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Abstract We present a bidomain fire-diffuse-fire model that facilitates mathematical
analysis of propagating waves of elevated intracellular calcium (Ca2+) in living cells.
Modeling Ca2+ release as a threshold process allows the explicit construction of trave-
ling wave solutions to probe the dependence of Ca2+ wave speed on physiologically
important parameters such as the threshold for Ca2+ release from the endoplasmic
reticulum (ER) to the cytosol, the rate of Ca2+ resequestration from the cytosol to the
ER, and the total [Ca2+] (cytosolic plus ER). Interestingly, linear stability analysis of
the bidomain fire-diffuse-fire model predicts the onset of dynamic wave instabilities
leading to the emergence of Ca2+ waves that propagate in a back-and-forth man-
ner. Numerical simulations are used to confirm the presence of these so-called ‘tango
waves’ and the dependence of Ca2+ wave speed on the total [Ca2+].
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1 Introduction

Calcium ions (Ca2+) are an important second messenger in living cells [1]. The diverse
physiological roles of intracellular Ca2+ signals range from the activation of egg
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cells at fertilization [2,3] to the coupling of plasma membrane excitation to cardiac
muscle cell contraction [4]. While Ca2+ influx via voltage-gated Ca2+ channels of
the plasma membrane can lead to increases in intracellular [Ca2+], another important
source is the endoplasmic reticulum (ER), a continuous membrane-delimited intra-
cellular compartment with integrative and regenerative properties analogous to the
membranes of electrically excitable cells [5–8]. In neurons and many other cell types,
activated metabotropic receptors of the plasma membrane stimulate the production of
the intracellular messenger inositol 1,4,5-trisphosphate (IP3) [9]. IP3 in turn promotes
Ca2+ release from intracellular stores by binding and activating IP3 receptor (IP3R)
channels located on the ER membrane [10]. In addition to this IP3-mediated pathway,
a second parallel mechanism for Ca2+ release is mediated by ryanodine receptors
(RyRs)—intracellular Ca2+ channels on the ER or sarcoplasmic reticulum (SR) that
are activated by cyclic ADP ribose [11]. Importantly, both IP3Rs and RyRs can be
activated and/or inactivated by intracellular Ca2+leading to ER ‘Ca2+ excitability’
[6,12]. This Ca2+ excitability is the physiological basis for IP3- and Ca2+-induced
Ca2+ release (IICR and CICR) in excitable and non-excitable cells.

Propagating waves of elevated intracellular [Ca2+] have been characterized in the
immature Xenopus laevis oocyte [13], mature eggs from a variety of species [14–17],
Ca2+-overloaded cardiac myocytes [18], vascular smooth muscle [19], and many other
cell types [20–23]. In many cases intracellular Ca2+ waves are primarily due to Ca2+
release from internal stores, that is, they can occur in the absence of influx of Ca2+
across the plasma membrane. Extensive theoretical work has been carried out in an
effort to understand the biophysical mechanisms underlying such waves. In the case
of the X. laevis oocyte and mature eggs, the focus has been on continuum reaction–
diffusion equations in which the release mechanism is modeled in a deterministic
fashion [24–34]. For example, in situations where plasma membrane fluxes can be
neglected, a one-dimensional continuum model of propagating plane waves of elevated
intracellular Ca2+ might take the form,

∂c

∂t
= D

∂2c

∂x2 + Jrel(c, w, cer) − Jpump(c), (1a)

∂w

∂t
= w∞(c) − w

τw(c)
, (1b)

∂cer

∂t
= Der

∂2cer

∂x2 − γ −1 [Jrel(c, w, cer) − Jpump(c)
]
, (1c)

where the cytosolic and ER [Ca2+] given by c(x, t) and cer(x, t) are both functions
of space and time, and the release and reuptake fluxes, Jrel(c, w, cer) and Jpump(c),
are functions of these two concentrations. In such models the Ca2+ release flux is
also a function of a Hodgkin–Huxley-like gating variable (w) that represents the fast
Ca2+-activation and slower Ca2+-inactivation of a large number of identical IP3Rs at
fixed [IP3] [35,36]. Note that in (1) the ER is represented as a contiguous compartment
with volume fraction γ that is uniformly distributed throughout the cytosol. Spatial
whole cell models in which the cytosolic and ER [Ca2+] coexist in this manner are
often referred to as ‘bidomain’ models [37,38].
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The spatial whole cell modelling approach outlined in (1) has suggested or repro-
duced various distinct modes of transmission of propagating Ca2+ waves [38]: firstly,
solitary and spiral waves that occur when the physiological state of the cytoplasm is
excitable [25,29]; secondly, repetitive wave trains and spiral waves that occur when
the cytoplasm is oscillatory [28–30]; and thirdly, traveling fronts or ‘tides’ that occur
when the cytoplasm is bistable [31,39]. The first two of these mechanisms have been
proposed to be responsible for Ca2+ waves observed in the immature X. laevis oocyte,
while the third mechanism seems to describe the fertilization Ca2+ wave in the ma-
ture Xenopus egg. Interestingly, when the local dynamics of Ca2+ release and reuptake
are spatially heterogeneous, one-dimensional continuum models (1) are also able to
produce a fourth wave phenomenon in which fronts of elevated intracellular [Ca2+]
propagate in a back-and-forth manner that resembles the movement of tango dancers
[40] and is reminiscent of the behavior of Ca2+ waves in nemertean worm [41] and
ascidian eggs [42]. While spatial heterogeneity of model parameters may give rise
to these so-called ‘tango waves’, the phenomenon can also be observed in models
with spatially homogeneous parameters as long as the initial concentration profiles
are chosen so that an auxilary variable known as the total [Ca2+] given by

cT = c + γ cer, (2)

and satisfying
∂cT

∂t
= D

∂2c

∂x2 + γ Der
∂2cer

∂x2 , (3)

results in a spatially localized bistable domain [40,43].
One important spatial inhomogeneity known to have a profound impact on propa-

gating IP3-mediated Ca2+ waves is the distribution of IP3Rs. In the immature Xenopus
oocyte, for example, IP3Rs occur in clusters of 10–100 with inter-cluster spacing on
the order of a few microns [8]. Localized Ca2+ elevations due to the activation of
an individual IP3-sensitive Ca2+ release sites are referred to as ‘Ca2+ puffs’ [44,45]
and under some conditions this organization of Ca2+ release sites reveals itself in
cauliflower-like wave fronts [46]. Similarly, in cardiac myocytes localized Ca2+ ele-
vations due to intracellular Ca2+ release mediated by clusters of RyRs known as Ca2+
sparks [47] can merge to form Ca2+ waves that propagate in a saltatory manner [18].

Although it is possible to modify (1) to include a spatially periodic maximum
conductance for Ca2+ release [48], a more tractable class of ‘fire-diffuse-fire’ (FDF)
models introduced in [49–52] are also appropriate for spark- or puff-mediated Ca2+
waves. FDF models do not include gating variables for the activation and inactivation
of Ca2+-regulated intracellular channels, but instead model Ca2+ release as a threshold
process in which elevated [Ca2+] triggers a prescribed time course of Ca2+ release.
For example, in [51] the cytosolic [Ca2+] satisfies

∂c

∂t
= D

∂2c

∂x2 + Jrel(x, t), (4)
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and the release flux is given by

Jrel(x, t) =
∑

i

f (t − Ti )δ(x − xi ), (5)

where the source amplitude f (t) upon triggering of Ca2+ release is a continuous
function that is zero for t < 0 and positive for t ≥ 0. In (5) Ti is the time of the first
(and only) release event at release site i located at xi given by

Ti = inf{t | c(xi , t) ≥ cth}. (6)

That is, at each site Ca2+ release begins when cytosolic [Ca2+] achieves the threshold
concentration cth. Analytical and simulation based studies using the FDF formalism
((4) and (5)) have illuminated the differences between continuous propagation (as in
mature Xenopus eggs) and saltatory propagation (as in Ca2+-overloaded cardiac myo-
cytes) and have been further extended to include reuptake fluxes [53], stochastic Ca2+
release [54], diffusion in two dimensions [55], and Ca2+ release from continuously
and uniformly distributed intracellular channels, i.e., channels that are not clustered
at Ca2+ release sites [52], in which case the release flux is given by

Jrel(x, t) = f (t − T (x)), (7)

where the firing times T (x) are a function of spatial position that take the form

T (x) = inf{t | c(x, t) ≥ cth}. (8)

To date FDF models with spatially punctate ((5) and (6)) or homogeneous ((7) and (8))
Ca2+ release have been used to reproduce and mathematically analyze the properties
of solitary Ca2+ waves, repetitive wave trains, and traveling fronts, as well as their
analogues when release is triggered in a stochastic fashion [49–56].

