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Abstract Endothelial cell adhesion and barrier function play a critical role in many
biological and pathophysiological processes. The decomposition of endothelial cell
adhesion and barrier function into cell–cell and cell–matrix components using fre-
quency dependent cellular micro-impedance measurements has, therefore, received
widespread application. Few if any studies, however, have examined the precision
of these model parameters. This study presents a parameter sensitivity analysis of
a representative cellular barrier function model using a concise geometric formu-
lation that includes instrumental data acquisition settings. Both model state depen-
dence and instrumental noise distributions are accounted for within the framework of
Riemannian manifold theory. Experimentally acquired microimpedance measurements
of attached endothelial cells define the model state domain, while experimentally mea-
sured noise statistics define the data space Riemannian metric based on the Fisher
information matrix. The results of this analysis show that the sensitivity of cell–cell
and cell–matrix impedance components are highly model state dependent and several
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well defined regions of low precision exist. The results of this study further indi-
cate that membrane resistive components can significantly reduce the precision of the
remaining parameters in these models.

Keywords Cell–cell adhesion · Cell–matrix adhesion · Cellular impedance ·
Endothelial · Information geometry · Biomedical electrodes · Biomedical transducers

Mathematics Subject Classification (2000) 62B10 · 92C37 · 53B21

1 Introduction

The application of microimpedance spectroscopy to the study of endothelial cell adhe-
sion and barrier function has provided valuable insight into a number of biological and
pathophysiological processes [6,8,11,13,17,23,24,27,28,30,31,33]. By measuring
endothelial cell electrical microimpedances over a range of frequencies, lumped bar-
rier function parameters can be determined by the non-linear optimization of cellular
models that include cell–matrix and cell–cell impedance parameters [14,15,18–21].
Although cellular micro-impedance methods have found widespread application in
endothelial cell adhesion and barrier function parameter estimation, few if any studies
have examined the precision of the parameters [12]. In addition, the precision associa-
ted with different combinations of these parameters for a given level of instrumental
noise is not often clear.

The non-linearity of the models used to estimate cellular barrier function parameters
derived from impedance measurements presents a significant obstacle to quantifying
the parameter sensitivity. The parameter sensitivity, correlation, and error can vary
from one model state to another and are dependent on instrumental noise levels that
can also vary from one data state to another. Geometrically, it is desirable to measure the
length and angles between parameter vectors based on instrumental noise levels. This
would then allow one to define the separation distance between two parameter states.

Information geometry provides a consistent framework for analyzing model para-
meter precision and stability based on parameterized sets, or manifolds, of probability
distributions [1,3]. Rao first introduced a Riemannian structure on this probability
manifold [26]. Subsequent contributions by Csiszar [10], Chentsov [9], and Nagoaka
and Amari [22] have led to a mature field that has found applications in neural net-
works [4,5], statistical physics [29], information science [2], and many other dis-
ciplines. In statistics, the Cramer–Rao inequality expresses an upper bound on the
precision of a statistical estimator based on the Fisher information. It states that the
reciprocal of the Fisher information is a lower bound on the variance of an unbiased
parameter estimator. The results of this analysis, therefore, provide an upper bound
on the available precision obtainable for a given data sampling and noise level. By
also considering the determinant components of the Fisher information matrix, this
particular study also sets an upper bound on the obtainable precision for combinations
of model parameters.

The central aim of this study is to determine the state dependent precision of different
parameter combinations for a given level of instrumental noise and model states using
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Endothelial cell monolayer impedance parameter precision 723

a representative cellular impedance model in widespread use. To adequately treat the
nonlinearity of the problem and account for instrumental noise and data sampling, this
study examines the parameter precision from a global geometric point of view. Direct
experimental measurements and model simulations provide bounds on the appropriate
domain of model states to consider. Frequency dependent noise measurements are then
used to estimate the data space Fisher information metric. The parameter precision is
then quantified using this metric directly on the data space and by using its pullback
on the model space.

2 Model, physical and experimental state spaces

2.1 Problem and model definitions

The primary objective of this study is to quantify cellular model barrier parameter
precision in a global geometric context using a representative model and instrumental
data acquisition settings. In this particular case, the model system consists of a layer
of endothelial cells grown on a microelectrode, as shown in Fig. 1. The frequency
dependent impedance is a function of the cell–cell, cell–matrix, and cell membrane
impedance components. These impedance components are used to study cellular adhe-
sion and barrier function [20,21]. Increasing cell–cell impedances, for example, are
associated with more tightly adhering cell–cell junctions.

Solutions to the specific cellular impedance can be obtained using the continuity
arguments outlined in Fig. 1. The explicit function of the distributed model parameters
for a circular geometry has been worked out in detail [14,15] and is given by

1

Zc
= 1

Zn
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Zn + Zm
+

Zm
Zn+Zm

γ rc
2

I0(γ rc)
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+ Rb
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Fig. 1 Bulk electrical parameter and micro-continuum model. a The cell covered electrode impedance can
be defined as a function of bulk electrical parameters that represent the naked electrode impedance, Zn , the
cell–cell junction impedance, Rb , the membrane impedance, Zm , and the effective subcellular impedance,
α. The term rc represents the cell radius. b The governing partial differential equation is derived from a
continuity model where I is the subcellular current, In the electrode current, Im the membrane current, Vn
the naked electrode voltage, V0 the solution voltage, and V the subcellular potential. The term r denotes
the radial coordinate
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where Zc is the cell covered impedance, Zn the naked electrode impedance, Zm the cell
membrane impedance, Rb the cell–cell junction impedance, and I0(γ rc) and I1(γ rc)

are the modified Bessel functions of the first kind of zero and first order, respectively.
The term rc represents the cell radius and

