
columns corresponding to the vertices in Xi ∩ X j ∩ Xk .

In implementation, the computation of table Ti of node i does not enumerate all
combinations of vertices in Xi . Instead, in general, a greedy algorithm is used to
partition set Xi into a collection of cliques. Consider the sequence as a straight line
and the left (right) region of a stem as an interval. Let all the left regions of the stable
stems included in the tree node form an interval graph. Choose an interval (left region)
with the right end at the leftmost position among all of the intervals, record all the
intervals that overlap with this interval as a clique and remove them, recursively call on
the interval graph left until it is empty. A linear time in t is enough for this procedure.
Once the collection of cliques is obtained for Xi , combinations of vertices are only
considered by taking at most one vertex from every clique.

A similar technique can also be used to further improve the efficiency of the algo-
rithm for some long sequences: we build the stem graph based on the left regions of the
stems, then we use a similar procedure to the above one to build a path decomposition
of the graph. Each node of the path decomposition is indeed a clique consisting of
overlapping half stems. We only need to choose zero or one half stem from each node.
During the dynamic programming, each combination is associated with C (a user
defined number, default 4000) suboptimal partial solutions rather than the optimal one
only, and the conflicts caused by the right regions are resolved during the dynamic
programming.

2.3.2 Tree decomposition of stem graph

Finding the optimal tree decomposition is NP-hard [4], we use a simple, fast heuristic
algorithm to produce a tree decomposition for the given stem graph. This algorithm
is based on a heuristic method for greedy fill-in [12]. This method will produce a tree
decomposition with small tree width but not necessary the optimal one, i.e., the tree
width of the tree decomposition might be greater than the tree width of the stem graph.
Note this will not affect the optimal property of the tree decomposition based method
described above since along any tree decomposition the optimal solution could be
found.

2.3.3 Reordering suboptimal structures

The list of candidate structures, including the optimal and the suboptimal ones, are
reordered based on a more sophisticated energy model. In particular, we recalculate the
free energy for each of the candidate structures obtained from the previous step using
a procedure implemented in [19] according to the energy model in [17,25] together
with the one in [8], which take the stem stabilizing energies, loop destabilizing, and
pseudoknot energies into account.
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Table 1 Test set one: sequence IDs of 50 tRNAs, taken from [27]

GA0001 GA1262 GA2492 GA3755 GA4966 GC2866 GD1723 GD5199 GE2095 GE4739

GF1407 GF4687 GG0841 GG2136 GG3917 GH0128 GH4536 GI1748 GI4502 GK1078

GK4537 GM0313 GM2284 GM4471 GM5945 GN2837 GP1341 GP3879 GP5312 GQ2684

GR0044 GR0793 GR1516 GR2309 GR3541 GR4508 GR4705 GR4740 GR5278 GT0109

GT1418 GT4178 GT5273 GV0579 GV1734 GV4391 GV5554 GW1796 GW5332 GY4135

Table 2 Test set two: sequence IDs of 50 small pseudoknotted RNAs (with their reference citations)

Sequence type Sequence IDs

mRNA Bt-PrP, Ec_alpha, Ec_S15, Hs-PrP, T4_gene32 [31]

tmRNA Lp_PK1, Ec_PK1, Ec_PK4 [31]

Ribozymes satRPV, Tt-LSU-P3P7, Bp_PK2 [31]

Viral tRNA like OYMV, APLV, CGMMV, SBWMV1, BSMVbeta, CGMMV_PKbulge,

ORSV-S1, AMV3 [31]

Viral 3′ UTR BSBV3, TMV-L_UPD-PK3, STMV_UPD1-PK3, BVQ3_UPD-PKb,

BSBV1_ ,UPD-PKc, PSLVbeta_UPD-PK1, PSLVbeta_UPD-PK3,

SBWMV1_UPD-PKb [31]

Viral ribosomal minimal IBV, MMTV, MMTV-vpk, pKA-A, BWYV, SRV-1, T2_gene32[11];

RNA shifting signals EIAV, PLRV-S [31]

Ribozymes HDV-It_ag [31]

Telomerase RNA T.the_telo [31]

Aptamers NGF-L6 [31]

rRNA Sc_18S-PKE21-7 [31]

Antizyme ribosomal

Frame shifting site Rr_ODCanti [31]

Viral RNA PSIV_IRES [31]; TYMV, TMV.L, TMV.R [19]

HIV-1-RT ligand RNA HIVRT32, HIVRT322, HIVRT33 [19]

Hepatitis virus ribozyme HDV, HDV_anti [19]