In spite of these successes, one of the limitations of the FDF models presented up
to now is that the dynamics of ER [Ca2+] is not included in the model formulation.
A single equation (4) governs the dynamics of cytosolic Ca2+, rather than the more
realistic bidomain equations for concentration balance between the cytosol and the
ER such as (1a) and (1c). Because in many cell types Ca2+ release does lead to
significant local depletion of the ER Ca2+ stores, the range of applicability of prior
work analyzing properties of Ca2+ waves using the FDF formalism is unclear. In
particular, the analytical tractability of the FDF formalism has not yet been used to
address wave phenomena that require spatial heterogeneity of total [Ca2+] (3) to
produce spatially localized bistable domains [40,43].

In order to overcome this limitation of previous FDF models, we have extended the
FDF formalism to include concentration balance between the cytosol and ER (Sect. 2)
and subsequently present what is to our knowledge the first mathematical analysis
of a bidomain threshold-release model of propagating Ca2+ waves. For clarity, this
analysis is developed in two stages. In Sect. 3 we focus on single domain equations (4)
with a release term that is proportional to the concentration difference between the
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elevated cytosolic [Ca2+] and a fixed ER [Ca2+] (i.e., a shunt). By modelling Ca2+
release as a threshold process we explicitly construct traveling wave solutions and
perform stability analysis to probe how Ca2+ wave speed depends on the threshold for
Ca2+ release and the ER [Ca2+]. In Sect. 4 we extend this contruction and analysis to
bidomain equations that include time-dependent depletion of the ER [Ca2+], explicitly
construct traveling pulse and traveling front solutions, and perform a linear stability
analysis that shows the onset of wave instabilities, which lead to the emergence of
waves that propagate in a back-and-forth manner [40]. Numerical simulations confirm
analytical results such as the dependence of wave speed on the total [Ca2+] far from
the wave front as well as the presence of so-called tango waves.

2 The bidomain fire-diffuse-fire model

For clarity, we restrict our analysis and numerical simulation of the bidomain FDF
model to the case where intracellular channels are continuously and uniformly dis-
tributed. With this assumption, the bidomain FDF model of propagating Ca2+ waves
takes the form,

∂c

∂t
= D

∂2c

∂x2 + Jrel(c, cer) − Jpump(c, cer), (9a)

∂cer

∂t
= Der

∂2cer

∂x2 − γ −1[Jrel(c, cer) − Jpump(c, cer)], (9b)

where the release and reuptake fluxes, Jrel(c, cer) and Jpump(c, cer), are functions of
both the cytosolic and ER [Ca2+], and γ is the effective volume fraction of the ER.
When written in the most general form that allows for multiple release events from
the same spatial location, the release flux in the bidomain FDF model is given by

Jrel(x, t) = (cer(x, t) − c(x, t))
∑

m

η(t − T m(x)), (10)

where the release rate η(t) = 0 for t < 0 and η(t) ≥ 0 for t ≥ 0. The release times
T m(x) are determined by a threshold process such that

T m(x) = inf{t | c(x, t) ≥ cth, t > T m−1(x) + τR}, m = 0, 1, . . . , (11)

where τR is the absolute refractory period for Ca2+ release. For simplicity we assume
T 0(x) < −τR , that is, the absolute refractory period does not influence the time of
first release, T 1(x). To complete the bidomain FDF model formulation, the functional
form of the reuptake flux is chosen to be

Jpump(c, cer) = c

τ
− cer

τer
, (12)

a function that is linear in both the cytosolic and ER [Ca2+]. This linear bidirectional
reuptake flux (12) is equivalent to the low-affinity limit (c � κ and cer � κer) of a
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previously published bidirectional SERCA pump model [57],

Jpump(c, cer) = ν
(c/κ)n − (cer/κer)

ner

1 + (c/κ)n + (cer/κer)ner
, (13)

when the Ca2+-binding is not cooperative (n = ner = 1) and the time constants in
(12) are given by τ = κ/ν and τer = κer/ν.

3 Analysis of the fire-diffuse-fire model with shunt

As a first step in our analysis of the bidomain FDF model (9), we consider the associated
single domain equations obtained by assuming that the ER [Ca2+] is fixed, i.e., we
drop (9b) and consider cer to be a model parameter. This single domain FDF model is
applicable when the ER-to-cytosol volume ratio and the diffusion constant within the
ER are both large (γ → ∞ and Der → ∞). Although an approximation of the full
bidomain equations, this single domain model with fixed cer includes the driving force
for Ca2+ liberation, cer−c(x, t), which decreases upon elevation of intracellular Ca2+.
This dynamic driving force or ‘shunt’ for Ca2+ release is potentially important when
intracellular Ca2+ liberation is triggered by cytosolic [Ca2+] crossing a threshold,
but it has been absent from previously published FDF models, which have instead
assumed a time-dependent source amplitude (5) or density (7) that is not influenced
by cytosolic Ca2+ once release is triggered.

3.1 Speed of traveling pulse: arbitrary release shape

We consider a solitary traveling pulse with uniform wave speed v mediated by a
single release event at each spatial location and choose a coordinate system such that
the cytosolic [Ca2+] crosses the threshold for Ca2+ release (cth) at t = 0 and x = 0.
Consequently, release at spatial position x begins at a time given by T (x) = x/v.
To determine the shape and the velocity of the pulse for a release rate that satisfies
η(t) = 0 for t < 0 and η(t) ≥ 0 for t ≥ 0 but is otherwise arbitrary, it is convenient
to work in the co-moving frame. Introducing ξ = vt − x we may re-write the original
equation of motion in which cer is a parameter,

∂c

∂t
= D

∂2c

∂x2 − c

τ
+ η(t − T (x))(cer − c), (14)

as c = c(ξ, t) where c satisfies

(
∂

∂t
+ v

∂

∂ξ

)
c = D

∂2c

∂ξ2 − c

τ
+ η(ξ/v)(cer − c), (15)

and we have used η(t − T (x)) = η(t − x/v) = η(ξ/v). Setting ∂c/∂t = 0 in (15)
we find that a stationary profile c(ξ, t) = c(ξ) in the co-moving frame satisfies the
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ordinary differential equation

(dξ − m+(ξ))(dξ − m−(ξ))c = F(ξ), (16)

where

F(ξ) = −cer

D
η(ξ/v), m±(ξ) = v ±√v2 + 4ε(ξ)D

2D
, ε(ξ) = 1

τ
+ η(ξ/v).

