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Abstract We derive rigorous results describing the asymptotic dynamics of a discrete
time model of spiking neurons introduced in Soula et al. (Neural Comput. 18, 1,
2006). Using symbolic dynamic techniques we show how the dynamics of membrane
potential has a one to one correspondence with sequences of spikes patterns (“raster
plots”). Moreover, though the dynamics is generically periodic, it has a weak form
of initial conditions sensitivity due to the presence of a sharp threshold in the model
definition. As a consequence, the model exhibits a dynamical regime indistinguishable
from chaos in numerical experiments.
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0 Introduction

The description of neuron dynamics can use two distinct representations. On the one
hand, the membrane potential is the physical variable describing the state of the neuron
and its evolution is ruled by fundamental laws of physics. On the other hand, a neuron
is an excitable medium and its activity is manifested by emission of action poten-
tial or “spikes”: individual spikes, bursts, spikes trains etc... The first representation
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constitutes the basis of almost all neuron models, and the Hodgkin–Huxley equa-
tions are, from this point of view, certainly one of the most achieved mathematical
representation of the neuron [29,30]. However, neurons communicate by emission
of spikes, and it is likely that the information is encoded in the neural code, that is,
the sequences of spikes exchanged by the neurons and their firing times. Since the
spikes emission results from the dynamics of membrane potentials, the information
contained in spikes trains is certainly also contained in membrane potential dynamics.
But switching from membrane potentials to spikes dynamics allows one to focus on
information processing aspects [26]. However, this change of description is far from
being evident, even when using simple neuron models (see [40] for a review). Mode-
ling a spike by a certain shape (Dirac peaks or more complex forms), with a certain
refractory period, etc. which information have we captured and what have we lost?
These questions are certainly too complex to be answered in a general setting (for a
remarkable description of spikes dynamics and coding see [44]).

Instead, it can be useful to focus on simplified models of neural networks, where
the correspondence between the membrane potential dynamics and spiking sequences
can be written explicitly. This is one of the goals of the present work. We consider
a simple model of spiking neuron, derived from the leaky integrate and fire model
[26], but where the time is discretised. To be the best of our knowledge, this model
has been first introduced by G. Beslon, O. Mazet and H. Soula [54,55], and we shall
call it “the BMS model”. Certainly, the simplifications involved, especially the time
discretisation, raise delicate problems concerning biological interpretations, compared
to more elaborated models or to biological neurons [14] (see the discussion section).
But the main interest of the model is its simplicity and the fact that, as shown in the
present paper, one can establish an explicit one-to-one correspondence between the
membrane potential dynamics and the dynamics of spikes. Thus, no information is lost
when switching from one description to the other, even when the spiking sequences
have a complex structure. Moreover, this correspondence opens up the possibility of
using tools from dynamical systems theory, ergodic theory, and statistical physics to
address questions such as:

– How to measure the information content of a spiking sequence?
– What is the effect of synaptic plasticity (Long Term Depression, Long Term

Potentiation, Spike Time Dependent Plasticity, Hebbian learning) on the spiking
sequences displayed by the neural network?

– What is the relation between a presented input and the resulting spiking sequence,
before and after learning.

– What is the effect of stochastic perturbations? Can we relate the dynamics of
the discrete time BMS model with noise to previous studies on continuous time
Integrate and Fire neural networks perturbed by a Brownian noise (e.g. [5,45])?

This paper is the first one of a series trying to address some of these questions in
the context of BMS model. The goal the present article, is to pose the mathematical
framework used for subsequent developments. In Sect. 2 we present the BMS model
and provide elementary mathematical results on the system dynamics. We show that
the presence of a sharp threshold for the model definition of neuron firing induces
singularities responsible for a weak form of initial conditions sensitivity. This effect is
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different from the usual notion of chaos since it arises punctually, whenever a trajectory
intersects a zero Lebesgue measure set, called the singularity set. Similar effects are
encountered in billiards [16] or in Self-Organized Criticality [2–4]. Applying methods
from dynamical systems theory we derive rigorous results describing the asymptotic
dynamics in Sect. 3. Although we show that the dynamics is generically periodic, the
presence of a singularity set has strong effects. In particular the number of periodic
orbits and the transients growth exponentially as the distance between the attractor and
the singularity set tends to zero. This has a strong impact on the numerics and there is a
dynamical regime numerically indistinguishable from chaos. Moreover, these effects
become prominent when perturbing the dynamics or when the infinite size limit is
considered. In this context we discuss the existence of a Markov partition allowing to
encode symbolically the dynamics with “spike trains”. In Sect. 4 we indeed show that
there is a one to one correspondence between the membrane potential dynamics and
the sequences of spiking patterns (“raster plots”). This opens up the possibility to use
methods from ergodic theory and statistical mechanics (thermodynamic formalism)
to analyse spiking sequences. This aspect will be the central topic of another paper.
As an example, we briefly analyze the case of random synapses and inputs on the
dynamics and compare our analysis to the results obtained by BMS in [55,54]. We
exhibit numerically a sharp transition between a neural death regime where all neurons
are asymptotically silent, and a phase with long transient having the appearance of a
chaotic dynamics. This transition occurs for example when the variance of the synaptic
weights increases. A further increase leads to a periodic dynamics with small period. In
the discussion section we briefly comment some extensions (effect of Brownian noise,
use of Gibbs measure to characterize the statistics of spikes) that will be developed in
forthcoming papers.

Warning This paper is essentially mathematically oriented (as the title suggests),
although some extensive parts are devoted to the interpretation and consequences of
mathematical results for neural networks. Though the proof of theorems and the tech-
nical parts can be skipped, the non mathematician reader interested in computational
neurosciences, may nevertheless have difficulties to find what he gains from this study.
Let us briefly comment this point. There is still a huge distance between the complexity
of the numerous models of neurons or neural networks, and the mathematical ana-
lysis of their dynamics, though a couple of remarkable results have been obtained
within the 50 past years (see e.g. [10] and references therein). This has several conse-
quences and drawbacks. There is a constant temptation to simplify again and again
the canonical equations for the neuron dynamics (e.g. Hodgkin–Huxley equations)
to obtain apparently tractable models. A typical example concerns integrate and fire
(IF) models. The introduction of sharp threshold and instantaneous reset gives a rather
simple formulation of neuron activity, and, at the level of an isolated neuron, a couple
of important quantities such as the next time of firing can be computed exactly. The
IF structure can be extended to conductance based models [46,14] closer to biological
neurons. However, there are quite a few rigorous results dealing with the dynamics
of IF models at the network level. The present paper provides an example of an IF
Neural Network analysed in a global and rigorous manner.

The lack of mathematical results concerning the dynamics of neural networks has
other consequences. There is an extensive use of numerical simulations, which is
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fine. But the present paper shows the limits of numerics in a model where “neurons”
have a rather simple structure. What is for more elaborated models? It also warns the
reader against the uncontrolled use of terminologies such as “chaos, edge of chaos,
complexity”. In this paper, mathematics allows us to precisely define and analyse
mechanisms generating initial conditions sensitivity, which are basically presents in
all IF neural networks, since they are due to the sharp threshold. We also give a precise
meaning to the “edge of chaos” and actually give a way to locate it. We evidence
mechanisms, such as the first firing of a neuron after an arbitrary large time, which
can basically exist in real neural networks, and raise huge difficulties when willing
to decide, experimentally or numerically, what is the nature of dynamics. Again,
what happens for more elaborated models? This work is a first step in providing a
mathematical setting allowing to handle these questions for more elaborated IF neural
networks models [14].

1 General context

1.1 Model definition

Fix N > 0 a positive integer called “the dimension of the neural network” (the number
of neurons). Let W be an N × N matrix, called “the matrix of synaptic weights”,
with entries Wi j . It defines an oriented and signed graph, called “the neural network
associated toW”, with vertices i = 1 . . . N called the “neurons”. There is oriented edge
j → i whenever Wi j �= 0. Wi j is called “the synaptic weight from neuron j to neuron
i”. The synaptic weight is called “excitatory” if Wi j > 0 and “inhibitory” if Wi j < 0.

Each vertex (neuron) i is characterized by a real variable Vi called the “membrane
potential of neuron i”. Fix a positive real number θ > 0 called the “firing threshold”.
Let Z be the function Z(x) = χ(x ≥ θ) where χ is the indicatrix function. Namely,
Z(x) = 1 whenever x ≥ θ and Z(x) = 0 otherwise. Z(Vi ) is called the “firing state
of neuron i”. When Z(Vi ) = 1 one says that neuron i “fires” and when Z(Vi ) = 0
neuron i is “quiescent”. Finally, fix γ ∈ [0, 1[, called the “leak rate”. The discrete
time and synchronous dynamics of the BMS model is given by:

V(t + 1) = F(V(t)), (1)

where V = {Vi }N
i=1 is the vector of membrane potentials and F = {Fi } with:

Fi (V) = γ Vi (1 − Z [Vi ]) +
N∑

j=1

Wi j Z [Vj ] + I ext
i ; i = 1 . . . N . (2)

The variable I ext
i is called “the external current1 applied to neuron i”. We shall assume

in this paper that this current does not depend on time (see however the discussion

1 From a strict point of view, this is rather a potential. Indeed, this term is divided by a capacity C that we
have set equal to 1 (see Sect. 1.2 for an interpretation of Eq. (1)). We shall not use this distinction in the
present paper.
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A discrete time neural network model with spiking neurons 315

section from an extension of the present results to time dependent external currents).
The dynamical system (1) is then autonomous.

In the following we shall use the quantity

I s
i (V) =

N∑

j=1

Wi j Z [Vj ]. (3)

called the “synaptic current” received by neuron i . The “total current” is :

Ii (V) = I s
i (V) + I ext

i (4)

Define the firing times of neuron i , for the trajectory2 V, by:

τ
(k)
i (V) = inf

{
t |t > τ

(k−1)
i (V), Vi (t) ≥ θ

}
(5)

where τ 0
i = −∞.