γ =
√
ρ

h

(
1

Zn
+ 1

Zm

)
, (2)

where ρ is the media resistivity and h is the cell substrate separation distance. The
product form γ rc, that appears in Eq. 1, thus becomes

γ rc = rc

√
ρ

h
·
√(

1

Zn
+ 1

Zm

)
= α

√(
1

Zn
+ 1

Zm

)
, (3)

where the additional parameter,

α = rc

√
ρ

h
, (4)

represents an effective cell–matrix impedance. The cell membrane resistance, Zm , can
be written as a series combination of the apical and basal membrane impedances, i.e.,

Zm = 2Rm

1 + j2π f RmCm
, (5)

where Rm is the membrane resistance, Cm the membrane capacitance, j = √−1, and
f is the frequency. In practice, the frequencies, f , and naked electrode impedance,
Zn are assumed known quantities. In the following, the four parameters, α, Rb, Cm ,
and Rm represent the model parameters to be analyzed using the micro-impedance
function Zc and instrumental noise and data acquisition settings.

2.2 Model, physical, and experimental space coordinates

The set of four parameters y = (α, Rb,Cm, Rm) are the cellular model space coor-
dinates of some open subset M of Euclidean space for which these quantities have
physical meaning. For this application, the model space coordinate system implicitly
defines the physical units of {α, Rb,Cm, Rm} as�0.5 cm,�cm2, µFcm−2, and�cm2,
respectively.

For any set { f1, . . . , fn} of frequencies, the real and imaginary parts of the n
corresponding frequency dependent impedances define a smooth function Zc : M →
Z ⊂ �2n via Eqs. 1–4. The cellular impedance model function, Zc, maps each model
state y into a physical space element, z ∈ Z ⊂ �2n , of all measurable impedance
values. The set of 2n coordinates z = (z1, . . . , z2n) of the physical space represent the
2n real and imaginary frequency values of the impedance. In this study, the physical
space coordinate system {za} defines the frequency dependent electrode impedance
components in units of � cm2.
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The measurement of each impedance state z ∈ Z produces a statistical distribu-
tion of measured values depending on the experimental circuit configuration and the
instrument data acquisition settings. A given circuit configuration and instrumental
data acquisition settings, therefore, define a map, φ, from Z into a statistical manifold
S = {p(x, θ)}, where x is a random variable belonging to the sample space X = �2n ,
and p(x, θ) is the probability density function of x , parameterized by θ [1,3]. For the
purpose of this study we will assume that each physical impedance value produces a
normal distribution of impedance values when it is measured. The manifold S, the-
refore, consists of all normal probability distribution functions on the sample space
X = �2n parameterized by a single coordinate chart (Θ, θ) consisting of the com-
ponents of the mean µ and the components of the upper triangle ∆ of the population
covariance matrix Σ , i.e.,

p(x; {µ,Σ}) = (2π detΣ)−n exp

{
−1

2
(x − µ)TΣ−1(x − µ)

}
, (6)

where T is the transpose, and the coordinate chart maps p(x; {µ,Σ}) to the ordered
pair [µ,∆] in �2n × �2n2+n . Associated with each set of parameters z =(
z1, z2, . . . , z2n

)
is a mean, µ(z), and population covariance matrix Σ(z) that are

assumed to vary smoothly with respect to z.
We may define a composite smooth function ψ = φ · Zc : M → S by

ψ (y) = p(x; {µ(Zc(y)),Σ(Zc(y))}) (7)

The function ψ , therefore, assigns to each set of parameters y the normal distribution
function such that the mean and covariance matrix are associated with y, both of which
may be estimated by experimental data. Assuming that the function ψ is regular (i.e.
the differential φ∗ · Zc∗ of the composite map, ψ = φ · Zc, has maximal rank of four
in this case), the image D = ψ(M) of M in S is a (possibly immersed) submanifold
of S. As such, it locally satisfies the definition of a statistical manifold [1,3]. Note
that it follows from basic differential geometry that if the function y �→ µ(Zc(y)) is
regular, then ψ will also be regular. Likewise, if µ is one-to-one, then ψ will also be
one-to-one, and D will be an embedded manifold and not immersed. The fact that the
manifold actually has a complex structure may have interesting implications. Although
this additional structure is currently being investigated, we are able to carry out the
present analysis without considering it.

2.3 Model, physical, and experimental Riemannian metrics

Since D is locally a statistical manifold, the Fisher information matrix provides a
natural Riemannian metric on the manifold D. Although the Fisher metric is gene-
rally positive semidefinite, it will be assumed to be positive definite. In general, a
Riemannian metric provides, among other things, a way to measure the lengths of
tangent vectors in D and, hence, distances within the manifold by taking infima of
lengths, measured with the Riemannian metric, of curves joining pairs of points.
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Therefore, the Riemannian metric is a kind of “infinitesimal” measure of distance
within D. From a statistical standpoint, the Fisher metric has a particularly nice inter-
pretation: the ability to accurately estimate a parameter µ is indicated by a Fisher
metric that is “large” in terms of the parameters [3].