(17)
Introducing the auxiliary variable z(ξ) defined by

z = (dξ − m−(ξ))c, (18)

we can integrate (dξ − m+(ξ))z = F(ξ) to find

z(ξ) = G+(ξ, 0)

⎡

⎣z(0) + Θ(ξ)

ξ∫

0

G+(0, ξ ′)F(ξ ′)dξ ′
⎤

⎦, (19)

where Θ is the Heaviside function, Θ(t) = 1 for t ≥ 0 and 0 otherwise, and

G±(ξ, ξ ′) = exp

⎛

⎜
⎝

ξ∫

ξ ′
ds m±(s)

⎞

⎟
⎠ . (20)

For z(ξ) to be bounded as ξ → ∞ (long after release begins) we require

z(0) = −
∞∫

0

G+(0, ξ ′)F(ξ ′)dξ ′. (21)

Next, we integrate (18) to obtain the solution c(ξ) corresponding to z(ξ) in (19),

c(ξ) = G−(ξ, 0)

⎡

⎣cth +
ξ∫

0

G−(0, ξ ′)z(ξ ′)dξ ′
⎤

⎦, (22)

for which we require

cth = z(0)

0∫

−∞
G−(0, ξ ′)G+(ξ ′, 0)dξ ′, (23)

for c(ξ) to be bounded as ξ → −∞ (long before release begins). Note that for ξ < 0
(prior to the initiation of release), η = 0 and ε = 1/τ in (17) and thus m±(ξ) = k±
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Fig. 1 Speed of a solitary wave as given by (25) with η(t) = ηΘ(t)Θ(∆ − t). Filled circles denote
results from numerical simulations. Left v = v(cth), with D = 30 µm2s−1, cer = 100 µM, ∆ = 0.05 s,
τ = 0.01 s−1 and η = 1 s−1. Right v = v(cer) with D = 30 µm2s−1, cth = 0.2 µM, ∆ = 0.05 s,
τ = 0.01 s−1 and ηcer = 100 µM s−1. Of the two branches of solutions, the slower is always unstable

where

k± = v ±√v2 + 4D/τ

2D
. (24)

Hence, we have the elegant result that the speed of the solitary pulse is determined by
the equation

cth = z(0)

k+ − k−
= z(0)

(
D

√
v2 + 4D/τ

)

. (25)

3.2 Speed of traveling pulse and wave profile: square pulse release shape

For an example application of the above analysis of traveling pulse speed in the FDF
model with a shunt, consider the square pulse release rate with amplitudeη and duration
∆ given by η(t) = ηΘ(t)Θ(∆ − t). In this case z(0) is easily found from (21) to be

z(0) = ηcer

Dm+
(
1 − e−m+v∆

)
, where m+ = v +√v2 + 4(τ−1 + η)D

2D
. (26)

For sufficiently small cth/cer there are two wave speeds that solve (25) and (26).
This is illustrated in Fig. 1 (left) by varying the threshold for release with fixed ER
concentration (cer = 100 µM) and pulse duration (∆ = 0.05 s). Note that Fig. 1 (left)
is qualitatively similar to the v = v(cth) plots obtained from FDF models that do not
include a shunt [52] and as expected the slower (and lower) branch of solutions is
unstable (see Sect. 3.3). The solid dots in Fig. 1 (left) show wave speed calculations
obtained from numerical simulations using a finite difference scheme (note agreement
with analytical result).

Figure 1 (right) plots the wave speed as a function of the ER concentration for a
fixed threshold for release (cth = 0.2 µM), pulse duration (∆ = 0.05 s), and initial and
maximum release amplitude (ηcer = 100 µM s−1). As expected, we observe that the
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Fig. 2 Pseudocolour plot of the speed v (µm/s) of a stable solitary wave in the (∆, η) parameter plane,
with D = 30 µm2s−1, cer = 100 µM, cth = 0.2 µM, and τ = 0.01 s−1

speed of the stable pulse (upper branch) decreases with decreasing ER [Ca2+]. Note
that in the limit cer → ∞ with fixed ηcer the shunt model (14) is equivalent to a FDF
model with pure source term (7) of the form f (t) = ηcerΘ(t)Θ(∆−t). Consequently,
the asymptotic stable and unstable wave speeds shown in Fig. 1 (right) can be found
by taking this limit in (25) and (26) and using the identity k+k− = −1/(Dτ), that is,

cth

cer
= ητ

k−
k− − k+

(
1 − e−k+v∆

)
, (27)

a wave speed result first obtained in [52].
A more comprehensive view is presented in Fig. 2 that plots the stable wave speed

in the (∆, η) parameter plane using fixed cth and cer. Note that the minimum wave
speed decreases as the release rate during the pulse η decreases. In the limit of a brief
pulse with fixed amplitude given by η∆ = 1, the limit ∆ → 0 in (25) and (26) such
that η(t) → δ(t) yields a unique wave speed

v =
√

4D/τ

(cer/cth)
2 − 1

, when cer/cth > 1. (28)

The corresponding wave profile is simply c(ξ) = cth[ek−ξΘ(ξ)+ek+ξΘ(−ξ)], though
using the techniques we develop in the next section it can be shown to be unstable.

Figure 3 shows three wave profiles of the FDF model with shunt calculated from
(22) using a square-pulse release rate, η(t) = ηΘ(t)Θ(∆ − t), and parameters as
in Fig. 1 (left). The wave profiles shown in the left and right panels of Fig. 3 both
employ cth = 0.2 µM and correspond to the upper (v = 81.98 µm/s) and lower
(v = 5.71 µm/s) branches of Fig. 1, respectively, while the wave profile shown
in the middle of Fig. 3 corresponds to the limit point in Fig. 1 (cth = 0.366 µM
and v = 23.16 µm/s). When two wave profiles exist for fixed cth, the more slowly
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Fig. 3 Three wave profiles corresponding to data on upper branch of Fig. 1 (left) at cth = 0.2 µM
(v = 81.98 µm/s, stable), the limit point at cth = 0.366 µM (v = 23.14 µm/s, neutrally stable), and the
lower branch at cth = 0.2 µM (v = 5.71 µm/s, unstable)

propagating wave has a smaller pulse width than the more quickly propagating pulse.
In the following section we show that the slower solution branch in Fig. 3 (right)
is always unstable. The three wave profiles presented in Fig. 3 are nearly identical
to profiles obtained from numerical simulations using a finite different scheme (not
shown).

3.3 Stability of traveling pulse: arbitrary release shape

For the purposes of a linear stability analysis it is more convenient to work in terms of
the original variables (x, t) rather than in the co-moving frame. Our analysis begins
by noting that for known release times T (x) the solution to the FDF model with shunt
(14) is

c(x, t) =
t∫

−∞
ds

∞∫

−∞
dyG(x − y, t − s)(cer − c(y, s))η(s − T (y)), (29)

where G(x, t) is the time-translation invariant Green’s function

G(x, t) = 1√
4π Dt

e−t/τ e−x2/(4Dt)Θ(t). (30)

As discussed in Sect. 3.1, we assume c(x, t) is a solitary wave solution mediated by
a single release event at each spatial location with T (x) = x/v and c(x, T (x)) = cth.
Consequently, c(x, t) = c(vt − x) = c(v[t − T (x)]) with c(ξ) given by (22).