1.2 Interpretation of BMS model as a neural network

The BMS model is based on the evolution equation for the leaky integrate and fire
neuron [26]:

dVi

dt
= − Vi

τ
+ Ii (t)

C
(6)

where τ = RC is the integration time scale, with R, the membrane resistance and C
the electric capacitance of the membrane. Ii (t) is the synaptic current (spikes emitted
by other neurons and transmitted to neuron i via the synapses j → i) and an external
current. The Eq. (6) holds whenever the membrane potential is smaller than a threshold
θ , usually depending on time (to account for characteristics such as refractory period
of the neuron). When the membrane potential exceeds the threshold value, the neuron
“fires” (emission of an action potential or “spike”). The spike shape depends on the
model. In the present case, the membrane potential is reset instantaneously to a value
Vreset , corresponding to the value of the membrane potential when the neuron is at
rest. More elaborated models can be proposed accounting for refractory period, spikes
shapes, etc... [26]

A formal time discretization of (6) (say with an Euler scheme) gives:

Vi (t + dt) = Vi (t)

(
1 − dt

τ

)
+ Ii (t)

C
dt (7)

2 Note that, since the dynamics is deterministic, it is equivalent to fix the forward trajectory or the initial
condition V ≡ V(0).
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Setting dt = 1 3 and γ = 1 − 1
τ

, we obtain.

Vi (t + 1) = γ Vi (t) + Ii (t)

C
(8)

This discretization imposes that τ ≥ 1 in (6), thus γ ∈ [0, 1[. This equation holds
whenever Vi (t) < θ . As discussed in e.g. [32] it provides a rough but realistic
approximation of biological neurons behaviours. Note that in biological neurons, a
spike duration is not negligible but has a finite duration (of order 1 ms).

The firing of neuron i is characterized by:

Vi (τ
(k)
i ) ≥ θ

and:
Vi (τ

(k)
i + 1) = Vreset + Ii (τ

(k)) (9)

where, from now on, we shall consider that C = 1 and that Vreset , the reset potential,
is equal to 0. Introducing the function Z allows us to write the neuron evolution before
and after firing in a unique Eq. (2). Moreover, this apparently naive token provides
useful insights in terms of symbolic dynamics and interpretation of neural coding.

Note that the firing is not instantaneous. The membrane potential is maintained at
a value θ during the time interval [τ (k)

i , τ
(k)
i + 1[. Note also that simultaneous firing

of several neurons can occur. Moreover, a localized excitation may induce a chain
reaction where n1 neurons fire at the next time, inducing the firing of n2 neurons,
etc . . . . Thus, a localized input may generate a network reaction on an arbitrary large
space scale, in a relatively short time scale. The evolution of this propagation phe-
nomenon depends on the synaptic weights and on the membrane potential values of
the nodes involved in the chain reaction. This effect, reminiscent of the “avalanches”
observed in the context of self-organized criticality [1], may have an interesting inci-
dence in the neural network (1).

2 Preliminary results

2.1 Phase space M

Sinceγ <1 one can restrict the phase space of (1) to a compact set4 M=[Vmin, Vmax ]N

such that F(M) ⊂ M where:

Vmin = min

⎛

⎝0,
1

1 − γ

⎡

⎣ min
i=1...N

∑

j |Wi j <0

Wi j + I ext
i

⎤

⎦

⎞

⎠, (10)

3 This can be interpreted as choosing the sampling time scale dt smaller than all characteristic time scales
in the model, with similar effects of refractoriness and synchronization. However, this requires a more
complete discussion, done in a separate paper [14]. See also Sect. 5.6.
4 Note that in the original version of BMS, Vi ≥ 0.
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and:

Vmax = max

⎛

⎝0,
1

1 − γ

⎡

⎣ max
i=1...N

∑

j |Wi j >0

Wi j + I ext
i

⎤

⎦

⎞

⎠, (11)

where we use the convention
∑

j∈∅ Wi j = 0. Therefore,
∑

j |Wi j <0 Wi j = 0 (resp.∑
j |Wi j >0 Wi j = 0) if all weights are positive (resp. negative) and

∑
j |Wi j <0 Wi j ≤ 0

(resp.
∑

j |Wi j >0 Wi j ≥ 0).
This results is easy to show. Indeed, assume that for all neurons, Vmin ≤ Vi ≤ Vmax .

Then, the membrane potential of neuron i at the next iteration is

V ′
i = γ Vi (1 − Z(Vi )) +

∑

j

Wi j Z(Vj ) + I ext
i .

Therefore,

γ Vmin(1 − Z(Vi )) +
∑

j |Wi j <0

Wi j + I ext
i

≤ V ′
i ≤ γ Vmax (1 − Z(Vi )) +

∑

j |Wi j >0

Wi j + I ext
i .

If Vmin < 0 then,

Vmin = γ Vmin + min
i=1...N

⎡

⎣
∑

j |Wi j <0

Wi j + I ext
i

⎤

⎦

≤ γ Vmin(1 − Z(Vi )) +
∑

j |Wi j <0

Wi j + I ext
i ≤ V ′

i ,

and if Vmin = 0, then necessarily mini=1...N

[∑
j |Wi j <0 Wi j + I ext

i

]
≥ 0 and

V ′
i ≥ 0 = Vmin .

Similarly, if Vmax > 0 then,

γ Vmax (1 − Z(Vi )) +
∑

j |Wi j >0

Wi j + I ext
i

≤ γ Vmax + max
i=1...N

⎡

⎣
∑

j |Wi j >0

Wi j + I ext
i

⎤

⎦ = Vmax .

and if Vmax = 0, then necessarily maxi=1...N

[∑
j |Wi j >0 Wi j + I ext

i

]
≤ 0 and

V ′
i ≤ 0 = Vmax .

Note that the similar bounds hold if I ext
i depends on time.
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2.2 Phase space M

For each neuron one can decompose the interval I = [Vmin, Vmax ] into I0 ∪ I1
with I0 = [Vmin, θ [, I1 = [θ, Vmax ]. If V ∈ I0 the neuron is quiescent, otherwise it
fires. This splitting induces a partition P of M, that we call the “natural partition”. The
elements of P have the following form. Call Λ = {0, 1}N . Let η = {η1, . . . , ηN } ∈ Λ.
This is a N dimensional vector with binary components 0, 1. We call such a vector a
spiking state. Then M = ⋃

η∈Λ Mη where:

Mη = {
V ∈ M | Vi ∈ Iηi

}
(12)

Equivalently, V ∈ Mη ⇔ Z(Vi ) = ηi , i = 1 . . . N . Therefore, the partition P
corresponds to classifying the membrane potential vectors according to their spiking
state. More precisely, call:

D(η) = {i ∈ {1 . . . N } |ηi = 1} , (13)

and D̄(η) the complementary set {i ∈ {1 . . . N } | ηi = 0}. Then, whatever the mem-
brane potential V ∈ Mη the neurons whose index i ∈ D(η) will fire at the next
iteration while the neurons whose index i ∈ D̄(η) will stay quiescent. In particular,
the synaptic current (3) is fixed by the domain Mη since :

I s
i (V) ≡ I s

i (η) =
∑

j∈D(η)

Wi j (14)

whenever V ∈ Mη. In the same way we shall write Ii (η) = I s
i (η) + I ext

i .
P has a simple product structure. Its domains are hypercubes (thus they are convex)

where the edges are parallels to the directions ei (basis vectors of R
N ). More precisely,

for each η ∈ {0, 1}N ,

Mη =
N∏

i=1

Iηi , (15)

where
∏

denotes the Cartesian product.

2.3 Elementary properties of F

Some elementary, but essential properties of F, are summarized in the following pro-
position. We use the notation

C(η) =
N∑

j=1

η j = #D(η), (16)

for the cardinality of D(η). This is the number of neurons that will fire in the next
iteration whenever the spiking pattern is η.
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Proposition 1 Denote by Fη the restriction of F to the domain Mη. Then whatever
η ∈ Λ,

1. Fη is affine and differentiable in the interior of its domain Mη.
2. Fη is a a contraction with coefficient γ (1 − ηi ) in direction i .
3. Denote by DFη the Jacobian matrix of Fη. Then DFη has C(η) zero eigenvalues

and N − C(η) eigenvalues γ .
4. Call Fη,i the i-th component of Fη then

F(Mη) = Fη

[
N∏

i=1

Iηi

]
=

N∏

i=1

Fη,i (Iηi ) (17)

where Fη,i (I0) is the interval [γ Vmin +∑N
j=1 Wi jη j + I ext

i , γ θ +∑N
j=1 Wi jη j +

I ext
i [ and Fη,i (I1) is the point

∑N
j=1 Wi jη j + I ext

i . More precisely, if C(η) = k,
the image of Mη is a N − k dimensional hypercube, with faces parallel to the
canonical basis vectors ei for all i /∈ D(η)and with a volumeγ N−k [θ − Vmin]N−k .

According to item (1) we call the domains Mη, “domains of continuity”of F.

Proof By definition, ∀V ∈ Mη, Fi (V) = γ Vi (1 − ηi ) + ∑N
j=1 Wi jη j + I ext

i . F is
therefore piecewise affine, with a constant Ii (η) = ∑

j∈D(η) Wi j + I ext
i fixed by the

domain Mη. Moreover Fη is differentiable on the interior of each domain Mη, with:

∂ Fη,i

∂Vj
= γ δi j [1 − ηi ]. (18)

The corresponding Jacobian matrix is thus diagonal, constant in the domain Mη, and
its eigenvalues areγ [1−ηi ]. Each eigenvalue is therefore 0 ifηi = 1 (neuron i fires) and
γ if ηi = 0 (neuron i is quiescent). Thus, since γ < 1, Fη is a contraction in each direc-
tion i . OnceMη has been fixed, the image of each coordinate Vi is only a function of Vi .

Thus, if V ∈ Mη = ∏N
i=1 Iηi , then Fη,i (V) = Fη,i (Vi ) and Fη maps the hypercube

Mη = ∏N
i=1 Iηi onto the hypercube

∏N
i=1 Fη,i (Iηi ). The segments Iηi with ηi = 0

are mapped to parallel segments [γ Vmin +∑N
j=1 Wi jη j + I ext

i , γ θ +∑N
j=1 Wi jη j +

I ext
i [ while each segment Iηi with ηi = 1 is mapped to a point. Thus, if C(η) = k the

image of Mη is a N − k dimensional hypercube, with faces parallel to the canonical
basis vectors ei , where i /∈ D(η) and with a volume γ N−k [θ − Vmin]N−k . ��

Finally, we note the following property. The dynamical system (1) can be defined
on R

N and the contraction property extends to this space. If one considers the δ-ball
BM(δ) = {

V ∈ R
N |d(V,M) < δ

}
then :

F [BM(δ)] ⊂ BM(δ). (19)

The distance d is, for example:

d(X, X′) = max
i=1...N

|Xi − X ′
i |, (20)

natural in the present context according to property 1 [Eq. (17)].
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2.4 The singularity set S

The set
S = {V ∈ M, |∃i, Vi = θ} , (21)

is called the singularity set for the map F. F is discontinuous on S. This set has a simple
structure: this is a finite union of N − 1 dimensional hyperplanes corresponding to
faces of the hypercubes Mη. Though S is a “small” set both from the topological (non
residual set) and metric (zero Lebesgue measure) point of view, it has an important
effect on the dynamics.