The differential ψ∗, represented by the Jacobian matrix with respect to the coordi-
nate bases, carries the coordinate basis vectors ∂

∂α
, ∂
∂Rb

, ∂
∂Cm

, ∂
∂Rm

to tangent vectors
in the manifold D. The Fisher metric may then be used to measure the lengths of
these vectors and give a measure of the sensitivity of α, Rb, Cm , and Rm , respectively,
to noise (greater length means higher sensitivity). Moreover, the sensitivity of any
combination of r of these parameters may be measured as the r -dimensional volume
with respect to the Fisher metric of the paralellopiped spanned by the images of those
vectors. This quantity, in turn, may be computed as a certain determinant, as will be
described later.

Since we are assuming regularity of ψ , we may “pullback” the Fisher metric to
the manifold M . This changes the geometry of M from Euclidean to a more general
Riemannian geometry that may be used independent of D to measure parameter sensi-
tivity. By definition of the pullback metric, however, the value of the sensitivity will be
the same regardless of whether it is measured in D or M . Note that one may pullback
the Fisher metric even if the mapping ψ is not one-to-one; this process will remove
any self-intersections that the image ψ(M)may have as an immersed submanifold of
D (see [7,32] for specific theorems).

The Fisher metric may be defined on the 2n-dimensional submanifold φ(Z) of the
2n + 2n2 + n-dimensional space S. Hence, for 1 ≤ a, b ≤ 2n let the Fisher metric be
defined as

gab(θ) = E

[
∂

∂θa
lnp(x; θ) ∂

∂θb
lnp(x; θ)

]
, (8)

where E represents the expectation value. The space D is at most four dimensions and
inherits this metric. If the noise can be approximated as a multivariate normal distribu-
tion, then, in the absence of systematic errors µ(z) = {µ1, . . . , µ2n} = {z1, . . . , z2n}
and letΣ(z) be the covariance matrix determined by the instrumental data acquisition
settings. Hence,

gab(z) = ∂µ

∂za
Σ−1 ∂µ

∂zb
+ 1

2
tr

(
Σ−1 ∂Σ

∂za
Σ−1 ∂Σ

∂zb

)
, (9)

∂µ

∂za
=
{
∂µ1

∂za
,
∂µ2

∂za
, . . . ,

∂µ2n

∂za

}
, (10)

and

∂Σ

∂za
=

⎡
⎢⎢⎢⎢⎢⎣

∂Σ1,1

∂za
∂Σ1,2

∂za · · · ∂Σ1,2n

∂za

∂Σ2,1

∂za
∂Σ2,2

∂za · · · ∂Σ1,2n

∂za

...
...

. . .

∂Σ2n,1

∂za
∂Σ2n,2

∂za · · · ∂Σ2n,2n

∂za

⎤
⎥⎥⎥⎥⎥⎦
. (11)
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In the present study, we assume that the covariance matrix Σ varies negligibly with
respect to small changes in the data state, therefore, the Fisher metric reduces to

gab = ∂µ

∂za
Σ−1 ∂µ

∂zb
= Σ−1

ab . (12)

For the purposes of a sensitivity analysis, data space lengths are defined relative to
instrumental noise fluctuations using the Fisher information metric. Intuitively, data
space paths associated with large noise fluctuations should represent shorter effective
distances than comparable paths associated with small noise fluctuations. If the noise
distribution covariance varies negligibly over the range of impedance measurements
and the noise at different frequencies is assumed uncorrelated, then

gab =

⎡
⎢⎢⎣
Σ−1

f1
0 0

0
. . . 0

0 0 Σ−1
fn

⎤
⎥⎥⎦ , (13)

where

Σ fk =
[
σ��

fk
σ�	

fk

σ	�
fk

σ		
fk

]
(14)

represents the population variance–covariance matrix,Σ fk , at frequency fk with real–
real, real–imaginary, and imaginary–imaginary variances σ��

fk
, σ	�

fk
, σ�	

fk
, and σ		

fk
,

respectively [16].
It is worth noting that when we assume that the noise at different frequencies is

uncorrelated, we are in effect reducing the form of the Riemannian metric to that of a
Riemannian product metric—in this case, the product of n 2-dimensional manifolds
each havingΣ−1

fk
as its Riemannian metric. The geometry of such a manifold generally

may be derived from that of its factor manifolds. If the noise at different frequencies is
correlated, then such a simple block form will not be valid. If significant local variation
of Σ with respect to the parameter y is observed, then Eq. 11 must be included in
Eq. 9. The corresponding second order contravariant metric tensor is

gab = g−1
ab =

⎡
⎢⎣
Σ f1 0 0

0
. . . 0

0 0 Σ fn

⎤
⎥⎦ . (15)

The data space variance–covariance matrix is also assumed to be positive definite at
each frequency.

2.4 The push forward and pullback maps

The differentialψ∗ can be evaluated by computing the composite map differentials φ∗
and Zc∗. In this study, φ∗ has a particularly simple form, sinceµ(z) is the identity map
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and Σ(z) is constant. If Zc(y) = z = {z1, z2, . . . , z2n}, where the zi represent the
real and imaginary impedance components at each of the n frequencies with respect
to y = (α, Rb, Rm,Cm), then

Zc∗ (y) =

⎡
⎢⎢⎢⎢⎢⎣

∂z1

∂α
∂z1

∂Rb

∂z1

∂Cm

∂z1

∂Rm

∂z2

∂α
∂z2

∂Rb

∂z2

∂Cm

∂z2

∂Rm
...

...
...

