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Abstract In the large amoeboid organism Physarum, biochemical oscillators
are spatially distributed throughout the organism and their collective motion
exhibits phase waves, which carry physiological signals. The basic nature of this
wave behaviour is not well-understood because, to date, an important effect has
been neglected, namely, the shuttle streaming of protoplasm which accompanies
the biochemical rhythms. Here we study the effects of self-consistent flow on
the wave behaviour of oscillatory reaction-diffusion models proposed for the
Physarum plasmodium, by means of numerical simulation for the dispersion
relation and weakly nonlinear analysis for derivation of the phase equation. We
conclude that the flow term is able to increase the speed of phase waves (similar
to elongation of wave length). We compare the theoretical consequences with
real waves observed in the organism and also point out the physiological roles
of these effects on control mechanisms of intracellular communication.
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1 Introduction

The amoeboid plasmodium of the true slime mold Physarum polycephalum
shows tactic movement which develops due to an underlying mechanism based
on wave phenomena arising in an oscillatory field [7,8]. The oscillatory field
consists of the collective motion of spatially distributed intracellular biochemi-
cal oscillators [3,21]. So far, these wave phenomena have been studied by using
oscillatory reaction-diffusion equations, but recent experimental results suggest
that the overall wave behaviour is strongly affected by the hydrodynamic flow
of protoplasm [12]. To take this into account, a reaction-diffusion-advection
model was recently proposed for the system and the arising wave behaviour
was analysed in [10,22]. The flow is protoplasmic streaming, which is derived
from a biologically active process and said to be self-consistent [22]. Namely,
the flow is not constant but varies with respect to space and time, depending
on the state of the system. This is a difficulty and the reason why the wave
behaviour is not well understood.

1.1 Biological background

The plasmodium is a large aggregate of protoplasm with sheet-like morphology
and it shows rhythmic contraction everywhere within the organism. While
this cyclic contraction is coupled with oscillations of biochemical components
including Ca2+, ATP, H+ and NADH, it produces motive force (hydrostatic
pressure) leading to protoplasmic streaming [13,20,23–25]. The streaming direc-
tion is switched periodically back and forth, depending on the spatial difference
of the contraction phase. For these reasons, it is necessary that the plasmodium
is regarded as a coupled oscillator system with advection [10,22]. In fact, phase
waves of cellular rhythm are observed in the real organism, and play a sig-
nificant role in regulating the mechanisms controlling chemotaxis, thermotaxis
and phototaxis [7,8,11]. Although these tactic responses can be explained by
the nonlinear dynamics of the phase wave, these phase waves have so far been
analysed for a conventional oscillatory reaction-diffusion model, and the effect
of the flow has been ignored for the sake of simplicity.

1.2 Aims and outline

We begin by motivating our study with some examples of phase waves in
Physarum polycephalum. We show the spatio-temporal patterns of rhythmic
oscillation that arise in the organism under different external conditions. We
then move to take a more theoretical approach: studying, in general, the effects
of self-consistent flow on the wave behaviour of oscillatory reaction-diffusion
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Fig. 1 Acceleration of phase waves in the actual organism. a Typical spatio-temporal pattern of
rhythmic oscillation, measured by the conventional optical method [7], in a plasmodium extending
freely along a lane of agar gel, as shown on the left. In the figure, the organism, indicated by shad-
ing, moved downward as indicated by the double arrow. The phase of the oscillation was almost
synchronous through the width of the lane. We recorded the time series observed along a line in
the middle of the lane. The propagation speed of the wave was faster in the rear than in the frontal
tip (the boundary between these two regions is indicated). The lower figure, drawn on an enlarged
time scale, shows more clearly the difference in propagation speed. b Slower wave propagation on
a nutrient-containing gel (below the arrows). In all figures, the vertical and horizontal directions
indicate space and time, respectively. The oscillation phase of cell thickness was discretised into
two states, increase (black) and decrease (white). Scale bar: 10 min except for the enlarged figure
of (a). The length of organism was 2–4 cm

equations. We use numerical techniques to calculate the dispersion relation
for propagating waves, and analyse the effects of the flow on travelling plane
waves. Later we consider a more general setting: we derive an approxima-
tion for the dynamics of phase waves arising in a generic reaction-diffusion-
advection model by means of a perturbation method. Finally we suggest
possible physiological roles of the self-consistent flow in the Physarum
plasmodium.