Indeed, let us consider the trajectory of a point V ∈ M and perturbations with
an amplitude < ε about V. Equivalently, consider the evolution of the ε ball B(V, ε)

under F. If B(V, ε) ∩ S = ∅ then by definition B(V, ε) ⊂ ◦
Mη, some η, where

◦
Mη is

the interior of the domain Mη. Thus, by Proposition 1(2) F[B(V, ε)] ⊂ B(F(V), γ ε).
More generally, if the images of B(V, ε) under Ft never intersect S, then, at time t ,
Ft [B(V, ε)] ⊂ B(Ft (V), γ tε). Since γ < 1, there is a contraction of the initial ball,
and the perturbed trajectories about V become asymptotically indistinguishable from
the trajectory of V. (Actually, if all neurons have fired after a finite time t then all
perturbed trajectories collapse onto the trajectory of V after t + 1 iterations).

On the opposite, assume that there is a time, t0 such that Ft0(B(V, ε)) ∩ S �= ∅.
By definition, this means that there exists a subset of neurons {i1, . . . , ik} and V′ ∈
B(V, ε), such that Z(Vi (t0)) �= Z(V ′

i (t0)), i ∈ {i1, . . . , ik}. Then:

Fi (V(t0)) − Fi (V′(t0)) = γ
[
Vi (t0)(1 − Z(Vi (t0))) − V ′

i (t0)(1 − Z(V ′
i (t0)))

]

+
∑

j∈{i1,...,ik }
Wi j

[
Z(Vj (t0)) − Z(V ′

j (t0))
]

In this case, the difference between Fi (V(t0)) − Fi (V′(t0)) is not proportional to
Vi (t0) − V ′

i (t0), for i ∈ {i1, . . . , ik}. Moreover, this distance is finite while |Vi (t0) −
V ′

i (t0)| < ε can be arbitrary small. Thus, in this case, the crossing of S by the ε-ball
induces a strong separation effect reminiscent of initial condition sensitivity in chaotic
dynamical system. But the main difference with chaos is that the present effect occurs
only when the ball crosses the singularity. (Otherwise the ball is contracted). The result
is a weak form of initial condition sensitivity and unpredictability occurring also in
billiards [16] or in models of self-organized criticality [2,3]. Therefore, S is the only
source of complexity of the BMS model, and its existence is due to the strict threshold
in the definition of neuron firing.

Note that if one replaces the sharp threshold by a smooth one (this amounts to
replacing an Heaviside function by a sigmoid) then the dynamics become expansive
in the region where the slope of the regularized threshold is larger than 1. Then, the
model exhibits chaos in the usual sense (see e.g. [6,8]). Thus, in some sense, the present
model can be viewed as a limit of a regular neural network with a sigmoidal transfer
function. However, when dealing with asymptotic dynamic one has to consider two
limits (t → +∞ and slope → +∞) that may not commute.
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A discrete time neural network model with spiking neurons 321

3 Asymptotic dynamics

We now focus on the asymptotic dynamics of (1).

3.1 The ω-limit set

Definition 1 (From [34,27]) A point y ∈ M is called an ω-limit point for a point
x ∈ M if there exists a sequence of times {tk}+∞

k=0, such that x(tk) → y as tk → +∞.
The ω-limit set of x , ω(x), is the set of all ω-limit points of x . The ω-limit set of M,
denoted by Ω , is the set Ω = ⋃

x∈M ω(x).

Equivalently, Ω is the set of accumulation points of Ft (M). In the present case,
since M is closed and invariant, we have Ω = ⋂∞

t=0 Ft (M).
The notion of ω limit set is less known and used than the notion of attractor. There

are several distinct definition of attractor. For example, according to [34]:

Definition 2 A compact set A ∈ M is called an attractor for F if there exists a
neighborhood U of A and a time N > 0 such that FN (U) ⊂ U and

A =
∞⋂

t=0

Ft (U). (22)

Note that from Eq. (19) one may choose for U any open set such that:

U ⊃ BM(δ), ∀δ > 0. (23)

In our case A and Ω coincide whenever A is not empty. However, there are cases
where the attractor is empty while the ω limit set is not (see example of Fig. 3.3.1 in
[34], page 128). We shall actually encounter the same situation in Sect. 3.4. For this
reason we shall mainly use the notion of ω-limit set instead of the notion of attractor,
though we shall see that they coincide except for a non generic set of synaptic weights
and external currents.

3.2 Local stable manifolds

The stable manifold of V is the set:

Ws(V) = {
V′ |d (Ft (V′), Ft (V)

) → 0 t → +∞}
. (24)

The local stable manifold Ws
loc(V) is the largest connected component of Ws(V)

containing V. It obeys:

F
[Ws

loc(V)
] ⊂ Ws

loc(F(V)). (25)

In the present model, if V has a local stable manifold Ws
ε (V) of diameter ε then:

Ft [Ws
ε (V)

] ⊂ Ws
γ t ε(F

t (V)). (26)
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Thus, a perturbation of amplitude < ε is exponentially damped and the asymptotic
dynamics of any point belonging to the local stable manifold of V is indistinguishable
from the evolution of V.

In BMS model some point may not have a local stable manifold, due to the presence
of the singularity set. Indeed, if a small ball of size ε and center V intersects S it will
be cut into several pieces strongly separated by the dynamics. If this happens, V does
not have a local stable manifold of size ε. According to (26) a point V ∈ M has a
local stable manifold of diameter ε if:

V /∈
⋂

t0≥0

⋃

t≥t0

F−t (Uγ t ε(S)), (27)

where Uδ(S) = {V|d(V,S) < δ} is the δ-neighborhood of S. This means that the
dynamics contracts the ε ball faster than it approaches the singularity set. A condition
like (27) is useful for measure-theoretic estimations of the set of points having no
stable manifold via the Borel-Cantelli lemma.

In the present context, a more direct approach consists in computing:

d(Ṽ+,S) = inf
t≥0

min
i=1...N

|Vi (t) − θ |, (28)

which measures the “distance” between the forward trajectory Ṽ+ def= {V(t)}t≥0 of V
and S. One has the following:

Proposition 2 If d(Ṽ+,S)>ε>0 then V has a local stable manifold of diameter ε.

Proof This results directly from Proposition 1. Indeed, if d(Ṽ+,S) > ε, the image of
the ε-ball B(V, ε) under Ft , belong to a unique continuity domain of F, ∀t > 0 and F
is contracting on each domain of continuity. ��

In the same way, one defines the distance5 of the omega limit set Ω to the singularity
set (one may also consider the distance to the attracting set whenever A is not empty):

d(Ω,S) = inf
V∈Ω

d(Ṽ+,S). (29)

The distance vanishes if and only if Ω ∩ S �= ∅. Thus, if d(Ω,S) > ε > 0 any
point of Ω has a local stable manifold. In this situation, any ε- perturbation about
V ∈ Ω is asymptotically damped. Note however that d(Ω,S) can be positive but
arbitrary small (see Sect. 5.1).

3.3 Symbolic coding and Markov partition

The partition P provides a natural way for encoding the dynamics. Indeed, to each
forward trajectory Ṽ+ one can associate an infinite sequence of spiking patterns

5 Note that this is not a proper distance, since one may have d(A, B) = 0 and A �= B. The fact that
d(Ω, S) = 0 if and only if Ω ∩ S �= ∅ is true only because both sets are closed. I thank one referee for
this remark.
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η1, . . . , ηt . . . where ηt = {
ηi;t = Z(Vi (t))

}N
i=1. This sequence provides exactly the

times of firing for each neuron. It contains thus the “neural code” of the BMS model.
In fact, this sequence is exactly what biologists call the “raster plot” [26]. On the
other hand, knowing the spiking sequence and the initial condition V ≡ V(0) one can
determine V(t) since:

Vi (t) = γ t
t−1∏

k=0

(
1 − ηi;k

)
Vi (0) +

t∑

n=1

γ t−n
t−1∏

k=n

(1 − ηi;k)Ii (ηn−1), (30)

where Ii (ηn−1) = ∑N
j=1 Wi jη j;n−1 + I ext

i and where we used the convention

γ t−n ∏t−1
k=n(1 −ηi;k) = 1 if n = t . (Note that the same equation holds if I ext

i depends
on time).

The term γ t ∏t−1
k=0

(
1 − ηi;k

)
Vi (0) contains the initial condition, but it vanishes

as soon as ηi;k = 1, some k, (which means that the neuron has fired at least once
between time 0 and t − 1). If the neuron does not fire then this term is asymptotically
damped. Thus, one can expect that after a sufficiently long time (of order 1

| log(γ )| ), the
system “forgets” its initial condition. Then, knowing the evolution of V(t) should be
equivalent to knowing the neural code. However, this issue requires a deeper inspection
using symbolic dynamics techniques and we shall see that the situation is a little bit
more complex than expected.

For this, one first defines a transition graph G(W,Iext) from the natural partition P .
This graph depends on the synaptic weights (matrix W) and on the external currents
(vector Iext) as well. The vertices of G(W,Iext) are the spiking patterns η ∈ Λ =
{0, 1}N . Thus, one associates to each spiking pattern η a vertex in G(W,Iext). Let
η, η′ be two vertices of G(W,Iext). Then there is an oriented edge η → η′ whenever
F(Mη) ∩ Mη′ �= ∅. The transition η → η′ is then called legal. Equivalently, a legal
transition satisfies the compatibility conditions:

(a) i ∈ D(η) ∩ D(η′) ⇔ ∑
j∈D(η) Wi j + I ext

i ≥ θ

(b) i ∈ D(η) ∩ D̄(η′) ⇔ ∑
j∈D(η) Wi j + I ext

i < θ

(c) i ∈ D̄(η) ∩ D(η′) ⇔ γ Vi + ∑
j∈D(η) Wi j + I ext

i ≥ θ

(d) i ∈ D̄(η) ∩ D̄(η′) ⇔ γ Vi + ∑
j∈D(η) Wi j + I ext

i < θ

(31)

(recall that D(η) is given by Eq. (13)). The transition graph depends therefore on the
coupling matrix W and the external current Iext. It also depends on the parameters
γ, θ but we shall omit this dependence in the notation. Note that the transitions (a),
(b) do not depend on the membrane potential. We denote by Σ+

(W,Iext)
the set of right

infinite legal sequences η̃+ = {
η1, . . . , ηt . . .