...
∂z2n

∂α
∂z2n

∂Rb

∂z2n

∂Cm

∂z2n

∂Rm

⎤
⎥⎥⎥⎥⎥⎦
. (16)

The dual, or transpose, is defined as

Z∗
c (z) =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂z1

∂α
∂z2

∂α
. . . ∂z2n

∂α

∂z1

∂Rb

∂z2

∂Rb
. . . ∂z2n

∂Rb

∂z1

∂Cm

∂z2

∂Cm
. . . ∂z2n

∂Cm

∂z1

∂Rm

∂z2

∂Rm
. . . ∂z2n

∂Rm

⎤
⎥⎥⎥⎥⎥⎥⎦
. (17)

The measurement map φ : Z → S is assumed to be of the form µ = z, and Σ is
set by the instrumentation settings. This form of analysis plays an important role in
the evaluation of a model cellular impedance function and its suitability for numerical
parameter optimization.

2.5 Parameter precision analysis

We will denote coordinate basis vectors in M by ∂
∂ya . If g denotes, as above, the Fisher

metric in D, then the pullback metric is

G (y) = Z∗
c g

(
∂

∂ya
,
∂

∂yb

)
= g

(
Zc∗

∂

∂ya
, Zc∗

∂

∂yb

)
, (18)

where ∂/∂ya , allows a state dependent model space sensitivity analysis to be carried
out. The model state space dependent sensitivity for each parameter can, therefore, be
defined as the length of each coordinate basis, or parameter, vector ∂/∂ya under this
metric. An additional sensitivity analysis can also be defined for various combinations
of these parameter vectors. Two parameter vectors define an area, three a volume, and
so forth. The following determinant components, derived from the metric, define the
sensitivity associated with different combinations of parameters:

Λ1
α = √

det(Gαα) Λ1
Rb

= √det(G Rb Rb )

Λ1
Cm

= √det(GCmCm ) Λ1
Rm

= √det(G Rm Rm )
(19)
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Λ2
αRb

=
√

det

(
Gαα GαRb

G Rbα G Rb Rb

)
Λ2
αCm

=
√

det

(
Gαα GαCm

GCmα GCmCm

)

Λ2
αRm

=
√

det

(
Gαα GαRm

G Rmα G Rm Rm

)
Λ2

Rb Rb
=
√

det

(
G Rb Rb G RbCm

GCm Rb GCmCm

)

Λ2
Rb Rm

=
√

det

(
G Rb Rb G Rb Rm

G Rm Rb G Rm Rm

)
Λ2

CmCm
=
√

det

(
GCmCm GCm Rm

G RmCm G Rm Rm

)
(20)

Λ3
αRbCm

=

√√√√√det

⎛
⎝

Gαα GαRb GαCm

G Rbα G Rb Rb G RbCm

GCmα GCm Rb GCmCm

⎞
⎠

Λ3
αRb Rm

=

√√√√√det

⎛
⎝

Gαα GαRb GαRm

G Rbα G Rb Rb G Rb Rm

G Rmα G Rm Rb GCm Rm

⎞
⎠

Λ3
αCm Rm

=

√√√√√det

⎛
⎝

Gαα GαCm GαRm

GCmα GCmCm GCm Rm

G Rmα G RmCm G Rm Rm

⎞
⎠

Λ3
RbCm Rm

=

√√√√√det

⎛
⎝

G Rb Rb G RbCm G Rb Rm

GCm Rb GCmCm GCm Rm

G Rm Rb G RmCm G Rm Rm

⎞
⎠ (21)

Λ4
αRbCm Rm

=

√√√√√√√det

⎛
⎜⎜⎝

Gαα GαRb GαCm GαRm

G Rbα G Rb Rb G RbCm G Rb Rm

GCmα GCm Rb GCmCm GCm Rm

G Rmα G Rm Rb G RmCm G Rm Rm

⎞
⎟⎟⎠ (22)

The determinant components produced by the metric Z∗
c g provide a basis for a

model space sensitivity given each possible combination of parameters. Sections of
these determinant components were examined over the set of model states
(0.001 �0.5 cm < α < 10 �0.5 cm) × (0.001 � cm2 < Rb < 10 � cm2) ×
(0.01 µF cm−2 < Cm < 100 µF cm−2)× (1� cm2 < Rm < 10 k� cm2).

We conclude this section with some comments about our two most basic assump-
tions: the regularity of the map ψ and the positive semidefinite assumption of the
Fisher information metric. If the mappingψ is not regular, then, although one can for-
mally discuss the pullback, it will not be positive definite and, hence, not a Riemannian
metric. One could still compute Eqs. 19–22 using Eq. 18. However, ifψ is not regular,

then the vectors Zc∗
(
∂
∂ya

)
are linearly dependent and Λ4 = 0. Model states where

ψ is not regular indicate that the mapping ψ will introduce parameter identifiability
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problems or an inability to separately resolve the parameter set. On the other hand,
if the Fisher metric is not positive definite, then we would also have Λ4 = 0. This
follows from basic linear algebra and the fact that the Fisher metric is always posi-
tive semi-definite. In this case, the data sample probability distribution will introduce
parameter identifiability problems. A reasonable approach then is to collect data to
computeΛ4; as long asΛ4 is non-zero then these two basic assumptions are satisfied
at least for nearby data points. If Λ4 is non-zero for a fairly large data set, then it is
reasonable to assume that ψ is regular and the Fisher metric is positive definite at all
points. If Λ4 is singular, specific parameter subsets can be tested by examining the
determinant components given by Eqs. 19–21. The regularity of ψ and the parameter
precision will also depend on the choice of sampled frequencies. For example, using
a single frequency will always result in non-regularity for basic reasons of dimen-
sionality. If non-regularity is observed experimentally, collecting data at different or
additional frequencies may resolve the problem.

