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Abstract We analyze a generic reaction-diffusion model that contains the
important features of Turing systems and that has been extensively used in
the past to model biological interesting patterns. This model presents various
fixed points. Analysis of this model has been made in the past only in the case
when there is only a single fixed point, and a phase diagram of all the possible
instabilities shows that there is a place where a Turing-Hopf bifurcation occurs
producing oscillating Turing patterns. In here we focus on the interesting situ-
ation of having several fixed points, particularly when one unstable point is in
between two equally stable points. We show that the solutions of this bistable
system are traveling front waves, or solitons. The predictions and results are
tested by performing extensive numerical calculations in one and two dimen-
sions. The dynamics of these solitons is governed by a well defined spatial scale,
and collisions and interactions between solitons depend on this scale. In cer-
tain regions of parameter space the wave fronts can be stationary, forming a
pattern resembling spatial chaos. The patterns in two dimensions are partic-
ularly interesting because they can present a coherent dynamics with pseudo
spiral rotations that simulate the myocardial beat quite closely. We show that
our simple model can produce complicated spatial patterns with many different
properties, and could be used in applications in many different fields.
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1 Introduction

There has been a renewed interest in studying systems that present a diffusion
driven instability. This mechanism provides an understandable and easy way
of producing non-oscillating robust spatial patterns that can be seen in many
complex systems, particularly in biology, embryology, and of course, chemistry
[6]. The original idea that Alan Turing [16] envisaged as to explain many facts
in morphogenesis by this kind of process has been far off being proven, due
mainly to two facts, first, the difficulty to find and recognize the morphogens
in real systems, and second, the simplicity of the patterns that are generally
obtained with these systems. It is found that the Turing instability produces
simple striped patterns, or an hexagonal array of spots, or a combination of
the two. The former being enhanced by a cubic non-linearity, and the spots by
quadratic terms [3].

There have been efforts to construct complicated patterns with Turing
systems, either by using special boundary conditions [1], curved and growing
domains [14], or by coupling two Turing systems linearly [17] or non-linearly
[1]. All of these show that the non-linear dynamics and the pattern selection
processes in Turing systems are more complicated than expected and that at
present there is much to be learned from them. It is the purpose of this paper to
show that reaction-diffusion systems present an unsuspected richness of behav-
iors. We choose a generic reaction diffusion model put forward by us [3] and
used extensively in the past to model various patterns found in biological sys-
tems, such as the coloring of marine fish [1], or the symmetry and form of sea
urchin shells [2], and others [10]. The kinetics are constructed by assuming that
there is a fixed point at the origin, and by expanding all the possible non-linear
terms around it up to third order. Namely,

∂u
∂t

= δD∇2u + αu(1 − r1v2) + v(1 − r2u)

∂v
∂t

= δ∇2v + v(β + αr1uv) + u(γ + r2v),
(1)

where, δ is a scaling factor, D is the ratio of diffusion coefficients of chemicals u
and v. The parameters governing the kinetics are r1, r2, α, β and γ . The first two
represent the strength of the cubic and quadratic non-linearities, respectively.

In all former applications this model has been used as a true Turing system
meeting all the conditions for a Turing instability. Furthermore, it has been
assumed that γ = −α, which ensures that there is only one fixed point at
the origin (u, v) = (0, 0). A detailed analysis of the instability in this case has
been made before [9] showing that beyond the region where a Turing instabil-
ity appears, there is the possibility of having a “Turing-Hopf” bifurcation that
produces spatial patterns oscillating in time.
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Then, the question arises naturally of having more complicated behavior
when one has more fixed points. When γ �= − α, two additional fixed points
appear. Then, if these points are stable, one could have a situation analogous to
a thermodynamic system driven to a spinodal decomposition situation, in which
two phases coexist and evolve in time. This bistability situation is interesting,
since there is the possibility of having wave front profiles between the regions
where the two different stable phases meet. It is our purpose to investigate
peculiar situations like this.