}
and by Σ(W,Iext) the set of bi-infinite

sequences η̃ = {
. . . ηs, . . . , η−1η0η1, . . . , ηt . . .

}
.

This coding is particularly useful if there is a one to one correspondence (except for
a negligible set) between a legal sequence and an orbit of (1). This is not necessarily the
case due to the presence of the singularity set. However one has this correspondence
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whenever one can construct a finite Markov partition by a suitable refinement of P .
In the present context where the dynamics is not expanding and just contracting, a
partition Q is a Markov partition if its elements satisfy F(Qn)∩Qn′ �= ∅ ⇒ F(Qn) ⊂
Qn′ . In other words, the image of Qn is included in Qn′ whenever the transition n → n′
is legal.

P is in general not a Markov partition (except if γ = 0 and maybe for a nongeneric
set of Wi j , I ext

i values). This is because the image of a domain usually intersects
several domains. (In this case the image intersects the singularity set). From the neural
networks point of view this means that it is in general not possible to know what will
be the spiking pattern at time t + 1 knowing the spiking pattern at time t . There are
indeed several possibilities depending on the membrane potential values and not only
on the firing state of the neurons. The question is however: knowing a sufficiently large
(but finite) sequence of spiking patterns is it possible, under some circumstances, to
predict which spiking patterns will come next? The answer is yes.

Theorem 1 Assume that d(Ω,S) > ε > 0. Then:

1. Call Ft the tth iterate of F. There is a finite T , depending on d(Ω,S), such that
T → +∞ when d(Ω,S) → 0 and such that there exists a finite Markov partition
for FT .

2. Ω is a finite union of stable periodic orbits with a finite period. These orbits are
encoded by a sequence of finite blocs of spiking patterns, each bloc corresponding
to a Markov partition element.

Proof Fix T > 0. Consider the partition P(T ) whose elements have the form:

Mη0...ηT
= Mη0

∩ F−1 (Mη1

) ∩ F−2 (Mη2

) ∩ · · · ∩ F−T (MηT

)
. (32)

By construction FT is continuous and thus is a contraction from the interior of
each domain Mη0...ηT

into MηT
, with |FT (Mη0...ηT

)| ≤ γ T |Mη0...ηT
|, where

|Mη0...ηT
| < |Mη0

| and where | | denotes the diameter. Thus there is a finite

T =
[

log(ε) − log(|Mη0
|)

log(γ )

]
≥ log(d(Ω,S)) − log(|Mη0

|)
log(γ )

, (33)

where [ ] is the integer part, such that ∀Mη0...ηT
, |FT (Mη0...ηT

)| ≤ ε < d(Ω,S).
Then P(T ) has finitely many domains (2N T ). Denote them by πn, n = 1 . . . 2N T .
Then, |FT (πn)| ≤ ε,∀n.

Since FT (Ω ∩ πn) ⊂ Ω ∩ FT (πn) the points belonging to Ω ∩ πn are mapped,
by FT , into a subset of Ω of diameter ≤ ε. Since d(Ω,S) > ε > 0 each point in Ω

has a local stable manifold of diameter ε. Thus all points of FT (Ω ∩ πn) belong to
the same stable manifold. Hence all these points converge to the same orbit in Ω and
πn contains at most one point in Ω . Since there are finitely many domains πn , Ω is
composed by finitely many points and since the dynamics is deterministic, Ω is a finite
union of stable periodic orbits with a finite period. If πn ∩ Ω = ∅ then this domain is,
by definition, non recurrent and it is mapped into a union of domains πnk containing a
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point of Ω . For all πn containing a point of Ω , FT (πn) ∩ πn′ �= ∅ ⇒ FT (πn) ⊂ πn′ .
Therefore, P(T ) is a Markov partition for the mapping FT

Ω . ��
Remarks – Structural stability There is a direct consequence of the previous theo-

rem. Assume that we make a small perturbation of some Wi j ’s or I ext
i ’s. This will

result in slight change of the domains of continuity of P and leads to a perturbed
natural partition P ′. This will also change the ω-limit set. Call the perturbed ω-
limit set Ω ′. If d(Ω,S) > ε > 0 then if the perturbation is small enough such that,
for any orbit in Ω , the perturbed and unperturbed orbit have the same sequence of
spiking patterns, then the set Ω and Ω ′ have the same number of fixed points and
their distance remains small (it vanishes when the amplitude of the perturbation
tends to zero). This corresponds to a structurally stable situation. On the opposite,
when increasing continuously the amplitude of the perturbation, there is a moment
where the perturbed and unperturbed orbit have a different sequence of spiking
patterns. This corresponds to a bifurcation in the system and the two ω-limit sets
can be drastically different.

– Maximal period The number

Td = 2N log(d(Ω,S))
log(γ ) , (34)

gives an upper bound for the number of Markov partition elements, hence for the
cardinality of Ω and for the maximal period. It increases exponentially with the
system size N and with log(γ ) and log(d(Ω,S)). (Note that this time is useful
essentially when d(Ω,S) is small (and lower than 1)). Hence, even if the dynamics
is periodic it can nevertheless be quite a bit complex.

Theorem 1 opens up the possibility of associating to each orbit in Ω a symbolic orbit
constituted by a finite sequence of spiking patterns, whenever d(Ω,S) > ε > 0. This
result is generalized in the Sect. 4.1 and its consequence are discussed.

3.4 Ghost orbits

Before proceeding to the characterisation of the ω-limit set structure in the general
case, we have to treat a specific situation, where a neuron takes an arbitrary large time
to fire. This situation may look strange from a practical point of view, but it has deep
implications. Indeed, assume that we are in a situation where we cannot bound the first
time of firing of a neuron. This means that we can observe the dynamics on arbitrary
long times without being able to predict what will happen later on, because when this
neuron eventually fire, it may drastically change the evolution. This case is exactly
related to the chaotic or unpredictable regime of BMS model. From a mathematical
point of view it may induce “bad” properties such as an empty attractor. We shall
however see that this situation is non generic.

Definition 3 An orbit Ṽ is a ghost orbit if ∃i such that:

(i)∀t > 0, Vi (t) < θ
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and:

(i i) lim sup
t→+∞

Vi (t) = θ

Examples 1. One neuron (N = 1), W11 = 0, Vreset = 0 and I ext
1 = θ(1 − γ ) < θ .

Take V1(0) = 0. Then, from eq. (30), V1(t) = ∑t
n=1 γ t−n I ext

1 = θ(1 − γ t ) < θ

and limt→+∞ V1(t) = θ . Therefore the orbit of 0 is a ghost orbit. If V1(0) ≥ θ

the neuron fires and V1(1) = I ext . Thus this point is mapped into M = [
0, I ext

]
.

If 0 ≤ V1(0) < θ then, V1(t) = γ t V1(0) + θ(1 − γ t ) and the neuron fires after a
finite time, but then it is mapped to V1 = 0. Thus all points of M = [

0, I ext
]

are
eventually mapped to 0 and the orbit of 0 is a ghost orbit. In this case Ω = {0}
while A is empty (see [34] page 128 for a similar example).

2. Two neurons with W22 > θ; 0 < W12 ≥ (1 − γ )θ; W21 > 0 and where for
simplicity we assume that Vmin = 0 (W11 ≥ 0) and I ext

i = 0. In this case, if 2
fires once, it will fire forever. Then the dynamics of 1 is V1(t +1) = γ V1(t)+W12,
as long as V1(t) < θ . Therefore, if V1(0) < θ , then V1(t + 1) = γ t+1V1(0) +
W12

1−γ t+1

1−γ
as long as V1(t) < θ . The condition V1(t) < θ is equivalent to

V1(0) < f (t), with f (t) = θ
γ t + W12

1−γ
(1− 1

γ t ). This function is strictly decreasing
if W12 > (1−γ )θ and f (t) → −∞ as t → ∞. Thus, for a fixed W12 > (1−γ )θ

there is a τ =
[

log(1− θ(1−γ )
W12

)

log γ

]
(where [ ] is the integer part), such that ∀0 ≤ t < τ ,

there exists and interval Jt = [ f (t), f (t − 1)[∈ [0, θ ] such that ∀V1(0) ∈ Jt , the
neuron 1 will fire for the first time at time t . When W12 → θ(1 − γ ) from above,
τ diverges and one can find an initial condition such that the first firing time of 1
is arbitrary large (transient case). This generates a ghost orbit.

One may generalize these examples to arbitrary dimensions. However, the previous
examples look where very specific since we had to adjust the parameters to a pre-
cise value, and the ghost orbit can be easily removed by a slight variation of these
parameters. This suggests us that this situation is non generic. We shall prove this in
Sect. 3.5.

To finish this section let us emphasize that, though “strict” ghost orbits, having
the limit t → ∞ in the definition, are non generic, it may happen that Vi (t) remains
below the threshold during an arbitrary long (but finite) time before firing. Then, the
characterization of the asymptotic dynamics may be out of numerical or experimental
control.

3.5 Two theorems about the structure of Ω

The condition d(Ω,S) > ε > 0 excludes situations where some points accumulate
on the singularity set. In these situations, the usual behavior is the following. An ε-ball
containing a point V accumulating on S will be cut in several pieces when it inter-
sects the singularity set. Then, each of these pieces may intersects S later on, etc...
At each intersection the dynamics generates distinct orbits and strong separations of
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trajectories. It may happen that the proliferation of orbits born from an ε-ball goes on
forever and there are examples of such dynamical system having a positive (topologi-
cal) entropy even if dynamics is contracting [36,37]. Also, points accumulating on S
do not have a local stable manifold.

In BMS model the situation is however less complex, due to the reset term
γ Vi (1 − ηi ). Indeed, consider the image of an ε ball B(V, ε) about some point V.
Assume that the ball intersects several domains of continuity. Then, the action of F
generates several pieces, as in the usual case. But, the image of B(V, ε) ∩ Mη is a
N − C(η) dimensional domain, whose projection in each direction i such that ηi = 1
is a point. Thus, even if B(V, ε) intersects the 2N domains of P , its image will be

an union of 2N pieces all but one having a dimension < N . This effect limits the
proliferation of orbits and the complexity of the dynamics and the resulting structure
of the ω-limit set is relatively simple, even if d(Ω,S) = 0 provided one imposes some
additional assumptions. More precisely, the following holds.

Theorem 2 Assume that ∃ε > 0 and ∃T < ∞ such that, ∀V ∈ M, ∀i ∈ {1 . . . N },
1. Either ∃t ≤ T such that Vi (t) ≥ θ ;
2. Or ∃t0 ≡ t0(V, ε) such that ∀t ≥ t0, Vi (t) < θ − ε

Then, Ω is composed by finitely many periodic orbits with a finite period.