Following [52] we consider local perturbations of the release times given by T̃ (x) =
T (x) + g(x) with g(x) = φ(x) for x ≤ 0 and φ(x) a prescribed, bounded function
on (−∞, 0]. Asymptotic stability then corresponds to the condition g(x) → 0 as
x → ∞ for arbitrary non-uniform initial data φ(x). The perturbed trajectory c̃(x, t) is
obtained from (29) under the replacement of T (x) by T̃ (x). To compute the perturbed
trajectory to first order, we make the natural assumption that the perturbed trajectory
can be approximated by a time-translation of the unperturbed trajectory so that we
may write c̃(x, t) ≈ c(x, t − g(x)). Evaluating c̃(x, T̃ (x)) under this assumption
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from Eq. (29) and using c̃(x, T̃ (x)) = cth = c(x, T (x)) leads to the condition

x/v∫

−∞
ds

∞∫

−∞
dyG(x − y, x/v − s)I ′(s − y/v)[g(x) − g(y)] = 0, (31)

where I (ξ) = (cer − c(vξ))η(ξ) is the release flux and the prime denotes differen-
tiation, I ′(ξ) = d I/dξ . The stability of solutions is then determined by equation
(31). More specifically, we now consider perturbations of the firing times of the form
g(x) = eλx to obtain the characteristic equation

E(λ) = H(λ) − H(0) = 0, (32)

where

H(λ) =
∞∫

0

ds

∞∫

−∞
dyG(y, s)I ′(y/v − s)e−λy . (33)

Using the Fourier integral representation

G(x, t) =
∞∫

−∞

dk

2π
eikx e−σ(k)t , σ (k) = 1

τ
+ Dk2, (34)

we may also write (33) in the form

H(λ) =
∞∫

−∞

dk

2π

ik Î (k)

σ (k/v + iλ) + ik
, (35)

where we introduce the Fourier transform of I (ξ),

Î (k) =
∞∫

−∞
dξe−ikξ I (ξ). (36)

Note that going from Eq. (33) to Eq. (35) requires Re {σ(k/v + iλ)} > 0 for all k.
Since a change in stability is indicated by an eigenvalue crossing the imaginary axis,
we can restrict our analysis to a region around it where λ = ν + iω and ν2 < 1/τ D.

Asymptotic stability holds if all non-zero solutions of the characteristic equation
(32) have negative real part, while the existence of a solution λ = 0 reflects the trans-
lation invariance of the underlying dynamical system. Equation (35) can be evaluated
by closing the contour in the lower-half complex k-plane. Since I (ξ) = 0 for ξ < 0
it follows that any poles of Î (k) lie in the upper-half complex plane and thus we
only have to consider poles arising from the zeros of the function σ(k/v + iλ) + ik
(see [52] for a similar calculation). However, when λ ∈ R we may establish a more
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general result about branch stability. Because there is always a zero eigenvalue by
translation invariance, a real instability occurs when there is a repeated root of the
characteristic equation, namely E ′(0) = 0. By differentiating the equation defining
wave speed c(x, x/v) = cth with respect to v it is possible to show that

E ′(0) = v2 dcth

dv
. (37)

By contour integration of (35) we find

H(0) = v2

D

k+ Î (−ivk+)

k+ − k−
, (38)

where k± is given by (24) and

Î (−ivk+) =
∞∫

−∞
dξe−vk+ξ I (ξ) =

∞∫

0

dξe−vk+ξ (cer − c(vξ))η(ξ). (39)

Because the release flux η(cer −c) reverses when c = cer in the FDF model with shunt,
we have that c(ξ) < cer for traveling wave solutions. Using c(vξ) < cer in (38) and (39)
we see that Î (−ivk+) > 0 and H(0) > 0, and hence limλ→∞ E(λ) = −H(0) < 0.
Consequently, if E ′(0) > 0 there is a positive root of E(λ) that indicates an unstable
solution. Thus we find from Eq. (37) that there is a change of stability at a limit point
of a solution branch in the (v, cth) plane. We see that the lower of the two solution
branches shown in Fig. 1 (left) is unstable to firing perturbations of the form g(x) = eλx

when λ ∈ R.
To determine whether there are dynamic instabilities in the traveling wave solution

we must establish whether there are any non-zero solutions for ω of the equation
E(iω) = 0 along a solution branch. A practical way to explore this spectral problem is
to introduce P(ν, ω) = Re E(ν+iω) and Q(ν, ω) = Im E(ν+iω). The zero-contours
of P and Q can then be found numerically and plotted in the (ν, ω) plane; where the two
contours cross determines a zero of the complex functionE(λ) and hence an eigenvalue.
Figure 4 uses this approach to show stability functions for the pulse solutions of
Fig. 3. Notice that upon lowering the velocity, an eigenvalue crosses from the left to
the right in the complex plane along the real axis, indicating a change of stability.
Figure 5 summarizes this behavior by plotting the real-valued critical eigenvalue λ as
a function of the threshold for Ca2+ release, cth. Note that the eigenvalue changes sign
at cth = 0.366 µM, which coincides with the limit point in Fig. 1 (left) as expected.

4 The bidomain model

While in the previous section we considered a single domain FDF model that included a
shunt for Ca2+ release, this section focuses on the bidomain FDF model (9) in which
the ER [Ca2+] is a dynamic variable, cer(x, t). Our analysis of the bidomain FDF
model includes a derivation of an equation for the speed of a traveling pulse or front
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Fig. 4 Three stability functions, corresponding to data on upper branch of Fig. 1 (left) at cth = 0.36 µM,
the limit point and the lower branch at cth = 0.36 µM. Solid black lines refer to the zero contour of Re E(λ)

and solid grey lines to the zero contour of Im E(λ), respectively
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Fig. 5 Critical eigenvalue λ as function of the threshold cth using parameter as in Fig. 1 (left). As the
branch of solutions in Fig. 1 is traversed from the upper to lower branch the critical eigenvalue changes
from negative to positive, with a zero at the limit point (LP). Hence, the fast (slow) branch of traveling pulse
solutions is stable (unstable)

with arbitrary release shape (Sect. 4.1), representative traveling and standing waves
mediated by square-pulse Ca2+ release (Sect. 4.2), and an analysis of the stability of
propagating waves (Sect. 4.3).

4.1 Speed of traveling pulse: arbitrary release shape

We proceed along the same lines as in Sect. 3.1 and write the original equations in the
co-moving frame. Using ξ = vt − x as above, (c, cer) = (c(ξ, t), cer(ξ, t)) satisfies

(
∂

∂t
+ v

∂

∂ξ

)
c = D

∂2c

∂ξ2 −
(

c

τ
− cer

τer

)
+ η(ξ/v)(cer − c), (40a)

(
∂

∂t
+ v

∂

∂ξ

)
cer = Der

∂2cer

∂ξ2 − 1

γ

(
cer

τer
− c

τ

)
+ 1

γ
η(ξ/v)(c − cer). (40b)
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A stationary profile (c(ξ, t), cer(ξ, t))=(c(ξ), cer(ξ)) in the co-moving frame satisfies
the system of ordinary differential equations dξ x = A(ξ)x, where x =(c, z, cer, zer)

T

and

A(ξ) =

⎡

⎢⎢
⎣

m−(ξ) 1 0 0
0 m+(ξ) β(ξ) 0
0 0 mer−(ξ) 1

α(ξ) 0 0 mer+(ξ)

⎤

⎥⎥
⎦ , (41)

with m±(ξ) given by (17) and mer±(ξ) given by

mer±(ξ) = v ±√v2 + 4εer(ξ)Der

2Der
, εer(ξ) = 1

γ

(
1

τer
+ η(ξ/v)

)
, (42)

and α(ξ) and β(ξ) as

α(ξ) = − 1

γ Der

(
1

τ
+ η(ξ/v)

)
, β(ξ) = − 1

D

(
1

τer
+ η(ξ/v)

)
. (43)

The solution for x(ξ) takes the form x(ξ) = G(ξ, 0)x(0) where

G(ξ, ξ ′) = T

⎧
⎪⎨

⎪⎩
exp

ξ∫

ξ ′
ds A(s)

⎫
⎪⎬

⎪⎭
, (44)

and the symbol T denotes the time-ordering operator, that is,

T [A(ξ)A(ξ ′)] = A(ξ)A(ξ ′)Θ(ξ − ξ ′) + A(ξ ′)A(ξ)Θ(ξ ′ − ξ). (45)

As in Sect. 3.1 the traveling wave solution is completed by ensuring that solutions
are bounded as ξ → ±∞ subject to c(0) = cth. Note that this construction assumes
that the diffusion coefficient for Ca2+ in the ER is greater than zero (Der > 0) so that
(42) is defined. However, traveling pulses with finite velocity can be constructed when
Der = 0 by deriving a 3 × 3 analogue of (41) (not shown).