The paper is organized as follows: in the first section the model is presented
and linear analysis around the fixed points when γ �= −α is performed in zero
dimensions (absence of diffusion). We then study a surface of the phase dia-
gram, keeping only cubic terms, to situate the two fixed points symmetrically
around zero. We concentrate on a particularly interesting region of this surface,
where linear analysis in one dimension predicts equal stability of the two fixed
points. We predict solutions on the form of traveling waves and study their
properties analytically and numerically. Finally, we perform numerical calcula-
tions in two dimensions and show some interesting patterns. In the last section
the results are discussed and the implications to applications are pointed out,
together with a summary of the most important conclusions of this work.

2 The model

It is convenient to cast Eq. 1 in a convenient form,

∂u
∂t

= D∇2u + η(u + av − Cuv − uv2)

∂v
∂t

= ∇2v + η(bv + hu + Cuv + uv2)

(2)

where a = 1/α, b = β/α, h = γ /α, C = r2/(α
√

r1) and η = L2α/δ. In this
equation we have redefined the variables substituting x → Lx, t → L2/δT,
u → u/

√
r1 and v → v/

√
r1. This model has only one stationary state at

u = v = 0 when h = −1. One can perform a linear stability analysis around this
point in the usual way. A complete analysis of this situation, including a non-
linear analysis of the amplitude equations, has been published elsewhere [9].

The model of Eq. 2 has two other fixed points when h �= −1, located at

v0 = −C ± √
C2 − 4(h − b/g)

2
(3)

and,
u0 = −gv0 (4)

where g = (a + b)/(1 + h).
In the absence of quadratic terms (C = 0), one has an interesting situation,

with three singular points situated symmetrically around zero. Besides the point
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Fig. 1 Phase diagram of Eq. 2
in the absence of diffusion,
when C = 0, h = −2.5. The
character of the eigenvalues
change in the different regions
labeled by numbers. See text
for explanation. The lines
were calculated by the
conditions extracted from the
dispersion relation Eq. 5
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(u, v) = (0, 0), one has two symmetrical points at v0 = ±√
b/g − h = ±√

f , and
u0 = −gv0. This situation implies that one has the possibility of two equally sta-
ble phases, competing with each other. It is interesting to note that our model
is not Hamiltonian, and even in the absence of quadratic terms, the model
cannot be reduced to a form similar to the complex Landau-Ginzburg model,
which has been extensively studied and applied in the past [15]. From now on
we shall concentrate our attention to the case C = 0 and analyze the possible
instabilities of the model by linearizing around the symmetric fixed points. In
the absence of diffusion (zero dimensions), one gets the dispersion relation

ω2 − ωX + Y = 0. (5)

where X = η[1−f +g(h−f )] = Tr(j), and Y = η2g[(h−f )(1−f )−(h+f )(1+f )]
= Det(j), where j is the Jacobian matrix of the linearized kinetics.

If one fixes the value of h, one can examine the behavior of the eigenvalues
ω1,2 = σ1,2 + iτ of the linearized equations in the plane (g, f ). If Y = 0 one of the
roots is ω = 0 and the other is real (observe that since h �= −1, ⇒ g = 0). The
condition X = 0 separates the region where σ changes sign. The discriminant
condition X2 − 4Y = 0 separates the regions of real and complex roots. These
three conditions divide the (g, f ) space in five regions.

In Fig. 1 we show these regions for h = −2.5:

In region 1, σ1 < 0, σ2 > 0 and τ = 0, (saddle points).
In region 2, σ1,2 < 0 and τ �= 0, (oscillating stable points).
In region 3, σ1,2 < 0, and τ = 0, (stable points).
In region 4, σ1,2 > 0 and τ = 0, (both points are unstable).
In region 5, σ1,2 > 0 and τ �= 0, (oscillating unstable points).