Note that conditions (1) and (2) are not disjoint. The meaning of these conditions is
the following. We impose that either a neuron have fired after a finite time (uniformly
bounded, i.e. independent of V) or, if it does not fire after a certain time it stays bounded
below the threshold value (it cannot accumulate on θ ). Under these assumptions the
asymptotic dynamics is periodic and one can predict the evolution after observing the
system on a finite time horizon T , whatever the initial condition. Note however that
T can be quite a bit large.

The proof uses the following lemma.

Lemma 1 Fix F a subset of {1 . . . N } and let F̄ be the complementary set of F . Call

ΓF ,T,ε

=
{

V ∈ M
∣∣∣∣

(i) ∀i ∈ F , ∃t ≤ T, such that Vi (t) ≥ θ

(i i) ∀ j ∈ F̄ , ∃t0 ≡ t0(V, j)<∞, such that ∀t > t0, Vj (t)<θ − ε

}

then ω(ΓF ,T,ε), the ω-limit set of ΓF ,T,ε , is composed by finitely many periodic orbits
with a finite period.

Proof of Theorem 2
Note that there are finitely many subsets F of {1 . . . N }. Note also that ΓF ,T,ε ⊂

ΓF ,T +1,ε and that ΓF ,T,ε ⊂ ΓF ,T,ε′ whenever ε′ < ε. We have therefore:

M ⊂
⋃

F

⋃

T >0

⋃

ε>0

ΓF ,T,ε =
⋃

F
ΓF ,+∞,0.

But, under hypothesis (1) and (2) of Theorem 2, there exists ε > 0, T < ∞ such
that M = ⋃

F ΓF ,T,ε where the union on F is finite. Since F(M) ⊂ ⋃
F F(ΓF ,T,ε),
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Ω ⊂ ⋃
F ω(ΓF ,T,ε). Under lemma 1 Ω is therefore a subset of a finite union of sets

containing finitely many periodic orbits with a finite period. ��
Proof of Lemma 1 Call ΠF (resp. ΠF̄ ) the projection onto the subspace generated
by the basis vectors ei , i ∈ F (resp. e j , j ∈ F̄) and set VF = ΠF V (VF̄ = ΠF̄ V),
FF = ΠF F (FF̄ = ΠF̄ F). Since each neuron j ∈ F̄ is such that:

Vj (t) =
t−t j −1∑

n=0

γ n

(
∑

k

W jk Z [Vk(t − n − 1)] + I ext
j

)
< θ − ε, (35)

for t sufficiently large, (larger than the last (finite) firing time t j ), these neurons do
not act on the other neurons and their membrane potential is only a function of the
synaptic current generated by the neurons ∈ F . Thus, the asymptotic dynamics is
generated by the neurons i ∈ F . Namely, ∀V ∈ ω(ΓF ,T,ε), VF (t + 1) = FF [VF (t)]
and VF̄ (t + 1) = FF̄ [VF (t)]. One can therefore focus the analysis of the ω limit set
to its projection ωF (ΓF ,T,ε) = ΠFω(ΓF ,T,ε) (and infer the dynamics of the neurons
j ∈ F̄ via Eq. (35)).

Construct now the partition P(T ), with convex elements given by Mη0...ηT
=

Mη0
∩ F−1

(Mη1

)∩ F−2
(Mη2

)∩ · · · ∩ F−T
(MηT

)
, where T is the same as in the

definition of ΓF ,T,ε . By construction, FT is continuous on each element of P(T ) and
fixing Mη0...ηT

amounts to fix the affinity constant of FT . By definition of T , DFT
F
∣∣
V,

the derivative of FT
F at V, has all its eigenvalues equal to 0 whenever V ∈ ωF (ΓF ,T,ε)

(prop. 1.3). Therefore FT
F [Mη0...ηT

∩ ωF (ΓF ,T,ε)] is a point. Since

FT
F (M ∩ ωF (ΓF ,T,ε))

= FT
F
(⋃

Mη0...ηT
∩ ωF (ΓF ,T,ε)

)
⊂
⋃

FT
F
(Mη0...ηT

∩ ωF (ΓF ,T,ε)
)
,

the image of ωF (ΓF ,T,ε) under FT
F is a finite union of points belonging to M. Since,

ωF (ΓF ,T,ε) is invariant, this is a finite union of points, and thus a finite union of
periodic orbits with a finite period. The dynamics of neurons ∈ F̄ is driven by the
periodic dynamics of firing neurons and, from Eq. (35) it is easy to see that their
trajectory converges to a constant. ��
Remark In the theorem, we have considered the case d(Ω,S) = 0 as well. One sees
that there is no exponential proliferation of orbits after a finite time corresponding to
the time where all neurons satisfying property (1) have fired at least once. Indeed, then
the reset term project a convex domain onto a point, and this point cannot generate
distinct orbits. As discussed above the effect of S is somehow cancelled by the reset
intrinsic to BMS model. Note however that there are at most 2N T points in Ω , and
this number can be quite a bit large.

The situation is more complex if one cannot uniformly bound the first time of
firing as already discussed in Sect. 3.4. Assumptions (1), (2) of Theorem 2 leave us
on a safe ground but are they generic? Let us now to consider the case where they
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are not satisfied. Namely ∀ε > 0,∀T < ∞, ∃V ∈ M, ∃i ∈ {1 . . . N } such that
∀t ≤ T, Vi (t) < θ and ∀t0, ∃t ≥ t0 such that Vi (t) ≥ θ − ε. Call:

BT,ε =
{

V ∈ M|∃i, such that : (i) ∀t ≤ T, Vi (t) < θ

(i i) ∀t0, ∃t ≥ t0, Vi (t) ≥ θ − ε.

}
(36)

We are looking for the set of parameters values (W, Iext) such that the set:

B =
⋂

T >0

⋂

ε>0

BT,ε, (37)

is non empty. Note that BT +1,ε ⊂ BT,ε . Thus, B = ⋂
ε>0 B∞,ε . We are thus looking

for points V such that ∀t > 0, Vi (t) < θ and lim supt→∞ V (t) = θ . Therefore, B is
exactly the set of ghost orbits.

We now prove that B is generically empty. Actually, we prove a more general result
namely that d(Ω,S) is generically non zero. Before this, we have now to provide
a definition of “generic”. For this, we shall assume from now on that the synaptic
weights and inputs belong to some compact space H ⊂ R

N 2+N . This basically means
that the Wi j ’s (I ext

i ’s) are bounded (or have a vanishing probability to become infinite
if we deal with random matrices/inputs). One can endow H with a probability measure
having a density with respect to the Lebesgue measure. This corresponds to choosing
the synaptic weights and external currents with some probability distribution, as we
shall do in Sect. 5.1. We say that a subset N ⊂ H is “non generic in a measure theoretic
sense” if this set has zero measure. This means that there is a zero probability to pick
up a point in N by choosing the synaptic weights and external currents randomly. We
say that it is “non generic in a topological sense” if it is the complementary set of a
countable intersection of dense sets [34]. This definition corresponds to the following
situation. If we find a point belonging to N then a slight perturbation of this point
leads out of N , for any perturbation that belongs to an open dense set. In other words
one can maybe find perturbations that leave the point inside N but they are specific
and require e.g. precise algebraic relations between the synaptic weights and/or input
currents. These two notion of genericity usually do not coincide [34].

Theorem 3 The subset of parameters (W, Iext) ∈ H such that d(Ω,S) = 0 is non
generic in a topological and measure theoretic sense.

Remark Since this result holds for the two distinct notions of genericity we shall use
the term “generic” both in a topological and in a measure theoretic sense, without
further precision in the sequel.

Proof Take V ∈ Ω such that d(Ṽ,S) = 0. Then, there exists i ∈ {1 . . . N } such that
inf t≥0 |Vi (t) − θ | = 0. We shall consider separately two cases.

1. Either ∃B < ∞ and a sequence {tk}k≥0 such that Vi (tk) = θ and δk < B,∀k ≥ 0,
where δk = tk+1 − tk .

2. Or V is a ghost orbit. This includes the case where δk defined above is not bounded,
corresponding to having limt→+∞ Vi (t) = θ , but also the case where Vi (t) has
no limit, and where lim supt→+∞ Vi (t) = θ as in definition (3).
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Case 1 According to Eq. (30), the condition Vi (tk+1) = θ writes:

Vi (tk+1) =
δk−1∑

n=0

γ n(I s
i (tk+1 − n − 1) + I ext

i ) = θ, (38)

since tk is a firing time. Note that we have used the notation I s
i (t) instead of the notation

I s
i (ηt ), used in Eq. (30), for simplicity.

The synaptic current I s
i takes only finitely many values αi;l = ∑

j∈D(ηl )
Wi j ,

where l is an index enumerating the elements of P (l ≤ 2N ). Thus, the αi;l ’s are only
functions of the Wi j ’s and they do not depend on the orbits. One can write:

δk−1∑

n=0

γ n I s
i (tk+1 − n − 1) =

2N∑

l=1

αi;l xi;l(tk+1), (39)

where:

xi;l(tk+1) =
δk−1∑

n=0

γ nχ
[
I s
i (tk+1 − n − 1) = αi;l

]
, (40)

where χ is the indicatrix function. One may view the list
{

xi;l(tk+1)
}2N

l=1 as the com-

ponents of a vector xi (tk+1) ∈ R
2N

. In this setting, relation (38) writes:

2N∑

l=1

αi;l xi;l(tk+1) = θ − 1 − γ δk

1 − γ
I ext
i , (41)

since I ext
i does not depend on time. Equation (41) defines an affine hyperplane Pi,k in

R
2N

.
Call Qi,k the set of xi;l(tk+1)’s. This is a finite, disconnected set, with #Qi,k = 2δk

and whose elements are separated by a distance ≥ γ δk . Moreover, the xi;l(tk+1)’s are
positive. For each k they obey:

2N∑

l=1

xi;l(tk+1) =
δk−1∑

n=0

γ n = 1 − γ δk

1 − γ
(42)

This defines a simplex and Qi,k belongs to this simplex. Note Qi,k does not depend on
the parameters W, Iext. However, the set of xi;l(tk+1)’s values appearing in Eq. (41)
is in general a subset of Qi,k depending on (W, Iext)

Now, Eq. (41) has a solution if and only if Pi,k ∩ Qi,k �= ∅. Assume that we have
found a point R = (W, Iext) in the parameters space H such that Pi,k ∩ Qi,k �= ∅,
for some k. Since Qi,k is composed by finitely many isolated points, since the αi;l ’s
depend continuously on the Wi j ’s and since the affine constant of the hyperplane Pi,k

depends continuously of I ext
i , one can render the intersection Pi,k ∩ Qi,k empty by
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a generic (in both sense) small variation of the parameters Wi j , I ext
i . Therefore, the

sets of points in H such that Pi,k ∩ Qi,k �= ∅, for some k, is non generic. Since we
have assumed that the δk’s are uniformly bounded by a constant B < ∞, the condition
∃k such that Vi (tk) = θ corresponds to a finite union of non generic sets, and it is
therefore non generic.