3 Methods and materials

3.1 Cell culture

Porcine endothelial cells were isolated from fresh pulmonary arteries obtained from
a local abattoir. Endothelial cells between passages four and eight were used for this
study. Cultures were identified as endothelial cells by their characteristic uniform
morphology, uptake of acetylated LDL, and by indirect immunofluorescent staining
for Factor VIII. Five well gold electrodes, purchased from Applied Biophysics (Troy
NY), were coated with fibronectin (BD Biosciences) using a 100 µg mL−1 solution.
Endothelial cells, grown to confluence in a 100 mm culture dish, were trypsinized
using 0.05% trypsin (GibcoBRL). The cells were then spun down, the trypsin drawn
off, and then re-suspended in 10 mL M199. From this cell solution, 400 µL were added
to the electrode wells maintaining a seeding density of approximately 105 cells cm−2.
Endothelial cells were permitted to attach for 16 h in an incubator. The entire surface
of each well was carefully examined for endothelial cell confluence and cobblestone
morphology.

3.2 Experimental estimation of data sub-space and metric

Figure 2 shows a schematic illustration of the impedance measuring system. A lock-
in amplifier (Stanford Research SR830) provided 1V AC reference signals between
10 Hz and 100 kHz to an electrode via a 1 M� resistor. The sampling frequency was
set to 32 Hz, and a total of 512 samples were made over a 16-second time period. The
filter time constant was set to 30 ms, and the filter roll off was set to 12 dB/decade.
Synchronization filtering ensured that harmonic noise below 200 Hz did not corrupt
the voltage measurements. The measured voltages were converted to corresponding
impedance values based on the circuit model shown in Fig. 2.
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AC
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cable

electrode
and
cells

lock-in amp
cable

lock-in
amplifier
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Rcc

Cps Cpv Rv CvZ

Fig. 2 Cellular impedance measuring circuit configuration. The ac generator provides a 1V signal via a
1 M� resistor, Rcc. The source resistance, Rs, was 50�, and the phase sensitive detector had an input
impedance equivalent to a parallel resistor and capacitor, Rv and Cv, combination equal to 10 M� and
25 pF, respectively. The measured values of the coaxial lead parasitic elements Cps and Cpv were approxi-
mately 86 pF each. The detected voltage was converted into an equivalent impedance based on this circuit
configuration

Unbiased estimates of the impedance averages were obtained from the N data
samples at each frequency using the relation

x fk = 1

N

N∑
i=1

x fk
i . (23)

Unbiased estimates of the data variance–covariance matrix at each frequency,

S fk =
[

s��
fk

s�	
fk

s	�
fk

s		
fk

]
, (24)

were obtained from data measurements using the relations

s��
fk

=
N∑

i=1

(
x� fk

i − x� fk

) (
x� fk

i − x� fk

)

(N − 1)
,

s�	
fk

=
N∑

i=1

(
x� fk

i − x� fk

) (
x	 fk

i − x	 fk

)

(N − 1)
,

s	�
fk

=
N∑

i=1

(
x	 fk
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The standard deviations of the real and imaginary impedance components follow
from

s�
fk

=
√

s��
fk

and s	
fk

=
√

s		
fk
, (26)

respectively. The real and imaginary impedance correlation coefficient can be calcu-
lated using the relation

r�	
fk

= r	�
fk

= s�	
fk√

s��
fk

√
s		

fk

. (27)

The unbiased variance–covariance matrix, S fk , at each frequency sample point, fk ,
provides an unbiased estimate of the population variance–covariance matrix Σ fk .

4 Results

Model states consistent with experimental estimates of the average frequency
dependent impedances define the appropriate domain of model states, and noise fluc-
tuation measurements provide an estimate of the Fisher metric. Once the model state
domain and Fisher metric are defined, the sensitivity of the function mapping each of
these states into the data space can be evaluated. The square root of the data space
metric determinant components pulled back to the model space quantify the model
state dependent sensitivity and stability of the different parameter combinations.

4.1 Experimental estimates of the data space submanifold and tangent bundle metric

Figure 3 summarizes the statistics of a series of experimentally acquired frequency
dependent naked and cell covered electrode impedance measurements. At each fre-
quency, the mean and variance of 512 data points sampled at a rate of 32 Hz over a 16
second time interval produced a similar pattern among five different samples. As the top
two figures indicate, the real and imaginary impedance fluctuations exhibit an overall
decrease with increasing frequency. The average of the real and imaginary components
also decrease with increasing frequency. The optimized fit to the mean cell covered
electrode data gives the parameter values α = 4.895 ± 0.003�0.5 cm, Rb = 3.866 ±
0.004 � cm2,Cm = 1.4534 ± 0.0005 µF cm−2, and Rm = 3.447 ± 0.005 k� cm2.
The correlation coefficients are α − Rb = −0.9902, α − Cm = −0.9067, α − Rm =
−0.9249, Rb − Cm = 0.9389, Rb − Rm = 0.9487, and Cm − Rm = 0.9164. Error
and correlation coefficients are based on the χ2 curvature at the optimized minimum
point [25].