We can analyze these results in more detail. In region 1 there are saddle
points, therefore the trajectories that start in the vicinity of the fixed points first
approach them, and then go away. As a result of the cubic reaction terms, there
is a stable limit cycle that encompasses the two fixed points. The existence of
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Fig. 2 a Phase portrait in region 2 but very near the border with region 5. Using h = −2.5, g = 0.165
the value at the border is fc = (1 + hg)/(g + 1) = 0.5043. This figure was taken with f = fc + 0.07.
b same as a but f = fc + 0.12. c same as b with f = fc + 0.14. We found numerically that at this point
the limit cycle appears for the last time, when one increases the value of f to fc + 0.15 as in d, the
limit cycle disappears

this limit cycle was corroborated by numerical calculations. In region 5 the fixed
points are unstable, therefore the trajectories that start in their vicinity go away
in an oscillating manner. There is a limit cycle also in this region. In region 2
the roots are both stable, but with an oscillatory contribution. Regions 4 and
3 are not relevant to our purposes, because the trajectories either diverge or
converge to the fixed points. In region 3 there is the possibility of an instability
driven by diffusion, producing stationary spatial Turing patterns.

In what follows we shall concentrate on region 2 in the vicinity of region 5.
This region is suitable for our purposes, because one expects oscillating patterns
that are equally stable around any of the two fixed points. In principle in this
region there should not be a limit cycle. However, numerical calculations show
that the limit cycle of region 5 persists in region 2 near the border between the
two regions.

In order to investigate the behaviour of the system around the fixed points, we
performed numerical calculations to obtain the phase portraits, using a simple
Euler method.

In Fig. 2 we present a series of phase portraits starting very near the criti-
cal value of fc = (1 + hg)/(g + 1) that separates regions 2 and 5, maintaining
g = 0.165 constant, and steadily going into region 2 far from the border. In
Fig. 2a one observes two additional unstable limit cycles. These limit cycles sep-
arate a basin of attraction around the fixed points, and the basin of attraction for



802 C. Varea et al.

the outer stable limit cycle in the figure, the gray trajectories end up at the fixed
points, and the black ones join the stable limit cycle. Notice that the basin of
attraction of the outer limit cycle contains the fixed point at the origin. In Fig. 2b
we see that the basin of attraction of the fixed points increases and contains the
origin. If one starts at the origin one ends up at one of the fixed points, as shown
in the figure by the dashed trajectory. Far from the origin, one approaches the
limit cycle. More into region 2 we observe that the stable limit cycle eventually
disappears. In Fig. 2c we show the last limit cycle found numerically. Fig. 2d
shows the simple picture expected for region 2.

It would be interesting to investigate in more detail the truly bistable situation
when there are only two equally stable fixed points. In a model with a potential,
one would simply expect a spinodal decomposition leading to Oswald ripening
in the late stages of phase separation, with a characteristic length growing as a
power law in time [4]. Our model does not admit a potential function for the
kinetics, and the problem is fundamentally different. As we shall see, the phases
are separated by a well defined scale, and the problem admits traveling wave
front solutions, a feature that seems to be universal in many bistable non-linear
systems.

2.1 Dynamics in one dimension

Let us examine the behavior of the model in one dimension. If we use appro-
priate parameters to be in region 2, we have the situation depicted in Fig. 2d,
in which there are two symmetrical equally stable points and the point (0,0) is
unstable. If we perform linear analysis around this central point, we can choose
the parameters f , g, h, and η in order to produce a hyperbolic central fixed
point. Then, in region 2 the other two fixed points are stable.