Note that if δk is not bounded then the set of values xi;l = ∑∞
n=0 γ nχ[

I s
i (tk+1 − n − 1) = αi;l

]
takes uncountably many values. If γ is sufficiently small

this is Cantor set and one can still use the same kind of argument as above. On the

other hand, if γ is large this set fills continuously the simplex
∑2N

l=1 xi;l = 1
1−γ

and
one cannot directly use the argument above. More precisely one must use in addition
some specificity of the BMS dynamics. This case is however a sub case of ghost orbits.
Therefore we treat it in the next item.

Case 2 We now prove that ghost orbits are non generic. For this, we prove that if
R = (W, I) is a point in H such that the set B defined by eq. (36) is non empty, a
small, generic, perturbation of R leads to a point such that B is empty. Thus, B is
generically empty in both sense.

Fix ε and take V ∈ B∞,ε (def. (36)). Then there is a t0 such that θ −ε ≤ Vi (t0) < θ .
Without loss of generality (by changing the time origin) one may take t0 = 0. Then,
from Eq. (30), ∀t > 0,

γ t (θ − ε) +
t∑

n=1

γ t−n Ii (n − 1) ≤ Vi (t + 1) < γ tθ +
t∑

n=1

γ t−n Ii (n − 1),

where we have set Ii (n − 1) ≡ Ii (ηn−1) to shorten the notations. Thus, Vi (t) belongs
to an interval of diameter γ tε. Since ε can be arbitrarily small, and t arbitrarily large
we have only to consider the orbits such that Vi (0) = θ , for some i . There are finitely
many such orbits.

Assume that R = (W, I) is such that B is non empty. Then, for some i , ∀ε > 0,
there exists t0 such that:

θ − ε ≤ γ t0θ +
t0∑

n=1

γ t0−n Ii (n − 1) < θ, (43)

and ∀t > 0,
t∑

n=1

γ t−n Ii (n − 1) < θ(1 − γ t ). (44)

Assume for the moment that there is only one neuron i such that inf t≥0 |Vi (t)−θ | = 0.
That is, all other neurons j �= i are such that Vj (t) stays at a positive distance from θ .
In this case, a small perturbation of the Wkj ’s, where k = 1 . . . N but j �= i , or a small
perturbation of the I ext

j ’s will not change the values of the quantities η j (t) = Z(Vj (t)),
t = 0 · · ·+∞. In this case, the current Ii (n−1) in Eq. (43,44) does not change ∀n ≥ 0.
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Therefore there is a whole set of perturbations that do not remove the ghost orbit.6 But
they are non generic since a generic perturbation involves a variation of all synaptic
weights Wkj including j = i and all currents as well.

Now, a small perturbation of some Wki or I ext
i has the following effects. Call V ′

i (t)
the perturbed value of the membrane potential at time t .

1. Either ∀t > 0, V ′
i (t) < θ − ε0, for some ε0 > 0. In this case, condition (43) is

violated and this perturbation has removed the ghost orbit. Now, since i is not
firing, it does not act on the other neurons and we are done.

2. Or there is some t0 such that V ′
i (t0) ≥ θ . The condition (43) is violated and this

perturbation also removes the ghost orbit. But, neuron i is now firing and we
have to consider its effects on the other neurons. Note that the induced effects on
neurons j �= i is not small since neuron j feels now, at each times where neuron
i fires, an additional term W ji which can be large. Thus, in this case, a small
perturbation induces drastic changes by “avalanches” effects.
Again, we have to consider two cases.
(a) Either the new dynamical system resulting from this perturbation has no

ghost orbits and we are done.
(b) Or, there is another neuron i1 (i1 �= i) having a ghost orbit obeying conditions

(43,44). But then one can remove this new ghost orbit by a new perturbation.
Indeed, as argued above, the fact that i is now firing corresponds to adding
a term W ji to the synaptic current I s

j each time neuron i fires. Then, to still
have a ghost orbit for j one needs specific algebraic relations between the
synaptic weights and currents which corresponds to a set of parameters of
codimension lower than 1. The key point is that, following this argument,
one can find a family of generic perturbation that destroy the ghost orbits
of i1 without creating again a ghost orbit for i . Then by a finite sequence of
generic perturbations one can find a point in H such that B is empty.

Finally, we have to treat the case where more than one neuron are such that
inf t≥0 |Vj (t) − θ | = 0. However these neurons correspond to case 1 or to case 2
and one can lead them to a positive distance from S by a finite sequence of generic
perturbations. ��

3.6 General structure of the asymptotic dynamics

We are now able to fully characterize the ω limit set of M.

1. Neural death Assume that I ext
i < (1 − γ )θ and consider the set M0 = {V |

Vi < θ, ∀i} corresponding to states where all neurons are quiescent. Under this
assumption on I ext

i , M0 is an absorbing domain (F(M0) ⊂ M0) and Ft (M0) →
I ext
i

1−γ
as t → ∞. Thus, all neurons in this domain are in a “neural death” state in the

6 For example, there may exist submanifolds in H corresponding to systems with ghost orbits. A possible
illustration of this is given in Fig. 1, Sect. 5.1 where the sharp transition from a large distance d(Ω, S) to
very small distance d(Ω, S) corresponds to a critical line in the parameters space γ, σ (see Sect. 5.1 for
details).
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sense that they never fire. More generally, let Mη be a domain such that ∃t > 0
such that Ft (Mη) ⊂ M0 then all states in Mη converge asymptotically to neural
death (under the assumption I ext

i < (1 − γ )θ ). Now, if
⋃

t≥0 F−t (M0) ⊃ M
then all state ∀V ∈ M converges to neural death. Such a condition is fulfilled
if the total current is not sufficient to maintain a permanent neural activity. This
corresponds to the previous condition on I ext

i but also to a condition on the synaptic
weights Wi j . For example, an obvious, sufficient condition to have neural death is
Vmax < θ . More generally, we shall see in Sect. 5.1, where random synapses are
considered, that there is a sharp transition from neural death to complex activity
when the weights have sufficiently large values (determined, in the example of
Sect. 5.1 by the variance of their probability distribution).

2. Full activity On the opposite, consider now the domain M1 = {V |Vi ≥ θ, ∀i}
corresponding to states where all neurons are firing. Then, if ∀i,

∑N
j=1 Wi j +

I ext
i ≥ θ , this domain is mapped into itself by F (where F(M1) is the point∏N

i=1
∑N

j=1 Wi j + I ext
i ) and all neuron fire at each time step, forever. More

generally, if
⋃

t≥0 F−t (M1) ⊃ M then all state ∀V ∈ M converges to this
state of maximal activity. Such a condition is for example fulfilled if the total
current is too strong.

These two situations are extremal cases that can be reached by tuning the total
current. In between, the dynamics is quite a bit richer. One can actually distinguish 3
typical situations described by the following theorem, which is a corollary of Propo-
sition 1, Theorems 1, 2 and previous examples.

Theorem 4 Let
V + = max

i=1...N
V +

i , (45)

where:
V +

i = sup
V∈M

lim sup
t→∞

Vi (t), (46)

be the maximal membrane potential that the neurons can have in the asymptotics.
Then,

1. Either V + < θ . Then V + = maxi
I ext
i

1−γ
, d(Ω,S) = θ − V + and Ω is reduced to

a fixed point ∈ M0. [Neural death].
2. Or d(Ω,S) > ε > 0 and V + > θ . Then Ω is a finite union of stable periodic

orbits with a finite period [Stable periodic regime.].
3. Or d(Ω,S) = 0. Then necessarily V + ≥ θ . In this case the system exhibits a

weak form of initial conditions sensitivity. Ω may contain ghost orbits but this
case is non generic. Generically, the ω-limit set is a finite union of periodic orbit
[Unstable periodic regime.].

Remark It results from these theorems that the BMS model is an automaton; namely,
the value of η at time t can be written as a deterministic function of the past spiking
sequences η(t−1), η(t−2) etc.... However, the number of spiking patterns determining
the actual value of η can be arbitrary large and even infinite, when d(Ω,S) = 0.
Moreover, the dynamics is nevertheless far from being trivial, even in the simplest
case γ = 0 (see Sect. 5.1).
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4 Coding dynamics with spiking sequences

In this section we switch from the dynamics description in terms of orbit to a description
in terms of spiking patterns. For this we first establish a relation between the values
that the membrane potentials have on Ω and an infinite spiking patterns sequence,
using the notion of global orbit introduced in [17].

4.1 Global orbits

In (30), we have implicitly fixed the initial time at t = 0. One can also fix it at t = s
then take the limit s → −∞. This allows us to remove the transients. This leads to:

Vi (t) =
+∞∑

n=0

πi (n, t)γ n I s
i (t − n − 1) (47)

where:

πi (n, t) =
n∏

k=0

(
1 − ηi;t−k−1

)
, (48)

Definition 4 An orbit is global if there exists a legal sequence η̃ = {
ηt
}

t∈Z
∈

Σ(W,Iext) such that ∀t > 0, Vi (t) is given by (47).

Remarks 1. In (47) one considers sequences η.;t−k−1 where t−k−1 can be negative,
i.e. {ηt }t∈Z ∈ Σ(W,Iext). Thus a global orbit is such that its backward trajectory
stays in M, ∀t < 0.

2. The quantity πi (n, t) ∈ {0, 1}, and is equal to 1 if and only if neuron i , at time t ,
has not fired since time time t − n − 1. Thus, if τ

(k)
i is the last firing time, then

Vi (t) = ∑t−τ
(k)
i −1

n=0 γ n I s
i (t − n − 1), τ

(k)
i < t ≤ τ (k+1), is a a sum with a finite

number of terms. The form (47) is a series only when the neuron didn’t fire in the
(infinite) past.

Denote byG the set of global orbits. The next theorem is an (almost) direct transposition
of Proposition 5.2 proved by Countinho et al. in [17]. However, the paper [17] deals
with a different model and slight adaptations of the proof have to be made. The main
difference is the fact that, contrarily to their model, it is not true that every point in R

N

has a uniformly bounded number of pre-images. This is because F typically project a
domain onto a domain of lower dimension in all directions where a neuron fires (and
this effect is not equivalent to setting a = 0 in [17]). Therefore, to apply Countinho
et al. proof we have to exclude the case where a point has infinitely many pre-images.
But it is easy to see that in the generic situation of Theorem 2 any point of Ω has a
finite number of pre-images in Ω (since Ω has finitely many points).