2 Wave acceleration of real organism in relation to variations in protoplasmic
streaming

Figure 1 shows a plasmodium extending freely along a lane of agar gel (see
upper-left part of figure): as time progresses the plasmodium extends along the
lane, from top to bottom (double arrow). The different parts of Fig. 1 show
some real patterns of rhythmic contraction in relation to changes in strength
of protoplasmic shuttle streaming. In order to demonstrate the oscillations, the
phase of cell thickness was discretised into two states: increasing (black) and
decreasing (white).
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In Fig. 1(a) we see that in the frontal tip of the freely extending organism
(below an imaginary line connecting the two horizontal arrows), wave prop-
agation is slower than in the rear part of the organism (above the imaginary
line). This slow propagation arises as a result of changes in the protoplasmic
flow rate: weaker in the frontal tip of the organism. The phenomenon can be
observed more clearly in chemotaxis of the organism, as shown in Fig. 1(b). On
the nutrient site (below the imaginary line connecting the arrows), the wave
speed is much slower: it is known that protoplasmic flow is weaker at nutrient-
rich sites than at other sites (above the imaginary line). From these results, we
conclude that wave propagation is accelerated by increased protoplasmic flow.

These findings motivate our study: we investigate the effects of flow on
wave propagation rates in oscillatory reaction-diffusion systems, in order to
determine whether protoplasmic streaming rates can affect the phase waves
observed in the plasmodium.

3 Numerical calculation of the dispersion relation

A recently proposed model for contraction dynamics of the Physarum plas-
modium is a system of reaction-diffusion equations with flow terms [4,10,22].
To numerically calculate a dispersion relation, we specify a conventional two-
variable model with self-consistent flow [22]:

∂u
∂t

+ w.∇u = f (u, v)+ D∇2u,
(1)

∂v
∂t

= g(u, v),

where u and v are chemical concentrations. Here, we assume that one meta-
bolic chemical described by u flows with the endoplasmic streaming while the
other chemical described by v is bound to ectoplasm. The quantity D is the
diffusion constant of the chemical u. The velocity of the self-consistent flow, w,
is determined by the concentration of the metabolic chemical as

w = q∇u, (2)

where q is a (constant) parameter expressing the intensity of the flow.
Model equations (1) and (2) take the form of a generalised reaction-

diffusion-advection model with self-consistent flow proposed in [22] but they
can be obtained by some simplification from a previously proposed model with
three components [10]. In the previous model, the variables u and v are chem-
icals which display oscillatory behaviour in ectoplasm. While v is bound in the
ectoplasm, u is a free component which can interact with contractile proteins
and exchanges with the same chemical in the flowing endoplasm (say z). The
dynamics of z include an advection term which is dependent on u. Although
this exchange of u and z is not so fast, we assume, for the sake of simplicity,
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Fig. 2 Numerical solution of the spatially homogeneous system (D, w = 0 in Eq. (1)) with Schna-
kenberg kinetics. a shows the concentration profiles of u (solid line) and v (dashed line) over time.
b is a phase diagram and clearly shows that the system quickly tends to a limit cycle. Parameters
are as follows: a = 0.1, b = 0.5, u(0) = 0.6, v(0) = 0.6 and both plots are shown for t ∈ [0, 80]

that u is always similar to z and has an advection term in addition to its intrinsic
diffusion term. Our justification for this comes from the fact that we make the
advection coefficient, q, small enough. From this, Eq. (1) is obtained.