We can predict the existence of traveling wave fronts, an almost universally
recognized feature of bistable reaction-diffusion systems [12]. We expect het-
eroclinic trajectories in phase space connecting the two stable fixed points with
the central hyperbolic point. In order to illustrate the properties of traveling
wave front solutions, we perform a linear analysis around the point (u0, v0),
assuming that u(x, t) = u(x − ct) = u(γ ), and the same for v(x, t). We start with
Eq. 2 with C = 0, and substitute the solutions. We end up with two second order
ordinary differential equations (ODE). These could be written as a set of four
first order ODE by defining two fields, θ and φ. That is

du
dγ

= θ ,

dθ

dγ
= − c

Dθ − F,

dv
dγ

= φ,

dφ

dγ
= −cφ − G

(6)
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where F = η
D (u + av − uv2) and G = η(bv + hu + uv2). We define the Jacobian

J =
(

∂F/∂u ∂F/∂v
∂G/∂u ∂G/∂v

)
=

(
α11 α12
α21 α22

)
. (7)

The characteristic polynomial is

λ4 + TrJλ2 + DetJ + cλ
[(

1 + 1
D

)
λ2 + c

D
λ + α22

D
+ α11

]
= 0 (8)

The roots of Eq. 8 when D = 1 can be connected with our eigenvalue ω for
zero dimensions, indeed

λ2 + cλ + ω = 0. (9)

Observe that λ−1 is a distance that gives the decaying length of a fluctuation
around the fixed point. Eq. 9 will be useful later on, when interpreting the
numerical results.

The solution for c = 0 is

λ2± = 1
2

(
−TrJ ±

√
(TrJ)2 − 4DetJ

)
, (10)

and gives the heteroclinic trajectory connecting the two stable points, passing
through the central unstable point. In this case the roots of Eq. 8 are of the form
λ = ±σ1 ± iτ1, that is, a single value of the real and imaginary parts appears.
These solutions, which predict symmetric profiles of u(x, t) and v(x, t) should be
unstable under small perturbations; the truly stable solutions predict asymmet-
ric profiles traveling with velocity c. This can be easily understood by assuming
that u(x, t) = u(x − ct) and v(x, t) = v(x − ct). Then

−c
du
dx

= D
d2u
dx2 + DF

−c
dv
dx

= d2v
dx2 + G

(11)

Adding these ODE and integrating, one gets

−c

∞∫

−∞
d(u + v) = η(1 + h)

∞∫

−∞
(u + gv)dx +

∞∫

−∞
d

(
d(Du + v)

dx

)
. (12)

The integral on the left hand side is just 2c(u0 + v0), the first integral on the
right hand side is just a number that measures the asymmetry of the profiles,
that is, if the area under the curves is equally negative than positive, this con-
stant is zero, a situation known as the Maxwell condition. The last integral is
zero because the slope of the profile at infinity is zero. Then the velocity of the
front is directly proportional to the value of the first integral.
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We can think of an infinite system with initial conditions such that in the left
hand side one sets the u and v values to correspond to one of the stable points,
and on the right hand side the initial concentrations correspond to the other sta-
ble point. Then one expects that somewhere there is a transition region between
these two states. This kink in general could move or be stationary, according to
Eq. 8. We are interested in studying the dynamics of this wave front. Observe
that the exact shape of the kink is difficult to obtain. However, from the fact
that the eigenvalues λ from Eq. 8 are always complex, the profile of the fronts
approaches the fixed point in an oscillating way. The profile can be investigated
by solving the equations numerically.

We performed a numerical calculation in a lattice of 500 points in which we
use the initial conditions

u(x) = u0 − 2u0(x − 250),

and

v(x) = v0 − 2v0(x − 250),

where (x) is the Heaviside function, u0 is given by Eq. 4 and v0 is given by
Eq. 3.

For the sake of definiteness we fix the values h = −2.5, f = 0.75 and
g = 0.165 in order to be in region 2 of Fig. 1. The parameter η sets the spatial
scale, and then it has to be chosen in such a way that the profile of the transition
contains a sufficient number of points to give the correct shape. With the value
chosen there are at least 60 points. The calculation was made using a simple
Euler method with a time step of �t = 0.0012 and zero flux boundary conditions.
The system converges rapidly to a kink in the center that is not moving.