4.2 A conserved quantity in the co-moving frame

The structure of A entails that det A = m+m−mer+mer−−αβ = 0 for all possible release
shapes. Consequently, one of the eigenvalues of A is always zero. Denoting this zero
eigenvalue as λ1, we also note that λ2 + λ3 + λ4 = m+ + m− + mer+ + mer− > 0
and λ2λ3λ4 = m+m−(mer+ + mer−) + mer+mer−(m+ + m−) < 0 and, therefore, when
the remaining three eigenvalues (λ2, λ3, λ4) are real, two of them are positive and the
other is negative.

The physical significance of the zero eigenvalue of A is that a conserved quantity
exists in the co-moving frame. In the case of square pulse Ca2+ release,
η(t) = ηΘ(t)Θ(∆ − t), we can explicitly compute its value, because calculating the
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traveling wave solution from (41–44) simplifies considerably. In this special case, m+,
m−, mer+, mer−,α andβ are all piecewise constant, so that A(ξ) is also piecewise constant.
Consequently, we do not have to worry about time ordering. Denoting the right eigen-
vectors of A and AT by vi and ui respectively, with corresponding eigenvalues λi , we
may write G(ξ) = PeΛξ P−1 where P = [v1, v2, v3, v4], P−1 = [w1,w2,w3,w4]T ,
wi = ui/(uT

i vi ) and Λ = diag[λ1, λ2, λ3, λ4]. The right eigenvectors vi and ui are
given explicitly by

vi =

⎡

⎢⎢
⎣

1
λi − m−

(λi − m+)(λi − m−)/β

α/(λi − mer+)

⎤

⎥⎥
⎦ , ui =

⎡

⎢⎢
⎣

1
1/(λi − m+)

(λi − mer+)(λi − m−)/α

(λi − m−)/α

⎤

⎥⎥
⎦, (46)

for i ∈ {1, 2, 3, 4}. Because we have set λ1 = 0, the conserved quantity can be found
by considering the first row of the vector P−1x, that is,

κT (ξ) = 1

uT
1 v1

[
c(ξ) − z(ξ)

m+
+ mer+m−

α
cer(ξ) − m−

α
zer(ξ)

]
. (47)

This function κT (ξ) is piecewise constant in the co-moving frame and remains at a
fixed level in the ranges of ξ where A(ξ) does not change. By rescaling κT (ξ) in a
piecewise fashion we can construct a quantity κ(ξ) that is constant throughout the
co-moving frame:

κ(ξ) = uT
1 v1

m+
m+ + m−

κT (ξ). (48)

Using Eqs. (17) and (42) as well as the definitions of z and zer, equation (48) can be
written as:

κ(ξ) =
[

1 − D

v
dξ

]
c(ξ) + γ

[
1 − Der

v
dξ

]
cer(ξ). (49)

For a traveling pulse propagating into a region of the cell where cytosolic and ER
[Ca2+] are equilibrated, dξ c and dξ cer → 0 as ξ → −∞; similarly, as ξ → ∞
(after the wave passes) the derivative of cytosolic and ER [Ca2+] in the traveling
wave coordinate will be zero. By taking these limits in (49) we see that κ(ξ) = c∞

T
where the total (cytosolic plus ER) [Ca2+] far from the pulse is given by c∞

T =
limξ→±∞[c(ξ) + γ cer(ξ)] = c∞ + γ c∞

er . For the solitary traveling pulse solutions
shown below, we freely choose c∞

T and the parameters of the uptake flux (12), but
require Jpump = 0 as ξ → ±∞ so that c∞

er = c∞τer/τ and c∞ = c∞
T /(1 + γ τer/τ).

Figure 6 (left) plots κT (ξ) for a solitary traveling pulse using a cytosolic [Ca2+]
far from the pulse of c∞ = 0.119 µM, which employing reuptake flux time constants
of τ = 0.01 s and τer = 10 s results in c∞

er = 119.28 µM and c∞
T = 20 µM.

The piecewise constant function κT (ξ) has the same value in the wake as in the front
of the pulse due to c(−∞) = c(∞) and cer(−∞) = cer(∞) at a fixed value of c∞

T .
The dotted line in Fig. 6 (right) shows the constant function κ(ξ) = c∞

T = 20 µM.
The solid line in Fig. 6 (right) shows the total [Ca2+] in the traveling wave coordinate
cT (ξ) asymptotically approaching c∞

T . Note that cT (ξ) is elevated near the wave front
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Fig. 6 (Left) The piecewise continuous function κT (ξ) given by (47). (Right) The total Ca2+ concentration
in the traveling wave coordinate cT(ξ) (solid line) is plotted along with the conserved quantity κ(ξ) = c∞

T
(dashed line) given by (49). Parameters: D = 30 µm2s−1, ∆ = 0.05 s, τ = 0.01 s−1, Der = 5 µm2s−1,
τer = 10 s−1, η̄ = 1 s−1, γ = 0.167, cth = 0.4 µM, c∞ = 0.119 µM

and depressed near the wave back, consistent with observations in bidomain models
with Hodgkin–Huxley-like gating variables [40,43].

4.3 Square pulse release: speed of traveling pulse and wave profiles

In order to construct traveling wave solutions mediated by square pulse release, we
denote the piecewise constant matrix A (41) by A∞ when ξ 
∈ (0, v∆) and use similar
superscripts to label the associated eigenvectors and eigenvalues. It is also convenient
to introduce the sets J± defined by

J− = { j |λ j ≥ 0}, J+ = { j |λ j ≤ 0}. (50)

In this way we may write a bounded solution as x =(x1, x2, x3, x4)
T =(c, z, cer, zer)

T

where

xi (ξ) =

⎧
⎪⎨

⎪⎩

∑
j∈J− a−

j G∞
i j (ξ), ξ ≤ 0,

∑
j a j Gi j (ξ), 0 < ξ < v∆,

∑
j∈J+ a+

j G∞
i j (ξ), ξ ≥ v∆,

(51)

with the still unknown set of coefficients {a−
j , a j , a+

j }. Note that the components

of G∞(ξ) are [P∞eΛ∞ξ (P∞)−1]i j , where [eΛ∞ξ ]i j = δi j eλ∞
i ξΘ(−λ∞

i ξ), Λ∞ =
diag[λ∞

1 , λ∞
2 , λ∞

3 , λ∞
4 ], and P∞ is given by (46) with the substitution of λ∞

i for λi .
To ensure that both c(ξ) and cer(ξ) are C1 functions we need to match xi and dxi/dξ

at ξ = 0 and ξ = v∆ for i = 1, 3. Introducing Hi j = dGi j/dξ and H∞
i j = dG∞

i j /dξ

the eight matching conditions are

∑

j∈J−
a−

j G∞
i j (0) =

∑

j

a j Gi j (0),
∑

j

a j Gi j (v∆) =
∑

j∈J+
a+

j G∞
i j (v∆), (52)

∑

j∈J−
a−

j H∞
i j (0) =

∑

j

a j Hi j (0),
∑

j

a j Hi j (v∆) =
∑

j∈J+
a+

j H∞
i j (v∆), (53)
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Fig. 7 Speed of a solitary pulse in the bidomain model with square pulse release given by η(t) = η(cer −c)
as a function of total [Ca2+] far from the pulse (c∞

T , left) and the ER volume fraction (γ , right). Solid and
dashed lines denote stable and unstable solutions, respectively. Filled circles indicate simulations results
using a finite difference numerical scheme. Parameters (left): ∆ = 0.05 s, Der = 5 µm2s−1, γ = 0.167,
cth = 0.4 µM, τer = 10 s−1. Parameters (right): ∆ = 3 s, τ = 0.01 s−1, Der = 2 µm2s−1, c∞

T = 2 µM,

cth = 0.2 µM, τer = 1 s−1. In both panels D = 30 µm2s−1, τ = 0.01 s−1, η̄ = 1 s−1
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Fig. 8 Three wave profiles corresponding to data on upper branch of Fig. 7 (left) at c∞
T = 20 µM

(v = 66.75 µm/s, stable), the limit point at c∞
T = 14.6712 µM (v = 24.3 µm/s, neutrally stable), and the

lower branch at c∞
T = 20 µM (v = 7.88 µm/s, unstable)

for i = 1, 3. If we demand that x1(0) = c(0) = cth then we may regard these
nine equations as a linear system in nine unknowns (parameterized by v) that may
be solved explicitly with, e.g., Cramer’s rule. Imposing the known asymptotic value
for c∞

T determines the unknown wave speed. Hence, in this fashion we obtain both
the wave profile, given by Eq. (51), and the wave speed v, as a function of model
parameters.