4.2 Data space parameter sensitivity analysis

Figure 4 illustrates the results of a sensitivity analysis using the data space metric
to evaluate the length of the vector components, Zc∗(y)∂/∂ya , at the point (α =
4.895 �0.5 cm, Rb = 3.866 � cm2,Cm = 1.4534 µF cm−2, Rm = 3.447 k� cm2).
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Fig. 3 Representative frequency dependent statistical summary of experimentally acquired naked electrode
impedances and cell covered electrode impedances following sixteen hours of attachment: a resistance
variance, b reactance variance, c mean resistance, and d mean reactance. Naked electrode variance estimates
define the metric. The optimized fit to the mean cell covered electrode data gives the parameter values:
α = 4.895 ± 0.003 �0.5 cm, Rb = 3.866 ± 0.004 � cm2,Cm = 1.4534 ± 0.0005 µF cm−2, and Rm =
3.447±0.005k�cm2. The correlation coefficients are α− Rb = −0.9902, α−Cm = −0.9067, α− Rm =
−0.9249, Rb − Cm = 0.9389, Rb − Rm = 0.9487, and Cm − Rm = 0.9164. Error and correlation
coefficients are based on the χ2 curvature at the optimized minimum point

The metric in this case was evaluated using Eq. 13 and the unbiased estimators given
by Eq. 25. Each set of real and imaginary points represents the length of the data
space vector components Zc∗(y)∂/∂ya under the metric gab(z = Zc(y)), where each
component a or b represents a frequency and real or imaginary part. At this point,
changes in Rm , i.e., ∂/∂Rm , show the least sensitivity, which is consistent with the
very large errors associated with this parameter. Only over the narrow range of Rm

values between 10 and 1 k� is there any appreciable sensitivity in the parameter Rm .
Between parameter values of 10 and 100 � cm, the sensitivity reaches a maximum.
Outside of this range, the impedance sensitivity to Rm is negligible. The parameter
Cm shows the greatest sensitivity at higher frequencies.

4.3 Model to data space cellular impedance mapping Zc

Figure 5 shows the normalized changes in resistance and reactance as a function of
time during an endothelial cell attachment based on experimental measurements. With
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Fig. 4 Data space sensitivity analysis at the model space point y = {α = 4.895 �0.5 cm, Rb =
3.866 � cm2,Cm = 1.4534 µF cm−2, Rm = 3.447 k� cm2}, corresponding to the estimated parame-
ters found analyzing the data shown in Fig. 3. Each point represents the length of the vector Zc∗(y)∂/∂ya

component in the physical space coordinate basis ∂/∂za under the metric gab(x), where z = Zc(y). a The
n real components to the sensitivity analysis are most sensitive between 1 and 100 kHz. b The n imagi-
nary components to the sensitivity analysis indicate that the parameter Cm becomes increasingly sensitive
at higher frequencies. Both the real and imaginary parts indicate that the Zc∗(y)∂/∂Rm components are
relatively insensitive to changes in the parameter ∂/∂Rm for the noise distribution that gab represents
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Fig. 5 Time dependent normalized impedance changes. a Cell covered electrode resistance normalized to
the naked electrode resistance, (Rc − Rn)/Rn , as a function of frequency and time following inoculation.
b Cell covered reactance normalized to the naked electrode reactance, (Xc − Xn)/Xn , as a function of
frequency and time following inoculation. As endothelial cells form a monolayer on the electrode surface,
the normalized resistance and reactance increase during the attachment process

increasing time, the normalized resistance and reactance increase. Figure 6 shows a
model simulation with the parameters α = 4.895�0.5 cm, Rb = 3.866� cm2,Cm =
1.4534µFcm−2, and Rm = 3.445k�cm2. For clarity and comparison with previously
published work, the mappings are expressed as normalized curves [14]. The results of
these simulations allow us to set the reasonable parameter domain (0.001�0.5 cm <

α < 10 �0.5 cm) × (0.001 � cm2 < Rb < 10 � cm2) × (0.01 µF cm−2 < Cm <

100 µF cm−2)× (1� cm2 < Rm < 10 k� cm2). The shapes of these plots are very
similar. From this data it is also apparent that much larger changes in Rm are required
to produce similar changes in α and Rb.
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Fig. 6 Simulated normalized resistances as a function of frequency and changes in a α, b Rb , c Cm , and
d Rm . The normalized resistance is defined as (Rc − Rn)/Rn , where Rc is the cell covered resistance and
Rn is the naked electrode resistance. For each set of simulations, three of the set of four parameters were
fixed, and the remaining parameter was varied as indicated in the legend. The fixed simulation parameters
were α = 4.895 �0.5 cm, Rb = 3.866 � cm2,Cm = 1.4534 µF cm−2, and Rm = 3.447 k� cm2. This
range of parameters produce impedances in qualitative agreement with the experimentally measured cell
covered electrode values. Increasing Rm above 20 � cm2 produces only a small increase in the normalized
resistance

4.4 Model space parameter precision analysis

Figure 7 shows the model state dependent parameter sensitivity, considering each
parameter separately. The length of each contravariant parameter vector was evaluated
using the pullback of the data space metric. The parameters Cm and Rm were fixed to
1.4534 µF cm−2 and 3.447 k� cm2, respectively. The parameter α becomes relatively
insensitive as Rb approaches zero. The sensitivity of the parameter Rb monotonically
decreases with increasing α and Rb model states. Model states with decreasing values
of both α and Rb are also associated with decreasing sensitivities of both Cm and Rm .
Note also that the parameter Rm is relatively insensitive over the range of model states
illustrated here. Repeating this analysis with increasing values of Cm systematically
decreased the sensitivity of the remaining three parameters. Similarly, model states
with decreasing values of Rm were associated with both decreasing sensitivities of the
remaining three parameters and increasing sensitivity of Rm itself.