In Fig. 3 we show the numerical results. Observe the peculiar shape of the
profile, which is perfectly symmetric in the sense that the area under any of the
curves is exactly zero. Observe that the interfaces have a peculiar shape very
similar to the ones observed in Fig. 1 of [7], namely

u = u0 tanh(kx) + asin(qx)e−p|x|. (13)

If we use the values a = − 0.228, k = 0.1705, q = 0.1288 and p = 0.1345, the
shape of our profile fits this form, indicating that the profile oscillates in the
same fashion as proposed by Coullet et al. [7], where the defects present damped
oscillatory tails leading to an interacting force. Observe that q and p should be
equal to the imaginary and real parts of λ in Eq. 10.

However, if we introduce a small amount of noise, the profile becomes unsym-
metrical, and the front acquires a constant velocity. At the edges of the domain,
the kink is reflected, due to the zero flux boundary conditions.

In Fig. 4 we show the shape of the profile in the (u, v) plane. The symmetric
kink corresponds to the central curve passing through the origin of the (u, v)
space. This shape is unstable under small random perturbations. The other two
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Fig. 4 Form of the possible profiles of the solitary wave solutions in the plane (u, v). The symmetric
stationary profile is the central curve passing through the origin. This profile is unstable. The curve
on the left corresponds to a form that has an overall negative integral, and the one to the right has
positive integral. The sign of the velocity of the wave is opposite for kinks and anti-kinks

curves correspond to the stable asymmetrical profiles. If we define a “kink” as
the profile that increases u from left to right, and anti-kink the opposite, one
sees that both could travel to the right or to the left. According to Eq. 12 one
notices that if the area under the curve is negative for a kink, then the velocity
is positive and the kink moves to the right. It is the opposite for the anti-kink.
Therefore one could have kinks and anti-kinks traveling in both directions.

In order to illustrate these facts in Fig. 5 we show a calculation using peri-
odic boundary conditions and initiating it with a sine wave profile such that
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Fig. 5 A kink and an anti-kink colliding. As this calculation is done using periodic boundary
conditions, the two excitations circulate forever in opposite directions. Observe that the integral
of both profiles is positive. The parameters are the same as in Fig. 3, and the shape of the profile
corresponds to the right hand side curve of Fig. 4

it produces a pair kink anti-kink. A small deviation of 10% is introduced in
the initial conditions in order to destabilize the symmetric profile and allow
the system to find the asymmetric shapes. Observe that if the integral of both
profiles is negative, then they move in opposite directions and collide. After the
collision the asymmetry is changed.

Numerical calculations with periodic boundary conditions show that a pair
of kinks can circulate in the domain forever. However, there is an interest-
ing phenomenon, if one initiates the calculations with random values around
(u, v) = (0, 0), a large number of kinks is formed, and once the proper asym-
metric form is acquired, they start moving in both directions. It is observed that
if the separation of a pair of kinks in less than a certain number (x ∼ 80 for
η = 1/12) the pair is annihilated when they collide, regardless of the sign of
the kinks. At the end one has only the number of kinks and anti-kinks that is
allowed by the scale governing the separation of them, some traveling to the
right and the rest traveling to the left.

In Fig. 6 we show a typical calculation of this sort. There is definitely a scale
governing the pattern. The kinks have properties that identify them as soliton
excitations. Once the scale of the system is settled, there are no more annihi-
lations and the number of solitons is conserved. When two of them meet, the
kink traveling to the right becomes an anti-kink traveling to the right, and the
same happens to the other. The important feature here is that one is able to
attain a pattern that is periodic in time. The velocity in this case is 0.1429 (grid
length over time units) and the pattern is repeated after a kink has traveled
three times the entire domain.
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Fig. 6 a Profile obtained in a calculation with periodic boundary conditions and random initial
conditions, and after 12,300,000 iterations using a time step of �t = 0.0004. The scale parameter
was η = 1/4, and all the other parameters are as in Fig. 3. The arrows show the direction of the
velocity for each kink. Notice that the number of kinks matches the one allowed by the predicted
scale of 80/

√
3. b Plot of the profile in the (u, v) plane of the numerical calculation shown in a.