Figure 7 (left) shows the velocity of solitary pulses exhibited by the bidomain model
with square pulse Ca2+ release as a function of total [Ca2+] far from the pulse (c∞

T ,
left). Recalling the relationship c∞

er = (c∞
T − c∞)/γ we see the intuitive result that

the velocity of the fast wave (solid line, see Sect. 4.6) is an increasing function of the
ER [Ca2+] being invaded by the wave. Figure 7 (right) shows the velocity of stable
solitary pulses is a decreasing function of the ER volume fraction (γ ) for fixed c∞

T .
Figures 8 and 9 depict solitary pulse profiles corresponding to Fig. 7 (left). Note

that the ER [Ca2+] before and after the traveling pulse is reduced in the middle panel
of Figs. 9 because the total [Ca2+] used is less than that of the left and right panels
(c∞

T = 14.67 and 20 µM, respectively).
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Fig. 9 Three lumenal wave profiles corresponding to the three panels of Fig. 8

4.4 Traveling fronts with step release

In the case of release events where activated Ca2+ release sites do not close (∆ → ∞),
the release rate takes the form η(t) = ηΘ(t) and the bidomain FDF model exhibits
traveling fronts. Traveling fronts with finite velocity and non-zero diffusion coefficient
for luminal Ca2+ (Der) can be constructed in a manner similar to that presented in the
previous section. Let {b−

j , b+
j } denote a set of still unknown coefficients and G∞

i j be
defined as after Eq. (51), then a front solution is given by

xi (ξ) =
⎧
⎨

⎩

∑
j∈J− b−

j G∞
i j (ξ), ξ < 0,

∑
j∈J+ b+

j Gi j (ξ), ξ ≥ 0.
(54)

In this construction, we require the release (Jrel) and reuptake (Jpump) fluxes to be
balanced far from the wave front so that [c/τ − cer/τer] → 0 as ξ → −∞ and
[c/τ − cer/τer] → η(cer − c) as ξ → ∞, that is,

(
1

τ
+ η(±∞)

)
c(±∞) =

(
1

τer
+ η(±∞)

)
cer(±∞). (55)

Thus, while the cytosolic [Ca2+] being invaded by the wave front is a free parameter,
c(ξ = −∞) = c∞, the ER [Ca2+] at ξ = −∞ is constrained by (55) to be cer(ξ =
−∞) = τerc∞/τ and the total [Ca2+] is thus c∞

T = c∞(1+γ τer/τ). Because traveling
front solutions will have the same total [Ca2+] after the wave passes (see Sect. 4.2),
we may also write c(ξ = ∞) + γ cer(ξ = ∞) = c∞

T , which combined with (55)
implies

c(ξ = ∞) =
(
τ−1

er + η
)
/γ

(
τ−1 + η

)+
(
τ−1

er + η
)

/γ
c∞

T ,

cer(ξ = ∞) =
(
τ−1 + η

)
/γ

(
τ−1 + η

)+
(
τ−1

er + η
)

/γ
c∞

T . (56)
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Fig. 10 Solid line shows
solitary traveling front velocity
in the bidomain FDF model
calculated from (54). Filled
circles show results from
simulations using a finite
difference numerical scheme.
Parameters: D = 30 µm2s−1,
τ = 0.01 s−1,
Der = 5 µm2s−1, τer = 10 s−1,
η̄ = 1 s−1, cth = 0.4 µM and
γ = 0.167
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Thus, in (54) matching xi and dxi/dξ at ξ = 0 for i = 1, 3 together with a fixed value
for c∞ (or, alternatively, c∞

T ) and x1(0) = c(0) = cth determines the profile and the
speed of the front.

Figure 10 uses this approach to calculate the traveling front velocity (v) as a function
of total [Ca2+] (c∞

T ). Note that when other model parameters are fixed, traveling fronts
exist only above a minimal value of total [Ca2+] and v is an increasing function of c∞

T ,
a parameter that increases the cytosolic and ER [Ca2+] both before and after release.

4.5 Standing waves with step release

In addition to traveling fronts, the bidomain model also supports standing interfaces
between states of high and low [Ca2+] when the Ca2+ release rate takes the form
η(t) = ηΘ(t). Pinned fronts represent stationary solutions of the model equations as
expressed in terms of the physical coordinates (x, t) (9). Writing y = (c, z, cer, zer)

T

we find that for a standing wave pinned at x = 0, dx y = B(x) y, where B(x) has the
same structure as A(ξ) in (41), but with the piecewise constant entries given by

m±(x) = ±
√

1

D

(
1

τ
+ η(x)

)
, mer±(x) = ±

√
1

γ Der

(
1

τer
+ η(x)

)
, (57)

and

α(x) = − 1

γ Der

(
1

τ
+ η(x)

)
, β(x) = − 1

D

(
1

τer
+ η(x)

)
. (58)

Note that each of the above expressions takes two different values as η(x) steps from
0 to η at x = 0. It follows that B possesses two zero eigenvalues and two non-zero
eigenvalues ±σ where

σ(x) = −
√

(m+)2 + (mer+)2. (59)

While B(x) cannot be diagonalized because there is a one-dimensional eigenspace
associated with the repeated zero eigenvalue, it is similar to a Jordan normal form.
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The matrix P̃ that contains the generalized eigenvectors of B is given by

P̃ =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

1 1 0 1
σ − m− −m− 1 −(σ + m−)

− D

Derγ

m−m+
β

0 − D

Derγ
α

σ − mer+
− α

mer+
−m2+

β
− α

σ + mer+

⎤

⎥⎥⎥⎥⎥
⎥
⎦

, (60)

where (λ1, λ2, λ3, λ4) = (σ, 0, 0,−σ) and we have used equation (46) and the identity
(σ − m+)(σ − m−)/β = −D/(Derγ ). A solution for y follows from the transformed
system dx ỹ = Λ̃ ỹ where ỹ = P̃−1 y and

Λ̃ =

⎡

⎢⎢
⎣

σ 0 0 0
0 0 1 0
0 0 0 0
0 0 0 −σ

⎤

⎥⎥
⎦ . (61)

It is evident from equation (61) that the third component of ỹ is constant. Employing

P̃−1 =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

m2+ (σ − m+)

2σ 3

m2+
2σ 3

β(σ − mer+)

2σ 3

β

2σ 3
(
mer+
)2

σ 2 0 − β

σ 2 0

(
mer+
)2

m−
σ 2

(
mer+
)2

σ 2

βmer+
σ 2 − β

σ 2

m2+ (σ + m+)

2σ 3 − m2+
2σ 3

β(σ + mer+)

2σ 3 − β

2σ 3

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

, (62)

we find that ỹ3 = 0 and, consequently, ỹ2 is piecewise constant with a step disconti-
nuity at x = 0, that is,

ỹ2(x) = 1

σ 2

[(
mer+
)2

c(x) − βcer(x)
]

=
{

c(−∞), x < 0,

c(+∞), x ≥ 0,
(63)

where the second equality is determined by evaluating ỹ2 at x = ±∞ where the
release and reuptake fluxes are assumed to be balanced (55). Note that equation (63)
only establishes a relation between ỹ2 and the cytosolic [Ca2+] at the boundary, but
the latter is still undetermined.