Figure 8 summarizes the stability of the parameter pairs using the area defined by
the parameter basis vectors. The square root of the 2 × 2 data space metric pullback
determinant components quantify these areas in terms of the instrumental noise levels.
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Fig. 7 Model state dependent contravariant parameter vector lengths, ∂/∂ya , evaluated using the data
space metric pullback Z∗

c gab(Zc(y)). None of the parameter vector lengths go to zero at any point over
the model state domain. The parameters Cm and Rm were fixed to 1.4534 µF cm−2 and 3.447 k� cm2,
respectively. a The length of the vector ∂/∂α approaches unity over model states associated with small
values of Rb . b The vector ∂/∂Rb is stable over the entire model domain considered here. c The length of
the membrane capacitive component ∂/∂Cm approaches unity only over a very small neighborhood near
the point where α → 0 and Rb → 0. d The length of ∂/∂Rm is less than unity over the entire model
state domain and is therefore unstable. Model states associated decreasing values of Rm , however, produce
increasing sensitivity, or length, of ∂/∂Rm

The parameters Cm and Rm were fixed to 1.4534 µF cm−2 and 3.447 k� cm2 and the
model states on the α− Rb plane shown. In all cases, model states with small values of
α and Rb are relatively insensitive when the two parameters are considered together.
Repeating these calculations with either increasing Cm or Rm model states produces a
systematic decrease in the section values. Parameter pairs that include Rm have clearly
defined regions of instability, where the area becomes less than unity.

Figure 9 shows the volume spanned by combinations of three contravariant para-
meter vectors under the data space metric. The square root of the 3 × 3 determinant
components derived from the data space metric pullback quantifies the volume in terms
of the instrumental noise levels. In all cases, small values of Rb produce relatively less
stable values. Model states associated with small values of α and Rb and large values
of Cm and Rm produce insensitive values for all sets of three parameters.

Figure 10 shows the hyper volume spanned by all four parameters when evaluated
using the data space metric pullback. The square root of the 4 × 4 data space metric
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Fig. 8 Model state dependent areas defined by pairs of contravariant parameter vectors, ∂/∂X A , evaluated
using the data space metric pullback Z∗

c gab(Zc(y)). Areas defined by pairs of contravariant parameter
vectors follow from the 2 × 2 data metric determinant components: aΛ2

αRb
, bΛ2

αCm
, cΛ2

αRm
, dΛ2

RbCm
,

e Λ2
Rb Rm

, and f Λ2
Cm Rm

. Transition regions where the areas become equal to unity are indicated by lines.

The parameters Cm and Rm were fixed to 1.4534 µF cm−2 and 3.447 k� cm2, respectively

determinant shows a pattern of decreasing stability with decreasing values of α and
Rb. The model state values of Cm and Rm are again fixed to 1.4534 µF cm−2 and
3.447 k� cm2, respectively. The parameter sensitivity progressively worsens as the
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Fig. 9 Model state dependent volumes defined by triples of contravariant parameter vectors, ∂/∂ya , eva-
luated using the data space metric pullback Z∗

c gab(Zc(y)). Volumes are defined by the 3 × 3 determinant
components: a Λ3

αRbCm
, b Λ3

αRb Rm
, c Λ3

αCm Rm
, and d Λ3

RbCm Rm
. The parameters Cm and Rm were

fixed to 1.4534 µF cm−2 and 3.447 k� cm2, respectively

value of Rm decreases. A similar degradation in the parameter sensitivity occurs with
increasing values of the Cm model states.

5 Discussion

The estimation of cellular barrier function parameters using frequency dependent
impedance measurements and the non-linear optimization of cellular models has a
number of potential applications in biology and bioengineering [12,14]. The non-linear
nature of these models and the ubiquitous presence of instrumental noise, however,
complicate a precision or sensitivity analysis of these parameters. Noise levels can
vary from one physical impedance state to another, and the sensitivity of the model
parameters can vary from one model state to another depending on the nature of the
model function. Furthermore, the choice of which parameters to fix and which to
optimize can dramatically change the stability of the analysis. Geometric constructs
provide a natural foundation for quantifying parameter precision with respect to a
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Fig. 10 The hyper volume defined by all four contravariant parameter vectors. The hyper volume follows
from the 4 × 4 determinant component Λ4

αRbCm Rm
. Model states with small values of α and Rb are

associated with relatively smaller sensitivities in the four parameters. The parameters Cm and Rm were
fixed to 1.4534 µF cm−2 and 3.447 k� cm2, respectively

particular model function, instrumental noise levels, and data acquisition settings.
The Fisher information metric gives a measure of distance in terms of instrumental
noise levels. By pulling this metric back to an abstract model space using a model
function, it is possible to set limits on the obtainable parameter precision. Furthermore,
the determinant components produced by this metric provide a natural framework for
a precision analysis given various parameter combinations.

The parameters under consideration and the degrees of freedom associated with
data acquisition define local coordinate systems on the model and data spaces, res-
pectively. In this study, the model space parameters represent the impedance path
components through a cellular monolayer. The cellular impedance model function
maps these parameters into a subset of a physical and data space of all possible
experimental outcomes. Constraints based on the range of expected experimental
results set bounds on the model space domain. The physical and data space coor-
dinate system in this case is defined in terms of the n frequency dependent real and
imaginary impedance values of a 2n-dimensional space. The sampled frequencies on
the physical and data space play an important role in the attainable model spatial
resolution.