The reaction kinetics are chosen to exhibit a limit cycle oscillation. Here the
functions f and g are taken to be the Schnakenberg (tri-molecular) reaction
kinetics [9,18]:

f (u, v) = a − u + u2v, g(u, v) = b − u2v, (3)

where a and b are positive constants. Under spatially homogeneous conditions
(D = 0 and w = 0), the system has a stable limit cycle for b − a > (a + b)3 [9].
We chose this reaction system because the shape of the limit cycle in the phase
space is similar to that of the calcium oscillation in the plasmodium, which is a
strong candidate for the primary chemical clock underlying the rhythmic activ-
ity. Figure 2 shows plots of the numerical solution of the spatially homogeneous
system and clearly demonstrates the limit cycle kinetics.

Plane wave solutions of the system given by Eqs. (1)–(3) are of the form

u(x, t) = U(ωt − kx) and v(x, t) = V(ωt − kx), (4)

where ω is the wave frequency (so that the period T = 2π/ω) and k is the wave
number (so that the wave length λ = 2π/k). The propagation velocity can be
calculated as ξ = ω/k.

To obtain the dispersion relation for travelling waves, we carried out numer-
ical calculations for Eqs. (1)–(3) with the following procedure. We initiated a
pulse travelling on a ring (a one-dimensional region with the periodic bound-
ary conditions), and solved the system until the solution became periodic in
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Fig. 3 Numerical solution of the given by Eqs. (1)–(3). The numerical method is outlined in the
Appendix. a shows the concentration profile for u over (x, t)-space while b shows the concentration
profile for v. Parameters are as follows: a = 0.1, b = 0.5, q = 1.0 and D = 1.0

time. After measuring the rotating period of the travelling pulse on the ring,
we repeated the calculation for rings of different lengths. Thus we obtained the
dispersion relation for periodic wave trains with stable propagation.

We used the explicit an Euler method for the reaction terms, an upwind
differencing method for the advection terms, and an implicit method for the
diffusion terms. A more detailed outline of the numerical calculations, includ-
ing the initial conditions and numerical discretisation employed, can be found
in the Appendix. In our calculations, the parameter values were taken to be
a = 0.1, b = 0.5 and D = 1.0. To see if these results are typical of the behaviour
of the system, we undertook an analytical investigation: it is time consuming to
carry out a detailed numerical investigation over a wide parameter space. The
analysis outlined in Sect. 4 will allow us to approximate the dispersion rela-
tion by numerical calculation of just two integrals. In this way we can quickly
investigate whether the behaviour observed with the parameter set of Fig. 3 is
representative of that observed for more general parameter choices.

Figure 3 shows a plot of the numerical solution of Eqs. (1)–(3) and clearly
demonstrates the periodic behaviour of u and v. Plane waves with a wave length
of λ = 25 (k ≈ 0.25) occur with a period of approximately T = 10 (ω ≈ 0.63).

Dispersion curves for the reaction-diffusion-advection system, given by
Eqs. (1)–(3), are shown in Fig. 4 (wave number, k, against frequency, ω) and
Fig. 5 (period, T = 2π/ω, against velocity, ξ = ω/k) for various values of the
advection constant, q. It can clearly be seen from the figures that variations in
the self-consistent flow have a pronounced effect on plane wave propagation,
and that propagation behaviour depends on both the wavelength and on the
sign of q.
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Fig. 4 Dispersion curves obtained by numerical calculations for positive (upper panel) and nega-
tive (lower panel) values of q. The oscillation frequency, ω, monotonically increases with the wave
number, k, and has bulk frequency ω0 = 0.495 in the limit k → 0

Following [1,2,17], we classify our waves into phase waves (long wavelength,
low wave number) and trigger waves (short wavelength, high wave number) by
two branches of the curve separated by the inflection point. These classifications
have been marked on both Figs. 4 and 5.

In both cases (q positive and negative), as q is increased (while the wave num-
ber, k, is kept constant) the oscillation frequency of phase waves, ω, remains
essentially constant (note that the plots of Fig. 4 are on different scales). How-
ever, the change in frequency is marked for trigger waves. As q is increased,
the oscillation frequency of trigger waves decreases: the change in frequency
is more significant for q < 0. We note that this implies that as the modulus of
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Fig. 5 Relation between period, T, and velocity, ξ . The propagation velocity, ξ , was determined
as the phase velocity ω/k for the positive (upper panel) and negative (lower panel) q. The velocity
becomes large and goes to infinity at the bulk period τ0 = 12.7. For negative values of q, the curves
show large convex regions in period corresponding to trigger waves

the flow is increased, opposite effects occur according to whether the flow is in
a positive or negative direction. For example, for trigger waves and q > 0, ω
decreases as |q| increases, while for q < 0, ω increases as |q| increases.