3 Evaluation results

3.1 Data sets

In order to test the effectiveness and the efficiency of our algorithm, we evaluated it
on small and large, pseudoknotted and pseudoknot-free RNAs. We used three sets of
RNA sequences. The first set consists of 50 tRNAs, shown in Table 1, with lengths
ranging from 71 to 79 (with the average 75). The second set consists of 50 small
RNA sequences or sequence segments with pseudoknot structures (see Table 2) of
lengths ranging from 23 to 113 (with the average 53). The third set consists of 11 large
pseudoknot or pseudoknot free RNA sequences (see Table 3) of lengths ranging from
210 to 412 (with the average 344).
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Table 3 Test set three: large RNAs containing pseudoknots (with their reference citations)

Sequence type Sequence IDs

RNaseP RNA A. ferrooxidans, A. laidlawii (pseudoknot free), A. tum, B. anthracis, B. halodurans,

CPB147, D. desulfuricans, EM14b-9, E. thermomarinus, T. roseum [6]

Telomerase RNA telo.human [7]

3.2 Experiment details

We compared the performance of our algorithm TdFOLD and that of algorithms
PKNOTS [20], ILM [22], and HotKnots [19]. We chose the optimal algorithm
PKNOTS since it can deal with the most comprehensive type of pseudoknot, while
some newer algorithms can only deal with very restricted kinds of pseudoknots. We
ran all these algorithms on the tRNAs and the set of small pseudoknot RNAs, and ran
all but PKNOTS on the set of large RNAs. We evaluated both accuracy and efficiency
of these algorithms. The accuracy is measured in both sensitivity and specificity. Let
R P be the number of base pairs in the real structure, T P (true positive) be the number
of correctly predicted base pairs and F P (false positive) be the number of predicted
base pairs that do not exist as real structures. We define SE (sensitivity) as T P/R P ,
and S P (specificity, also called as positive predictive value) as T P/(T P + F P). The
perfect prediction should yield 1 for both sensitivity and specificity values.

For tRNA, the pseudoknot option for PKNOTS was turned off since it affects the
predictions little for tRNA based on some previous tests. For TdFOLD, parameters
were set to default values and the number of output solutions was set to 40 for tRNAs
and small pseudoknotted RNAs. For HotKnots and TdFOLD, we only collect the
top prediction result from the program output. We also determine the number of best
predictions for each program on all data sets. Here, we say that a program has the best
prediction for the secondary structure of an RNA if the sensitivity or specificity of the
prediction is not worse than any of the predictions from other programs.

The experiments were run on a PC with 2.8 GHz Intel(R) Pentium 4 processor
and 1-GB RAM, running RedHat Enterprise Linux version 4 AS. Running times were
measured using the “time” function. The testing results are summarized in Tables 4, 5,
and 6. Due to space limitations, we omit the data for each tRNA and each small RNA
with pseudoknots.

Table 4 Summary of testing results on 50 tRNAs

TdFOLD HotKnots ILM PKNOTS

SE SP T SE SP T SE SP T SE SP T

Min 0.33 0.29 0.26 0.33 0.25 0.57 0.33 0.25 0.01 0 0 0.11

Max 1.00 1.00 1.37 1.00 1.00 8.32 1.00 1.00 0.15 1.00 1.00 0.24

Average 0.81 0.75 0.54 0.72 0.66 3.33 0.75 0.61 0.03 0.78 0.73 0.41

SE sensitivity, SP specificity, T time (seconds)
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Table 5 Summary of testing results on small pseudoknotted RNAs

TdFOLD HotKnots ILM PKNOTS

SE SP T SE SP T SE SP T SE SP T

Min 0 0 0.04 0 0 0.05 0 0.25 0.001 0 0 0.27

Max 1.00 1.00 0.57 1.00 1.00 57.0 1.00 1.00 0.05 1.00 1.00 >1hr

Average 0.76 0.79 0.36 0.69 0.72 5.84 0.73 0.69 0.03 0.78 0.73 1066

SE sensitivity, SP specificity, T time in seconds (if not otherwise noted)

Table 6 Summary of testing results on large RNAs (pseudoknots)