The version of Countinho et al. theorem for the BMS model is therefore.

Theorem 5 . Ω = G for a generic set of (W, Iext) values.
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Remark For technical reasons we shall consider the attractor A definition (Eq. 22)
instead of the ω-limit set. But these two notions coincide whenever there is no ghost
orbit (generic case).

Proof The inclusion G ⊂ A is proved as follows. Let V ∈ G and Ṽ = {V(t)}t∈Z be
the corresponding global orbit. Since, ∀t, n,

min
i

N∑

j=1

Wi j ≤ I s
i (t − n − 1) ≤ max

i

N∑

j=1

Wi j ,

one has

∞∑

n=0

γ n

⎛

⎝min
i

N∑

j=1

Wi j + I ext
i

⎞

⎠ ≤ Vi (t) ≤
∞∑

n=0

γ n

⎛

⎝max
i

N∑

j=1

Wi j + I ext
i

⎞

⎠

⇒ Vmin =≤ Vi (t) ≤ Vmax .

Therefore, V(t) ∈ M ⊂ BM(δ), ∀t ≤ 0, δ > 0. Hence V ∈ ⋂∞
t=0 Ft (BM(δ)) and

G ⊂ ⋂∞
t=0 Ft (BM(δ)). From (19),

⋂∞
t=0 Ft (BM(δ)) ⊂ A, and G ⊂ A.

The reverse inclusion A ⊂ G is a direct consequence of the fact that any point of A
has a pre-image in A. Therefore, ∀V ∈ A, one can construct an orbit {V(t)}t≤0 such
that V(0) = V, V(t + 1) = F(V(t)) and V(t) ∈ A, ∀t ≤ 1. This (backward) orbit
belong to M and the value of V(t) is given by (47). Thus V ∈ G, so A ⊂ G. ��
Remark Theorem 5 states that each point in the attractor is generically encoded by a
legal sequence η̃. This is one of the key results of this contribution. Indeed, as discussed
in the introduction, the “physical” or “natural” quantity for the neural network is the
membrane potential. However, it is also admitted in the neural network community
that the information transported by the neurons dynamics is contained in the sequence
of spikes emitted by each neurons. In the BMS model such a sequence is exactly
given by η̃ since on the i th line ηt;i one can read the sequence of spikes (and the firing
times) emitted by i . The theorem establishes that, in the BMS model, it is equivalent to
consider the membrane potentials or the spiking sequences: the correspondence is one
to one. This suggests a “change of paradigm” where one switches from the dynamics of
membrane potential (Eq. 1) to the dynamics of spiking patterns sequences. This is the
point of view developed in this series of papers, where some important consequences
are inferred.

5 Discussion

5.1 Random synapses

In this paper we have established general results on the BMS model dynamics, and we
have established theorems holding either for all possible values of the Wi j ’s and I ext

i ’s
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or for a generic set. However, and obviously, the dynamics exhibited by the system
(1) depend on the matrix W (and the input Iext) and quantities such as d(Ω,S) or
V + in Theorem 4 are dependent on these parameters. A continuous variation of some
Wi j or some I ext

i will induce quantitative changes in the dynamics (for example it
will reduce the period or the number or periodic orbits). It is therefore interesting to
figure out what are the regions in the parameters spaces W, Iext where the dynamics
exhibits a different quantitative behaviour.

A possible way to explore this aspect is to choose W (and/or Iext) randomly, with
some probability PW (PIext ) having a density. A natural starting point is the use of
Gaussian independent, identically distributed variables, where one varies the statistical
parameters (mean and variance). Doing these variations, one performs sort of a fuzzy
sampling of the parameters space, and one somehow expects the behaviour observed
for a given value of the statistical parameters to be characteristic of the region of
W, Iext that the probabilities PW ,PIext weight (more precisely, one expects to observe
a “prevalent” behaviour in the sense of Hunt et al. [31]).

Imposing such a probability distribution has several consequences. First, the
synaptic currents and the membrane potentials become random variables whose law
is induced by the distribution PW,Iext = PWPIext and this law can be somehow
determined [15]. But, this has another, more subtle effect. Consider the set ΣΛ of
all possible sequences on Λ = {1 . . . N }. Among them, the dynamics (1) selects a
subset of legal sequences, Σ(W,Iext), defined by the compatibility conditions (31) and
the transition graph G(W,Iext). Thus, changing W (Iext) has the effect of changing the
set of legal transitions that the dynamics selects. From a practical point of view, this
simply means that the typical raster plots observed in the asymptotic dynamics depend
on the Wi j ’s and on the external current Iext. This remark is somewhat evident.
However, a question is how the statistical parameters of the distribution PW,Iext acts on
the dynamics typically observed in the asymptotics (e.g. how it acts on the parameters
V +, d(Ω,S)). This question can be addressed by combining the dynamical system
approach of the present paper, probabilistic methods and mean-field approaches from
statistical physics (see [10,52] for an example of such combination applied to neural
networks). A detailed description of this aspect would increase consequently the size
of the paper, so this will be developed in a separate work [15]. Instead, we would like
to briefly comment results obtained by BMS.

Indeed, the influence of the statistical parameters of the probability distribution of
synapses on the dynamics has been investigated by BMS, using a different approach
than ours. They have considered the case where the Wi j ’s are Gaussian with zero
mean and a variance σ 2, and where the external current was zero. By using a mean-
field approach they were able to obtain analytically a (non rigorous) self-consistent
equation (mean-field equation) for the probability xt that a neuron fires at a given time.
This equation always exhibits the locally stable solution x = 0 corresponding to the
“neural death”. For sufficiently large σ another stable solution appears by a saddle-
node bifurcation, corresponding to a non zero probability of firing. In this case, one
has two stable coexisting regimes (neural death and non zero probability of firing),
and one reaches one regime or the other according to the initial probability of firing.
Basically, if the initial level of firing is high enough, the network is able to maintain a
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regime with a neuronal activity. This situation appears for a sufficiently large value of
σ , corresponding to a critical line in the plane γ, σ . The analytical form of this critical
line was not given by BMS. Moreover, the mean-field approach gives information
about the average behavior of an ensemble of neural networks in the limit N → ∞.
The convergence involved in this limit is weak convergence (instead of almost-sure
convergence). Therefore, it does not tell us what will be the typical behaviour of
one infinite sized neural network. Finally, the mean-field approach does not allow to
describe the typical dynamics of a finite sized network.

To study the finite size dynamics BMS used numerics and gave evidence of three
regimes.

– Neural death After a finite time the neurons stop to fire.
– Periodic regime This regime occurs when σ is large enough.
– “Chaos” Moreover, BMS exhibit an intermediate regime, between neural death

and periodic regime, that they associate to a chaotic activity. In particular, numerical
computations with the Eckmann–Ruelle algorithm [22] exhibit a positive Lyapunov
exponent. This exponent decreases to zero when σ increases, and becomes negative
in the periodic regime.

Their conclusion concerning the existence of a chaotic regime is in contradiction
with Theorem 4. We would like now to briefly comment this contradiction (a more
detailed investigation will be done in [15]). The Fig. 1a, b presents the results of
a numerical simulation computing the average distance d(Ω,S) as a function of γ

and of the variance of the synaptic weights. More precisely, we have considered, as
BMS, the case of Gaussian independent, identically distributed random Ji j ’s, with

zero expectation and variance σ 2 = C2

N . (We have adopted the standard scaling of the
variance with 1

N . Indeed, in the present case the neural network is almost surely fully

connected and the scaling C2

N is used in order that the probability of the total currents
Ii has a variance independent of N ).

Clearly, the average distance becomes very small when C crosses a critical line in the
plane C, γ . However, in the numerical experiments of Fig. 1 the smaller measured value
for the distance is ∼ 10−8 for Fig. 1b, corresponding to a very large characteristic time
well beyond the transients usually considered in the numerics [Eq. (34)]. Moreover, the
average distance approaches zero rapidly as N growths. Thus, there is sharp transition
from neural death to chaotic activity in the limit N → ∞, when crossing a critical
line in the plane C, γ (“edge of chaos”). This line can be determined by mean-field
methods analogous to those used in [8] and corresponds to the transition found by
BMS [15]. In Fig. 1a, b, one also remarks that after the transition d(Ω,S) growths
slowly when C increases. For the illustration of this aspect we have drawn the log of
the distance in Fig. 1a, b.

Hence, for finite size N the situation is the following. Start from a small variance
parameter C and increase it, and consider the stationary regime typically observed.
There is first a neural death regime. After this, there is a regime where the dynamics has
a large number of periodic orbits and very long transients. This regime is numerically
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Fig. 1 a Average value of the
distance d(A, S) versus γ, C ,
for N = 50. b N = 100
(in log10 scale)
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indistinguishable from chaos.7 In particular, usual numerical methods, computing
Lyapunov exponents by studying the behaviour of a small ball of perturbed trajectories
centered around a mother trajectory, will find a positive exponent. Indeed, if the size η

of this ball is larger than the distance d(Ω,S) one will observe an effective expansion
and initial condition sensitivity, as argued in the Sect. 2.4. This will result in the
measurement of an effective positive Lyapunov exponent, stable with respect to small
variation of η, as long as η >> d(Ω,S). Though this exponent is, strictly speaking,
spurious, it captures the most salient feature of the model: sensitivity to perturbations
with a finite amplitude. When C increases further, the distance to the singularity set

7 Moreover, it is likely that the phase space structure has some analogies with spin-glasses [15]. For
example, if γ = 0 the dynamics is essentially equivalent to the Kauffman’s cellular automaton [33]. It has
been shown by Derrida and coworkers [20,21] that the Kauffman’s model has a structure similar to the
Sherrington-Kirckpatrick spin-glass model[41,50]. The situation is even more complex when γ �= 0. It is
likely that we have in fact a situation very similar to discrete time neural networks with firing rates where
a similar analogy has been exhibited [7,8].
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increases. There is then a C such that the typical periodic orbit length becomes of the
order of magnitude of the time range used in the numerical simulation, and one is able
to see that dynamics is periodic.