Also note that by multiplying (9b) with γ and then adding the resulting expression
to (9a), we see that the stationary solution of (9) satisfies Dc+γ Dercer = ax+b where
a and b are constants. Assuming no longitudinal fluxes for c and cer far from the pinned
wave front we have a = 0. The constant b can be related to c(−∞) by evaluating
Dc + γ Dercer as x → −∞ where from (55) we have cer(−∞) = c(−∞)τer/τ , that

123



A bidomain threshold model of propagating calcium waves 455

−10 −5 0 5 10

0.2

0.4

0.6

0.8

x (µm)

c 
(µ

M
)

−10 −5 0 5 10

50

60

70

80

90

100

110

x (µm)

c er
(µ

M
)

−10 −5 0 5 10

10

12

14

16

18

20

x (µm)

c T
(µ

M
)

Fig. 11 Front profiles in the cytosol (left) and the lumen (middle) as well as the total Ca2+ concentration
(right) for a pinned wave. Parameter values as in Fig. 10

is, b = [D + γ Derτer/τ ]c(−∞). But b can also be related to c(∞) by evaluating
Dc + γ Dercer as x → ∞ where from (55) we have cer(∞) = c(∞)(τ−1 + η)/

(τ−1
er + η), that is, b = [D + γ Der(τ

−1 + η)/(τ−1
er + η)]c(∞). Thus, c(−∞) and

c(∞) are linearly related through

[
D + γ Der

τer

τ

]
c(−∞) =

[
D + γ Der

τ−1 + η

τ−1
er + η

]
c(∞) . (64)

Recalling y = P̃ ỹ, we immediately find that

c(x) =
{

c (−∞) + a− exp(−σ x), x ≤ 0,

c (∞) + a+ exp(σ x), x > 0,
(65)

with the three unknowns c(−∞), a− and a+ due to Eq. (64). These three remaining
unknowns are determined by demanding that c is C1 and c(0) = cth. Note that for the
standing wave solutions there are two distinct total Ca2+ concentrations far from the
pinned front, that is, limx→−∞ cT (x) 
= limx→∞ cT (x) where cT = c + γ cer. For
any given threshold concentration cth, there is exactly one pinned solution of Eq. (9)
for nonzero Der. Figure 11 shows an example for a pinned front that illustrates the
different values of the total Ca2+ concentration in the front and the wake of the wave.

4.6 Stability of traveling waves

Proceeding along similar lines to Sect. 3.3 and linearizing around a traveling wave
solution (c(ξ), cer(ξ)) we find that the characteristic equation (32) has the same form
as before under the replacement of G(x, t) by G11(x, t) − γ −1G12(x, t) and I (ξ) by
(cer(vξ)−c(vξ))η(ξ) in equation (33). We refer the reader to the Appendix for details
and a definition of Gi j (x, t), i, j = 1, 2.

Figure 12 shows three stability functions for the speed curve depicted in Fig. 7
(left). Upon decreasing traveling front velocity v, an eigenvalue crosses to the right
hand of the complex plane along the real axis, signaling a change of stability. As with
the shunt model, there is always a zero eigenvalue reflecting translational invariance
and, consequently, the point of stability exchange is characterized by a repeated zero
eigenvalue.
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Fig. 13 Dynamic instability illustrated by stability functions that correspond to the upper branch of Fig. 7
(right) for γ = 0.1405 (right), γcrit = 0.14098 (middle), and γ = 0.1411 (right). Solid black lines refer
to the zero contour of Re E(λ) and solid grey lines to the zero contour of Im E(λ), respectively. Hence, fast
pulses in the full bidomain model may undergo dynamic instabilities (since a pair of eigenvalues may cross
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Importantly, the bidomain model also supports dynamic instabilities. For example,
Fig. 13 shows three stability functions that correspond to the speed curve of Fig. 7
(right). When the ER to cytosol volume ratio γ is increased, an eigenvalue crosses
the imaginary axis at a non-zero value of ω = Im(λ). We therefore expect oscillatory
perturbations with a frequency ω to grow, leading to solutions with a non-constant
profile in the traveling wave frame that periodically vary around the unstable fast
wave. This is confirmed in direct numerical simulations, where we see the emergence
of ‘back-and-forth’ waves (like those in Figs. 14 and 15). We note that the frequency
of oscillations determined from the linear stability analysis is not a strong predictor of
the frequencies seen in numerical simulations of the full nonlinear model, suggesting
that these wave bifurcations are sub-critical in nature.

4.7 Numerical simulations of tango waves

As mentioned above, many of the analytical results obtained here have been validated
against simulations that integrate (9) using a finite difference numerical scheme. For
example, the filled circles in Figs. 7 and 10 show numerically calculated wave speeds
that closely follow the analytical results (solid lines). Moreover, perturbations of front
and pulse solutions that are predicted to be linearly stable were found to decay in
numerical simulations, thereby supporting the results of Sect. 4.6 (not shown).
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Fig. 14 Tango waves in the vicinity of the point of instability shown in the right panel of Fig. 7. Parameters
as previous figure with τR = 0.5 s (left) and τR = 0 s (right). The pseudocolour plot shows c(x, t) in µM

Fig. 15 Reversed tango waves for two different initial Ca2+ concentration profiles. The pseudocolour
plot shows c(x, t) in µM. Parameter values are D = 30 µm2s−1, τ = 0.01 s−1, Der = 0.25 µm2s−1,
τer = 0.5 s−1, η̄ = 1 s−1, ∆ = 0.5 s, γ = 0.167, cth = 0.2 µM, and c∞

T = 0.9382 µM

Interestingly, Figures 14 and 15 show complex cytosolic profiles that result when
the same perturbations are applied to the bidomain FDF model with parameters chosen
near a point of dynamical instability. In contrast to pulse and front solutions that travel
with a constant speed in one direction, in these cases we observe waves that propagate
in a back-and-forth manner and are reminiscent of a dynamical phenomenon first
reported in [40] and dubbed ‘tango waves’.

Using release duration of ∆ = 3 s and refractory period of τR = 0.5 s, Fig. 14
(left) resembles earlier findings, especially with respect to the wave form and to the
emergence of additional pulses. Whenever a tango wave reverses its direction after
invading the low [Ca2+] region, traveling pulses are released that travel to the right with
constant speed. While the first four tango waves initiate only one pulse, the following
three tango waves give rise to two pulses each. Figure 14 (right) shows the form of
the tango wave changing appreciably when the ER to cytosol volume fraction γ is
increased from 0.138 to 0.160 and the refractory period is set to zero. In this case the
tango wave front is more compact, the amplitude of the back-and-forth movement is
much smaller, and no pulses are released.

Figure 15 illustrates that tango waves possess a larger variety of forms than already
suggested by Fig. 14. Although moving in the reverse direction, the shape of the
moving edge in Fig. 15 (left) is similar to the one in Fig. 14 (left). A comparison
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between the two panels in Fig. 15 reveals that the wave front is moving in opposite
directions, that is, the state of low [Ca2+] will eventually occupy the whole space
in Fig. 15 (left), while the same is true for the state of elevated [Ca2+] in Fig. 15
(right). Both simulations are based on the same parameter values, but on different
initial conditions.

All initial conditions were set up using the same protocol. We first prepared pie-
cewise constant concentration profiles in the cytosol and the lumen, respectively. In
one part, the cytosolic and the lumenal Ca2+ concentrations were determined by c∞

T
through c∞ = c∞

T /(1 + γ τer/τ) and c∞
er = c∞τer/τ . In the other part, we chose a

cytosolic Ca2+ concentration above threshold and put the lumenal concentration to a
multiple of the of c∞

er . Then, we increased the concentration step in the ER even further
by adding or subtracting appropriately chosen exponentials in the high concentration
part and low concentration part, respectively. The decay constants of these exponen-
tials were such that the contribution was restricted around the initial step. Different
initial conditions varied in the extent and the size of the gap between cytosolic and ER
calcium concentration levels.