TdFOLD HotKnots ILM

L SE SP T SE SP T SE SP T

A. ferrooxidans 344 0.42 0.38 14.5 0.43 0.38 169 0.38 0.36 0.71

A. laidlawii 316 0.45 0.35 3.13 0.68 0.52 655 0.57 0.45 1.15

A. tum.RNaseP 400 0.58 0.7 0.46 0.61 0.63 1432 0.77 0.82 1.24

B. anthracis 408 0.43 0.57 0.47 0.35 0.32 222 0.43 0.42 1.49

B. halodurans 412 0.56 0.6 0.48 0.53 0.44 13483 0.56 0.53 0.99

CPB147 298 0.18 0.17 7.62 0.59 0.52 170 0.30 0.25 0.85

D. desulfuricans 360 0.62 0.61 5.59 0.58 0.52 159 0.48 0.45 0.63

EM14b-9 355 0.72 0.73 4.58 0.66 0.51 29710 0.67 0.61 0.86

E. thermomarinus 331 0.46 0.41 1.86 0.65 0.56 148 0.54 0.47 0.83

telo.human 210 0.86 0.69 3.17 0.28 0.18 157 0.70 0.55 0.81

T. roseum 350 0.62 0.63 1.83 0.24 0.19 2714 0.51 0.45 1.10

Average 344 0.54 0.53 3.97 0.54 0.49 4456 0.51 0.44 0.97

L length, SE sensitivity, SP specificity, T time in seconds

3.3 Prediction accuracy

Tables 4, 5 and 6 summarize the testing results for different programs on the three
RNA data sets. In Tables 4 and 5, we also record the minimum (maximum) value
among the predictions for all of the sequences as min (max) since we did not show
the data for each sequence. For example, among the 50 predictions for tRNAs from
TdFOLD, in term of sensitivity, the worst one (min) is 0.33 and the best (max) one
is 1.

Table 4 shows that TdFOLD has sensitivity 0.81 and specificity 0.75 on average
for the tRNA prediction, which are slightly better than PKNOTS and significantly
better than ILM and HotKnots. Table 5 shows that, for the small pseudoknotted
RNAs, TdFOLD has average sensitivity 0.76, which is less than PKNOTS but greater
than ILM and HotKnots. On the other hand, TdFOLD has average specificity 0.79,
which outperforms all the others. TdFOLD is slightly better in overall accuracy than
PKNOTS, which reports the optimal structure according its sophisticated energy
model. Table 6 shows the prediction accuracy on the large RNA’s. TdFOLD maintains
the same sensitivity (0.54) as HotKnots, which is slightly better than ILM. TdFOLD
has the highest specificity.
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As we mentioned, a program has the best prediction for an RNA sequence if the
sensitivity or specificity of the prediction is not worse than any of the predictions by
other programs. For example, for tRNA, in sensitivity, TdFOLD, PKNOTS, HotKnots,
ILM have 30, 29, 15, and 20 best predictions, respectively. In specificity, they have
23, 27, 19, and 4, respectively. For small pseudoknotted RNAs, they have 29, 31,
27, 24 for sensitivity and 29, 26, 22, 20 for specificity, respectively. For large RNAs,
TdFOLD, HotKnots and ILM have 6, 3, 4 for sensitivity and 7, 1, 4 for specificity.
Thus, TdFOLD performs better than, or as well as, the other programs tested.

We also noticed that different initial stem pools could affect the prediction results.
The predictions based on the initial pools according to the parameter values mentioned
in this paper may not necessarily be the best ones. It could be straightforward to
improve the accuracy of our algorithm: generate multiple initial stem pools for an
RNA sequence according to different parameters values; run our current version of
the algorithm to produce multiple sets of predictions; pick up a number of the best ones
from the multiple sets of the predictions according to the full energy model. Given
the efficiency of our algorithm, such an extension is reasonable. Since it could be
prejudicial to choose any one particular set of values of the parameters, this extension
could also rectify the bias caused by choosing only one parameter value set at some
degree.

3.4 Time efficiency

Efficiency comparisons are also given in Tables 4, 5 and 6 on each data set, respectively.
For tRNA’s, the average running time of 0.54 seconds for TdFOLD is slower than the
average 0.03 of ILM and the average 0.41 of PKNOTS but faster than the average 3.33
of HotKnots. This is not a surprise because we turned the pseudoknot option off for
PKNOTS. For small pseudoknotted RNA’s, TdFOLD is slower than ILM (0.36 vs. 0.03
seconds), while much faster than HotKnots and PKNOTS (5.84 and 1,066 s). For large
RNA sequences, it is comparable (slightly slower) than ILM (3.97 vs. 0.97 s) while
much faster than HotKnots (4,456 s) on average. In general, the speed of TdFOLD is
comparable to ILM and much faster than PKNOTS and HotKnots.

3.5 Suboptimal structures

According to Tables 4, 5 and 6, all of the programs could predict some sequences
(different for each program) totally wrong (zero sensitivity and/or specificity). This
reveals that the available thermodynamic parameters for RNA secondary structures
may not be optimal for all RNA classes. Thus it is hard to guarantee that the structure
with the minimum free energy is the true structure. This makes the output of a list of
low energy suboptimal structures a valuable feature of a structure prediction algorithm.
Among the previous algorithms, only HotKnots can output suboptimal structures but
with a substantial sacrifice in efficiency. Some other existing dynamic programming
based algorithms can list suboptimal structures but only work for restricted classes of
pseudoknots. In contrast, our algorithm can output suboptimal predictions of RNAs
with any class of pseudoknots without using much more time than reporting the optimal
structure.
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The prediction results for 23 tRNAs and 19 short pseudoknotted RNAs are improved
by considering the top five structures, rather than only the top one among the 40
output predictions for each sequence. By “improved” we mean that there is at least
one suboptimal prediction with both the sensitivity and specificity better than (or the
same as) those of the optimal prediction. If there is more than one prediction improved
over the top one, we choose the best among all the improved. Some statistics are shown
below.