This study identifies a data space Riemannian metric [7], gab(z), with the Fisher
information matrix. An estimate of this metric can be obtained using direct experi-
mental measurements of the impedance statistics at each frequency [16]. Since the
noise variance–covariance matrix is actually the contravariant version of the cova-
riant metric tensor, it must be non-singular to define the components of its inverse
or associated covariant bilinear form gab(z). In general, the pullback of contravariant
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components and the push-forward of both covariant and contravariant components
require regularity of the model to data space mapping.

In general, the data space metric, gab(z), will be a function of the data space
state defined by the real and imaginary impedance components over the n measured
frequencies. This can arise, for example, when capacitively coupled deterministic
noise, such as sixty Hertz noise, produces increasing noise levels with increasing load
impedance values. Adequate filtering, however, can be used to significantly reduce
this effect [12]. As a result, this study assumes that the cell covered electrode instru-
mental noise is similar to that of the naked electrode and is relatively constant over the
range of cell covered impedances. Using an electrode model with calibration resis-
tors and capacitors, the state dependent nature of the data space electrode noise can
be included where necessary. This consideration becomes important when distingui-
shing fluctuations produced by instrumental noise and from those produced by cellular
fluctuations [15].

It is also important to realize that the metric in this study is approximated using
Gaussian statistics. A Gaussian approximation to the instrumental noise breaks down
when filtering and non-Gaussian noise sources, such as sixty-Hertz, discretization,
and harmonic noise sources are present [12]. The extension of this form of analysis to
account for non-Gaussian instrumental noise may be necessary in these cases.

Ignoring the noise correlation at different frequencies requires careful justification.
Since the voltage data at each frequency are not sampled simultaneously, they can
be treated as independent sets of events as far as random noise is concerned. That
is, assuming the low pass filter time constant is much shorter than the time interval
between successive frequency measurements. The effects of deterministic noise, such
as a sixty Hertz or synchronous noise, can also be ignored provided low pass filtering
and time averaging are used to reduce these components to negligible values. The
noise components and their reduction using filtering have been treated extensively in
another study [12].

The nature of the function mapping the model space into the data space determines
much of the success in optimization a given set of parameters. If the function fails
to be regular over the specified model space domain, parameter identifiability pro-
blems will arise regardless of how little instrumental noise is present. Taking different
combinations or fewer free parameters is a possible solution to this problem. Even
if the mapping is regular, there is no guarantee that the map will be one to one over
the specified model domain. When this happens, more than one set of parameters can
represent the same data point.

Applying the data space metric to evaluate the length of the impedance components
in the data space for a given model state quantifies which data components are most
sensitive for a given level of instrumental noise. When the data space metric is applied
to the submanifold tangent bundle defined by the model space map, the individual
components illustrate which components are most sensitive to data changes. This can
provide a guide for optimizing the data sampling and showing where the model is
most sensitive to systematic errors.

Defining the model space metric tensor as the pullback of data space metric pro-
vides valuable insight into the numerical stability of the problem as a function of the
model state even before any form of numerical optimization is attempted. Analyzing
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the unit vectors over the model space tangent bundle using the pullback of the data
space metric shows more compactly the state dependence of the parameters. The pull-
back of a data space metric, Z∗

c gab(z = Zc(y)), gives a quantitative measure of the
model space resolution. The model space metric defines the separation between model
space coordinate points that can be successfully resolved using numerical optimiza-
tion methods. Minimal distances defined using this metric quantify the model space
resolution.

The corresponding point spread function, defined in terms of the contravariant
associated tensor G AB(X), can also be used to define model space resolution. For a
given pair of points on the model space, overlapping point spread functions, defined in
terms of either G AB(X) or χ2(y), are indicative of numerically un-resolvable model
states. The point-spread functions are state dependent, have eigenvectors rotated with
respect to the original coordinates, and eigenvalues that indicate very different degrees
of resolution in the two orthogonal directions. This is essentially a globalized version
of principle component, or factor, analysis.

The ability to resolve separate parameters based on a series of experimental measu-
rements is referred to as identifiability. In non-linear optimization problems, shifts in
the value of one parameter can be compensated by shifts in one or more other parame-
ters. In extreme cases, it is not possible to separately resolve two or more parameters.
Parameter identifiability is illustrated in both the data space and model space. This
study illustrates identifiability in three ways. Using the forward model mapping, it is
apparent that the similarity in the image sets of the impedance function is a signifi-
cant indication of identifiability problems. The similarity in the shape of the tangent
curves further quantifies this. On the model space, the geometry between the vectors
∂/∂α, ∂/∂Rb, ∂/∂Cm , and ∂/∂Rm illustrates state dependent identifiability. Sections
of the determinant components illustrate which combinations of these vectors will
produce identifiability and stability problems.

6 Conclusion

Within the numerical tolerance of this study, no singularities in any of the parameter
combinations where observed over the model state domain (0.001 �0.5 cm < α <

10 �0.5 cm) × (0.001 � cm2 < Rb < 10 � cm2) × (0.01 µF cm−2 < Cm <

100 µF cm−2) × (1 � cm2 < Rm < 10 k� cm2). The subcellular and intercellular
impedance paths, represented by parameters, exhibit a maximum sensitivity between 1
and 100 kHz for the filter settings used in this study. The model parameter Cm showed
the greatest sensitivity. The parameter Rm is relativity insensitive for values exceeding
20� cm2.
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