5 Summary and discussion

We have presented and analyzed a bidomain FDF model that extends the formalism
introduced in [49–52] to include the effect of shunting Ca2+ release and depletion
of ER [Ca2+]. Although the mathematical analysis is more complicated than in the
single domain case, modeling Ca2+ release as a threshold process allows the expli-
cit construction of traveling wave solutions in the single domain model with shunt
(Sect. 3) as well as the full bidomain FDF model (Sect. 4). To our knowledge this
is first demonstration that the threshold-release formalism can be applied to analyze
propagating Ca2+ waves in a bidomain context.

For the single domain FDF model with shunt, our analytical results indicate that
the propagation velocity of stable solitary pulses mediated by square pulse release is a
decreasing function of the cytosolic threshold for Ca2+ release (cth) and an increasing
function of the luminal [Ca2+] (cer) (Fig. 1). For fixed cth and cer, we found that
the minimum stable wave speed decreases as the release rate η decreases even when
release duration ∆ is increased to maintain fixed cumulative release ∆η (Fig. 2). Linear
stability analysis of the single domain FDF model with shunt shows that when multiple
traveling pulse solutions coexist, the faster wave is stable while the slower wave is
unstable (Sect. 3.3).

In the case of the full bidomain FDF model, we found that the propagation velocity
of stable solitary pulses mediated by square pulse release is an increasing function of
the total [Ca2+] (c∞

T ). For fixed background cytosolic [Ca2+] (c∞), the requirement
that the cytosolic and ER [Ca2+] be in equilibrium in the spatial region being invaded
by the wave means that this total [Ca2+] is proportional to the ER [Ca2+]; thus, the
observation of Fig. 7 (left) is simply that the propagation velocity of stable waves
in the bidomain model increases with increasing ER [Ca2+]. Linear stability analysis
of the bidomain FDF model shows that when multiple traveling pulse solutions coexist,
the faster wave is stable while the slower wave is unstable and, furthermore, the faster
stable waves have larger pulse width (Fig. 8). In the case of traveling fronts in the
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bidomain FDF model we found that the propagation velocity of stable solitary fronts
mediated by step release is an increasing function of the total [Ca2+] (c∞

T ) (Fig. 10).
As presented in Sect. 4.5, we were also able to construct standing front solutions in
the bidomain FDF model with step release.

Interestingly, the linear stability analysis of the bidomain FDF model presented in
Sect. 4.6 shows both saddle-node (Fig. 12) and dynamic (Fig. 13) instabilities (on
the fast branch of traveling wave solutions), the latter of which we identify with the
emergence of so-called tango waves that propagate in a back-and-forth manner. The
presence of tango waves was confirmed in numerical simulations (Figs. 14 and 15).

While the threshold-release framework is somewhat more idealized than the more
conventional approach to modelling Ca2+ release by including gating variables for the
activation and inactivation of intracellular Ca2+ channels, the FDF scheme has some
advantages. For example, the stability analysis presented in Sect. 4.6 explains that the
emergence of tango waves does not require any assumptions about the relative size of
the cytosolic and ER Ca2+ diffusion coefficients, nor does this analysis assume that
the basic wave which tango waves bifurcate from is stationary (cf. [40,43,58,59]).
It is also important to point out that some previous bifurcation analysis of stationary
pulses that is relevant to bidomain models exhibiting tango waves has been possible
only by prescribing a spatially inhomogeneous forcing term or a spatial variation of
model parameters [43,58,59]. Notably, the tango waves presented here do not involve
spatially inhomogeneous model parameters and, furthermore, the linear stability ana-
lysis presented in Sect. 4.6 that explains the emergence of tango waves does so by
determining the spatial profiles of cytosolic and ER [Ca2+] self-consistently. This
allows us to make a quantitative connection between bifurcation parameter sets in our
analytical work and in numerical simulation.

In the bidomain FDF model we observed an increase in the luminal [Ca2+] at the
leading edge of the wave front which extends as far as the increase in the cytosolic
[Ca2+] that triggers release (Fig. 9), in spite of the fact that the ER diffusion coefficient
was 6 times smaller than the cytolic diffusion coefficient (Der = 5 µm2s−1 and
D = 30 µm2s−1, respectively). This observation suggests that the bidomain FDF
formalism could be extended to include a threshold for Ca2+ release (cth) that is a
function of the ER [Ca2+] (cer ) and used to analyze the consequences of luminal
regulation of Ca2+ release on the properties of Ca2+ waves [60]. In particular, a
bidomain FDF model that includes luminal regulation of Ca2+ release threshold might
give insight into when (if ever) the traditional concept of Ca2+ wave propagation—
waves driven by Ca2+-induced Ca2+ release at the cytosolic wave front—must be
augmented with the idea of ‘sensitization wave fronts’ in which Ca2+ uptake via
pumps at the leading edge of a wave and luminal Ca2+ diffusion results in Ca2+
release mediated by sensitization of intracellular channels to cytosolic Ca2+ [61].
This is an area of ongoing research and will be reported upon elsewhere.

Appendix

Here we present the details of the stability analysis used in Sect. 4.6. Proceeding
along the same lines as in Sect. 3.3 we express the cytosolic and the lumenal Ca2+
concentration profiles as
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[
c(x, t)
cer(x, t)

]
=

t∫

−∞
ds

∞∫

−∞
dyG(x − y, t − s)

[
1
−1/γ

]

×η(s − T (y))(cer(y, s) − c(y, s)), (66)

where G(x, t) is now a 2 × 2 matrix with components Gi j (x, t), i, j = 1, 2, that
correspond to the Green’s function of the matrix operator

L =
[

∂t − D∂xx + 1/τ −1/τer
−1/(γ τ) ∂t − Der∂xx + 1/(γ τer)

]
. (67)

The matrix Green’s function G(x, t) can be written as an inverse Fourier transform:

G(x, t) =
∞∫

−∞

dk

2π
eikx eM(k)t , (68)

where

M(k) =
[−Dk2 − 1/τ 1/τer

1/(γ τ) −Derk2 − 1/(γ τer)

]
. (69)

After diagonalising M(k), G(x, t) takes the computationally useful form

G(x, t) =
∞∫

−∞

dk

2π
eikx P(k)eΛ(k)t P−1(k). (70)

Introducing σ(k) = τ−1 + Dk2 and σer(k) = (γ τer)
−1 + Derk2, the eigenvalues of

M(k) are given by

λ±(k) = −1

2

{
σ(k) + σer(k) ±

√
(σ (k) − σer(k))2 + 4/(γ ττer)

}
, (71)

so that

Λ(k) =
[
λ+(k) 0

0 λ−(k)

]
, (72)

and

P(k) =
[

1 1
τer[σ(k) + λ+(k)] (τγ [σer(k) + λ−(k)])−1

]
, (73)

holds the eigenvectors of M(k). Performing a linear stability analysis of (66) around
a traveling wave solution in an identical fashion to that of Sect. 3.3 we find

x/v∫

−∞
ds

∞∫

−∞
dy[G11(x − y, x/v − s) − γ −1G12(x − y, x/v − s)]

×I ′(s − y/v)[g(x) − g(y)] = 0, (74)
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with I (ξ) = (cer(vξ) − c(vξ))η(ξ). Hence, for the full bidomain model the charac-
teristic equation for stability is given by (32) and (33) under the replacement of I (ξ)

by (cer(vξ) − c(vξ))η(ξ), and G(x, t) by G11(x, t) − γ −1G12(x, t).
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