For the 50 tested tRNAs, the average sensitivity and specificity are improved to 0.91
and 0.85, respectively, from 0.81 to 0.75. The perfect predictions also increase to 15
from 11. For the short pseudoknotted RNAs, although the number of perfect predictions
remains unchanged, the sensitivity and specificity increase to 0.81 and 0.85 from 0.76
and 0.79, respectively. An extreme example is CGMMV (the 3′ end of cucumber
green mottle mosaic virus RNA with tRNA-like pseudoknotted structure): the top one
prediction was totally wrong, while the second prediction has sensitivity 0.57 and
specificity 0.4. For the large RNA sequences, some of the suboptimal predictions also
improved over the optimal ones. We did not collect the statistics due to the small data
set.

4 Application in automated comparative RNA analysis

We now discuss an application of our algorithm to automated comparative RNA
analysis. We first note that our algorithm, like other ab initio ones, is suitable for
predicting the structure of single RNA sequence. When related structurally homolo-
gous sequences are available, the accuracy of RNA structure prediction can usually be
improved through the use of comparative analysis. This usually uses the information
of the covarying residues in a set of multiple sequences or additional phylogenetic
relationship of these sequences and thus may produce the most reliable prediction for
the consensus structure [10,13,15,23,28]. Because such methods inevitably involve
multiple sources of data or computational tools, they often rely on human intervention.

Nevertheless, a fully automated comparative analysis process exists [9,10] for RNA
consensus structure prediction that iterates between the following two steps to refine
the prediction: (a) build an optimal (or nearly optimal) structure model given the current
multiple alignment; and (b) build a multiple alignment given the current structure
model. The algorithm for step (b) is structure-sequence alignment that can align every
sequence in the set to the structure model. In the implementation for pseudoknot-free
RNAs, covariance models were used for the structure model and the corresponding
alignment algorithm is CYK-based [10]. Once every sequence in the set is aligned
to the structure model, a multiple structural alignment (and thus a structure model)
is actually generated. Therefore step (a) is only difficult in the initial step to produce
a structure alignment without the structure model. In the work for pseudoknot-free
RNAs [10], the initial step is to do multiple sequence alignment and to compute
the mutual information content between every pair of aligned columns. A folding
algorithm is then used to predict the consensus structure, yielding the initial model for
the process [9]. For RNA pseudoknots, both algorithms for steps (a) and (b) can be
computationally intensive; the implementation remains a computational challenge.
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The tree decomposable model and tree decomposition based techniques make it
possible to implement efficiently the automated comparative analysis process. Based
on an earlier work of ours, pseudoknots can be profiled with the conformational graph
model [26] of small tree width; the efficient optimal structure-sequence alignment
developed is ideal for step (b). In addition, the algorithm introduced in this paper can
be employed to construct an initial structure model for multiple RNAs. We discuss
some technical details in the following.

Given a set of multiple RNA sequences, a multiple sequence alignment can be
obtained. As it was done for pseudoknot-free RNAs, the mutual information content
Mi, j can be computed for every pair of aligned columns i, j . Which is defined as the
relative entropy

Mi, j =
∑

xi ,y j ∈{A,C,G,U }
f (xi , y j ) log

f (xi , yi )

f (xi ) f (y j )

where f (xi , y j ) is the frequency for nucleotides xi , y j to occur in pair in these two
columns i, j , and f (xi ) and f (y j ) are for independent occurrences. The multiple
alignment can be regarded as a “generic sequence” consisting of columns as “nucleo-
tides”. The pairwise interactions between columns result in a conformation structure
of the “generic sequence”, yielding a consensus structure for the multiple sequences.
Therefore, we can use our structure prediction algorithm TdFOLD to predict the struc-
ture of the “generic sequence” using the mutual information content Mi, j as “pairing
energy” between columns i and j .

5 Conclusion

In this paper, we presented a tree decomposition based fast RNA folding algorithm,
which is efficient, accurate, not limited to any specific class of pseudoknots, and can
report a list of suboptimal structures. Combined with an efficient structure-sequence
alignment algorithm we developed earlier [26], it also can be used to implement an
automated comparative RNA structure analysis process that can infer the pseudoknot
consensus structure from a set of unaligned, large RNA sequences.
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