In the light of this analysis we claim that BMS results are essentially correct though
we have shown that there is no strictly speaking chaotic regime. Moreover, they are, in
some sense, more relevant than Theorems 3,4 as far as numerics and practical aspects
are concerned. However, the analysis of the present paper permits to have a detailed
description of the typical dynamics of a given finite sized network (without averaging),
based on rigorous results. This is useful when dealing with synaptic plasticity and
learning effects where a given pattern is learned in a given network. (This aspect is
shortly discussed below and will be developed elsewhere).

5.2 Adding noise to the dynamics

It is usual in neural network modeling to add Brownian noise to the deterministic
dynamics. This noise accounts for different effects such as the diffusion of neuro-
transmitters involved in the synaptic transmission, the degrees of freedom neglected
by the model, external perturbations, etc... Though it is not evident that the “real noise”
is Brownian, using this kind of perturbations has the advantage of providing a tractable
model where standard theorems in the theory of stochastic processes [24] or methods in
non equilibrium statistical physics (e.g. Fokker–Planck equations [5]) can be applied.

The addition of this type of noise to the dynamics of BMS model will result, in
the region where d(Ω,S) is small, in an effective initial condition sensitivity and an
effective positive Lyapunov exponent.

More precisely, consider a noisy version of (1).

Vi (t+1) = γ Vi (t) (1 − Z [Vi (t)])+
N∑

j=1

Wi j Z [Vj (t)]+ I ext
i (t)+Bi (t); i = 1 . . . N .

(49)

where B def= {Bi (t)}N ,∞
i=1;t=0 is a Gaussian random process with zero mean and a cova-

riance Cov(Bi (t), B j (s)) = σ 2
Bδt,sδi, j . The probability distribution of the stochastic

process V, on a finite time horizon T , for a fixed realisation of the W can be obtai-
ned by using a discrete time version of Girsanov theorem [28,52]. From this, it is
possible to estimate the probability that a trajectory approaches the singularity set S
within a finite time T and a distance d by using Freidlin–Wentsel estimates [25]. Also,
Eq. (27) is useful to estimate the measure of points having a local stable manifold.
In this context one can compute the probability to approach the singularity set within
a distance ε; also one can construct a Markov chain for the transition between the
attraction basin of the periodic orbits of the unperturbed dynamics. This will be done
in a forthcoming paper.

5.3 Time dependent input

One may also wonder what happens to the present analysis when a deterministic, time
dependent external input, is imposed upon the dynamics [The case of a stochastic
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input is covered by Eq. (49) above]. Away from the singularity set (d(Ω,S) large)
the effect of a time dependent input with a small amplitude (lower than d(Ω,S)) will
not be different from the case studied in the present paper. This is basically because
a small input may be viewed as a perturbation of the trajectory, and the contraction
properties of the dynamics will damp the perturbation as long as the trajectory stays
away from the singularity set.

The situation is different if, at some place, the action of the time dependent input
leads to a crossing of the singularity. This crossing can basically occur with a time
independent input, but in the time dependent case there is a particularly salient effect,
that may be easily revealed with periodic external currents. That is resonance effects.
If the unperturbed trajectory has some typical recurrent time to come close to the
singularity set, and if the time dependent perturbation is not synchronized with this
recurrence time, one expects that the contraction effect will damp the perturbation with
no clear cut “emergent” effect. On the other hand, if the period of the periodic signal
is a multiple of the recurrence time, there may be a major effect. The result would be a
frequency dependent response of the system exhibiting sharp peaks (resonance). This
statement is actually more than a conjecture. Such resonances effects have indeed been
exhibited in a recurrent discrete time neural network with firing rates [11–13]. It has
been shown that applying a periodic input is a way to handle the interwoven effects
of non linear dynamics and synaptic topology. Similar effects should be observed in
BMS model.

5.4 Learning and synaptic plasticity

What would be the effect of a synaptic weight variations (synaptic plasticity, LTD, LTP,
STDP, Hebbian learning) on the dynamical system (1)? These variations corresponds
to moving the point corresponding to the dynamical system in the parameters space
(W, Iext). This motion is neither random nor arbitrary. Indeed, assume that one im-
poses to the neural network an input/stimulus Iext = {

I ext
i (t)

}
. I ext

i modifies directly
the level of activity of neuron i , and acts indirectly on other neurons (provided that
the synaptic graph is connected). A simple stimulus can therefore strongly modify the
dynamics, the attracting set, the distance d(Ω,S), etc....

In the case where Iext does not depend on time, the following result follows directly
from the analysis presented in this paper.

Theorem 6 For a generic set of values of (W, Iext), there exists a finite partition of
M = ⋃Dn, such that ∀V ∈ Dn the ω-limit set of V, ω(V) is a stable periodic orbit,
with a finite period. This orbit depends on Iext.

Proof Ω is generically a finite union of periodic orbits with a finite period. Each of
orbit n has an attraction basin Dn and the attraction basins consitute a partition of
M. ��

This orbit (resp. its coding) may be viewed as the dynamical response of the neural
network to input Iext, whenever the initial conditions are chosen ∈ Dn . In this way,
the neural network associates to an input a dynamical pattern encoded in the spiking
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sequence of this periodic orbit. In the same way one can associate to a series of inputs a
series of periodic orbits (resp. codes), each orbit being specifically related to an input.
This property results directly from Theorem (6) without particular assumption on the
Wi j ’s.

However, there might exist a large number of domains Dn and a large number
of possible responses (orbits). Moreover, an orbit can be complex, with a very long
period. This is particularly true at the “edge of chaos”. Indeed, consider the case
where the distance d(Ω,S) is small, when the input is present. Then, dynamics is
indistinguishable from chaos and the dynamical “signature” of the input is a very
complex orbit, requiring a very long time to be identified. In other words, if one
imagine a layered structure where the present neural network acts as a retina and
where another neural network is intended to identify the orbit and “recognize” the
input, the integration time of the retina will be very long at the edge of chaos. On
the opposite, one may expect that a learning phase allows this system to associate the
input to an orbit with a simple structure (small period) allowing a fast identification
of the input.

It has been shown, in the case of recurrent neural networks with a sigmoidal transfer
function [18], that Hebbian learning leads to a reduction of chaos towards a less
complex dynamics, permitting to associate a pattern to simple orbits. The same effect
has been observed by BMS [55] applying an STDP like rule to the model (1). In
both cases, it has been observed that a synaptic evolution (Hebb or STDP) leads
to associate to the input a sequence of orbits whose complexity decreases during
the synaptic weights evolution. In the present context, this suggests that d(ω(V),S)

increases during this evolution (note that the evolution is entirely dependent on the
initial condition, V. ).

A related question is: how do the statistical properties of raster plots evolve during
synaptic weights evolution? This question, and more generally the effect of synaptic
evolution on dynamics can be addressed using tools from dynamical systems theory, in
the spirit of the present paper. This will be the subject of a forthcoming paper. However,
in the next section we mention briefly how tools from ergodic theory (thermodynamic
formalism) can be used.

5.5 Statistical properties of orbits

As we saw, the dynamics of (1) is a rather complex and can be, from an experimental
point of view, indistinguishable from chaos. Consequently, the study of the finite
evolution of the membrane potential (resp. the spiking patterns sequence) does not
tell us what will be the further evolution, whenever the time of observation is smaller
than the characteristic time Td of Eq. (34). In this sense, the system is producing
entropy on a finite time horizon. Thus, provided that d(Ω,S) is sufficiently small,
one can do “as if” the system were chaotic and use the tools for analysis of chaotic
systems. This also holds when one adds noise on the dynamics. A particularly useful
set of tools is provided by ergodic theory and the thermodynamic formalism. In this
approach one is interested in the statistical behavior of orbits, characterized by a
suitable set of probability measure. A natural choice are Gibbs measures in the sense
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of Sinai-Ruelle-Bowen [47–49]. In a forthcoming paper we indeed show that Gibbs
measures arise naturally in BMS model. They come either from statistical inference
principles where one tries to maximize the statistical entropy given a set of fixed given
quantities such as correlations functions or mean firing rate (a prominent example
of application of this principle is given in [53]). They also arise when one wants to
study the effect of synaptic plasticity (learning, STDP) on the selection of orbits. In
the context of BMS model one can show that Hebbian learning and STDP are related
to a variational principle on the topological pressure, which is the analogon of free
energy in statistical mechanics.

5.6 The limit dt → 0

In the definition of the BMS model, one uses a somewhat rough approximation consis-
ting in approximating the differential equation of the Integrate and Fire model with a
Euler scheme, and discretizing time. A central question is: what did we lose by doing
this, and is the model still relevant as a neural network model? As mentioned in the
introduction, this requires developments done elsewhere [14]. But we would like here
to point out here a few remarks on this aspect.

– From the “biological” point of view the Integrate and fire model with continuous
time is already a rough approximation where the characteristic time for the neu-
ron response is set to zero. One can actually distinguish (at least) 3 characte-
ristic time scales in neuron dynamics descriptions based on differential equations.
The “microscopic time” dt corresponds somehow to the shortest time scale involved
in the spike generation (e.g. microscopic mechanism leading to opening of ionic
channels). The “reaction time” τr of the neuron corresponds to the time of raise and
fall for the spike. If one focuses on spikes (and does not consider time averaging
over sliding windows leading to the firing rate description) the last relevant time
scale is the characteristic time T required for the neural network to reach a statio-
nary regime. One expects to have dt � τr � T . In the IF model, however, the time
reaction τr is considered to be instantaneous (thus τr ≤ dt). This leads to delicate
problems for the definition of the time of firing and requires the introduction of
the “t− notation”. Using a discrete time approximation allows to circumvent this
problem and corresponds somehow to pose dt = τr = 1.
One may reject this procedure a priori. Our philosophy is instead to extract as much
results as possible from the discrete time spiking model and decide a posteriori
what has been lost (or won).

– From the dynamical system point of view, the limit dt → 0 raises two problems.
On one hand, the trajectories become continuous. Then one may have situations
where the trajectory accumulates on S and where a small variation of the Wi j ’s is
not able to remove the intersection (as it is the case in Theorem 3). This type of
situation is known in the field of genetic networks (see [23] and references therein).
However, as mentioned in the paper, the situation is slightly different here, because
of the neurons reset, leading to an infinite contraction of a domain onto a point. This
effect really simplifies the dynamics study, and is still present in the continuous
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time case. However, this aspect would require careful investigations, not in the
scope of the present work.
The second problem is the use of a Euler scheme in the discretization. Using more
elaborated schemes would complicate the analysis since the model would loose its
convenient piecewise affine structure. We don’t know what this would add.

– Finally, from a numerical point of view, softwares use discrete time. One aspect
that interests us particularly is to know what are actually the computing capacities
of the discrete time model compared to classical IF models and how much has
been lost.
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