Observe that there are more profiles with negative integral, corresponding to the curves on the left

The velocity of the solitary waves depends on the shape of the profile, as we
already said. However, it is possible to arrest it if the ratio of diffusion coeffi-
cients is not one. We examined this by performing numerical calculations and
found that the fronts become stationary for D < Dc = 0.9. The transition is
second order and the order parameter (which could be the separation between
the profile curves in Fig. 4) goes to zero as (D − Dc)

1/2. This is understood from
Eq. 10, which predicts that the velocity c should go as the square root of (D+1).



808 C. Varea et al.

Another way of arresting the front is to vary f . A numerical calculation with
zero flux boundary conditions was made and it was found that the front attains
zero velocity at a value fc = 0.82. The velocity approaches zero following the
relation v = (f − fc)

1/2. It was also seen that for values of f < 0.74 the fronts do
not bounce at the boundaries of the domain, and the whole systems end up in
a uniform value given by one of the fixed points.

Another interesting feature is found if one performs a numerical simulation
of a kink moving in a domain which presents a sudden change in the diffusion
coefficients. This represents the refraction of the wave front when the proper-
ties of the medium in which it travels change. Care has to be taken, since now
the correct form of the diffusion terms in Eq. 1 should be ∇(δD) · ∇(u) and
∇(δ) · ∇(u). There are three regimes of behaviour, depending on the difference
of diffusion coefficients ratio in the two sections of the domain. If this difference
is not large (D1 = qD2, with 1 ≤ q ≤ 1.7266), the soliton starting from the left,
where the diffusion coefficient D1 is larger, arrives to the border and continues
traveling to the right with a smaller velocity, then reaches the edge of the domain
and bounces there, as the boundary conditions are zero-flux. When it arrives
again to the left part of the domain, it changes its velocity to the corresponding
value. If the difference is larger (1.766 < q ≤ 1.8044), then it arrives again to
the interface and diminishes its velocity even more, but now after bouncing
in the wall and arriving to the interface again, it is reflected, so it continues
bouncing between the right wall and the interface, and never goes back to the
region with larger diffusion coefficient. Finally, if the difference between media
is extremely large (q > 1.8044), the soliton is trapped in the right hand side of
the interface after bouncing on the right wall. This picture matches studies of
Turing patterns in domains with different diffusion coefficients [11], that show
that the transition of the Turing pattern in the interface can be continuous,
discontinuous or abrupt, depending on the mismatch between the regions.

In two dimensions the dynamics of the wave fronts is more complicated. It
has been pointed out that the velocity of the front depends on the curvature of
the profile. This can be investigated in one dimension, assuming that one has
initially a circular front with radius r0 in two dimensions. The velocity, being
perpendicular to the front, depends only on the radius r(t). For large radii it
has been suggested [12] that the dependence of the velocity on the curvature is
linear to an excellent approximation, in our case this means that

dr
dt

= c0 − κ

r
, (14)

where c0 is the velocity of a planar front, and κ is a positive constant. Observe
that the velocity is larger when the front is concave that when it is convex.
Integrating Eq. 14 one obtains

t = r − r0

c0
+ κ

c2
0

ln
c0r − κ

c0r0 − κ
. (15)
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We have performed numerical calculations for f = 0.65 and η = 1/12 and
found that κ = 1.002 and c0 = 0.146 for large radii. As the wave front velocity
varies with the curvature of the profile, we expect that in a calculation in a
2D domain, the concave structures tend to disappear, while the convex regions
dominate.

2.2 Dynamics in two dimensions

In the border between regions 2 and 5 of the phase diagram (Fig. 1), the limit
cycle still persists, meaning that one could find oscillatory solutions in two
dimensions. In Fig. 7a we show a snapshot of a pattern generated in this region
by setting equal values of the diffusion coefficients (D = 1) in Eq. 2. The calcula-
tion was started with random initial conditions around the (0, 0) fixed point, and
periodic boundary conditions. In Fig. 7b the values of the points in the 256×256
grid are plotted. Observe that the points tend to travel from the center to the
limit cycle, indicated by the continuous line. This oscillating pattern resembles
the familiar pattern in the Belousov–Zhabotinskii reaction, namely gyrating
spirals of a given size. The temporal behavior is plotted in Fig. 7c where the

Fig. 7 a Pattern obtained for parameters precisely on the border of regions 2 and 5 of Fig. 1, after
500,000 iterations. The values are g = 0.165, h = −2.5, and the critical value fc = 0.5043. b The
values of (u, v) for each point at a fixed time are displayed as dots. As time runs these points tend to
approach the limit cycle also shown as a continuous line. c Plot of R versus time (in dimensionless
units), this quantity is the first zero of the pair correlation function averaged over all angles, and
dt = 0.002
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Fig. 8 Four snapshots of a pattern consisting of solitary wave fronts. Observe the appearance of a
characteristic length and the peculiar way in which the pattern moves. One can detect points that
do not move and the fronts rotate around them, giving the impression of spiral wave. This pattern
resembles very much the behaviour of miocardial waves

parameter R measures the size of the patterns formed. This R is the first zero of
the pair correlation function, averaged over angle and calculated numerically
at all times. Observe the oscillatory behavior of the graph.

These spiral waves seem to be ubiquitous in many non-linear systems [12]
ranging from models without diffusion to the Kuramoto equations with equal
diffusion coefficients, and Brusselator models with complex amplitudes. Our
model captures these solutions as well.

Now, we shall examine the appearance of solitary waves in two dimensions.
We choose the same region in phase space as for our studies in one dimension
of the previous section.

In Fig. 8 we show a calculation made using the same parameters as in Fig. 2d,
that is, in region 2 of the phase diagram, just avoiding the presence of the limit
cycle. The spatial scale of the figure is η = 1/2. Observe that the velocity of the
fronts depends on the curvature of the profile, therefore the fronts acquire a
sort of rotation around certain points that do not move. This behavior could
be mistaken by a pattern of spiral waves, as in Fig. 7, but it is not. The size
of the domain contains 256 points per side. The calculation was initiated with
random initial conditions and a number of fronts are annihilated before it set-
tles to a given scale, in this case one can see that the scale is approximately
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Fig. 9 Pattern obtained with
g = 0.165, h = −2.5, f = 0.75,
and for D = 0.8, after 500,000
iterations in a square grid of
256 points per side. With these
parameters, there is no limit
cycle in the absence of
diffusion. The inset shows the
power spectrum of the pattern

50 pixels. After 300,000 iterations the pattern converges to a steady oscillatory
state. This corresponds to 300 time units. The period of oscillation was mea-
sured by calculating the first zero of the correlation function, and it was found
to be approximately 75 time units. The four snap shots in the figure correspond
roughly to a time span of 12 units.

In one dimension we have seen that a difference in the diffusion constants
locks the wave fronts in space, obtaining a spatial pattern that resembles spatial
chaos, although we know that this is not so, since there is a well determined scale.
We expect that a stationary spatial pattern is obtained also in two dimensions.

In Fig. 9 we show a pattern generated with random initial conditions around
the point (0, 0). The diffusion coefficient ratio is now D = 0.8, predictably a
value in which the pattern gets locked. The pattern is extremely stable in space
and represents the 2D version of the “spatial chaos” found in the previous sec-
tion. Observe that, contrary to the 1D case, the pattern does not get locked in
a position with many separation distances between stripes, but finds a way to
accommodate the stripes in an orderly manner. Observe the power spectrum
shown in the inset that clearly exhibits a ring at a definite value of k vector. This
further demonstrates the existence of a fixed scale in the problem.

3 Discussion and conclusions

We have examined the dynamics of wave fronts in one and two dimensions.
Our analysis in one dimension reveals that there is a region of parameters in
which solitons travel with constant velocity and collide in a normal fashion
when the density of them corresponds to a given spatial scale. If this density
is larger, collisions between fronts result in pair annihilation. When one uses
a domain with periodic boundary conditions, a periodic pattern of traveling
fronts sets in, consisting of solitons moving to the right and left forever. With
zero-flux boundary conditions the solitons reflect at the boundaries, and collide
maintaining their constant velocity.
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Fig. 10 a Time history of the field u in Fig. 8 calculated at the point (1,1). The time scale is in
normalized units. b Time history of u for the central point of a 1D domain, the parameters are the
same as in Fig. 6

The velocity depends on the values of both the diffusion coefficients ratio
(D), and on the parameters (f , g, h). We showed that the velocity of the fronts
becomes zero as a second order phase transition with D and f as order param-
eters. The velocity goes to zero as a power law with exponent 1/2 in both
cases. This exponent is the same as the one found in the analysis of the simple
Fisher equation [12], and it is also the mean field value. As a consequence of
the dependence of the velocity on D, the fronts may refract at the interface
between two regions with different diffusion properties. We found numerically
that the solitons could be trapped in the region of smaller D, or even stop at
the interface.

In two dimensions these results can be found as well, but the dynamics is
richer, since it is found that the velocity depends on the local curvature of the
front. This can be demonstrated with a calculation in one dimension in polar
coordinates, that simulates the growing of a circular front in two dimensions.
This feature produces the interesting shapes of Fig. 8, which shows a pattern of
moving solitons that conserves a spatial scale and that is periodic in time, with
certain stationary points that are the pivots of rotational motion. This dynamics
resembles the waves measured in cardiac tissue [13], and makes our model ideal
to be applied to this kind of studies.

In modeling the dynamics of the heart beat with PDF, one usually chooses
the kinetics as simple as possible, and still retaining the basic non-linear prop-
erties measured in experiment, as the existence of limit cycles, double period
bifurcations, and spiral wave dynamics. These features are present in the sim-
ple Fitzhugh–Nagumo equations, which bears the general form of our model.
Much work has been done in this direction and an exhaustive study of spiral
waves in this model exists [8]. However, we want to point out that the waves
found in experiments resemble more the dynamics of our soliton pattern of
Fig. 8. We also believe that these kind of wave fronts are more realistic for the
representation of models of axon conduction, and are less complicated than
the biologically based models, and more useful than the cable models. In order
to support this claim, in Fig. 10a we show the time history of the point (1,1)
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in the calculation of Fig. 8. Observe the peculiar shape of the oscillations, that
resemble some of the waves measured in electrocardiograms.

In one dimension it is difficult to get a periodic time history from a random
pattern. We produced a periodic train of solitons in a domain with zero flux
boundary conditions, by starting with a single soliton on the left and changing
the sign of u every 684 time units. This choice produces a separation between
solitons that is shorter than the scale, therefore the solitons that bounce on the
right wall are annihilated by the ones coming from the left. The results for the
time history of the u at the central point N = 150 are shown in Fig. 10b. Observe
that the wave shape is very similar to the 2D calculation.

One usually models complex behaviour of oscillating patterns with cellular
automata [5], due to the fact that ODE models are cumbersome numerically.
At present we are studying the possibilities of transitions between the perfect
periodic oscillating pattern of solitons and other non-periodic patterns.

To summarize, in this paper we have examined a reaction diffusion model
in conditions such that it presents three fixed points. This allows the study of a
situation in which one has two stable fixed points and one unstable one, or a
bistable system. We found solitary waves that move with a given velocity. This
richness of behavior makes models like this very useful in applications, and
allow us to get insight into the mechanisms of pattern formation and selection
in a wide variety of interesting problems.
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