In contrast we see that as q is increased (while the oscillation frequency,
ω, is kept constant) the wave number, k, of trigger waves increases. Again we
note that this results in opposing effects when considering the modulus (i.e. the
‘strength’) of the flow.



Dispersion relation in oscillatory reaction-diffusion systems 753

3.1 Application to Physarum plasmodium

In the previous section, the parameter q, expressing the intensity of flow, was
shown to be crucial to the rate of wave propagation. This was the coefficient
through which the chemical oscillator was related to the motive force of proto-
plasmic flow. Therefore, q is associated with the power which is produced by the
mechano-chemical apparatus of actomyosin in the organism. A recent simula-
tion for the rhythmic amoeboid movement in Physarum plasmodium claimed
that this type of parameter, which in that report was called the ‘stiffness of
ectoplasmic gel’, played a key role in determining the speed and stabilisation
of wave propagation [4,19]. This also indicates that the coefficient of flow or
stiffness is a key parameter for regulation of phase wave propagation.

In the actual case of the Physarum plasmodium q is positive, provided that
the contraction force is maximum when chemical concentration is minimum.
Such behaviour is observed for Ca2+, which is the most probable candidate for
a primary chemical clock in the plasmodium [10].

Hereafter, we will focus only on the phase wave which is characterised by
a low wave number, k, since only low wave numbers were observed in the
actual organism. The results of this section show that self-consistent flow has
a number of profound effects on the phase waves, such as acceleration of the
wave. This can be thought of as equivalent to elongation of the wavelength,
since the frequency of the phase waves remains almost unchanged. Clearly this
effect has advantages for intracellular signal communication because physio-
logical information is encoded in the phase of oscillation [7,8]. By making use
of the acceleration, the plasmodium can maintain a system as large as up to the
order of a metre, for example, in spite of it being a unicellular organism with no
nervous system.

4 Derivation of phase dynamics and estimation of dispersion relation
for a generic model

In this section, we consider a general type of reaction-diffusion system with flow
terms [22]:

∂u
∂t

+ M∇u.∇u = f(u)+ D∇2u, (5)

where u is an N-component vector of chemical concentrations varying over
space, x, and time, t. The reaction kinetics, denoted by f, are of limit cycle type
and the quantity D is a positive diagonal matrix of diffusion constants. The
velocity of chemical flow resulting from protoplasmic streaming is determined
by the concentration of the chemicals as M∇u, where the tensor M represents
advection coefficients. To consider the effect of flow on the dispersion relation,
we derive the phase dynamics from Eq. (5), and estimate a dispersion relation
for the phase wave.



754 H. Yamada et al.

By means of limit cycle perturbations, the dynamics of phase waves in
standard reaction-diffusion systems for oscillatory media are described by Burg-
ers equation [5,6,14–16]. We adopt a similar method for oscillatory reaction-
diffusion equations with this type of flow term.

We assume that the limit cycle is described by a solution of Eq. (5) under
spatially homogeneous oscillation with frequency ω0:

u = u0(τ ), τ = ω0t, (6)

where u0 satisfies ω0u′
0 = f(u0) and u0(τ + 2π) = u0(τ ). Since the system (5) is

invariant under time translation, it has a solution u = u0(τ + ψ) where ψ is an
arbitrary constant.

We introduce multiple scales

X = √
εx, τ = ω0t, T = εt, (7)

and the asymptotic expansion,

u = u0(τ + ψ)+ εu1(τ + ψ)+ . . . , (8)

where ε is a small parameter and ψ = ψ(X, T). Substitution of Eqs. (7) and (8)
into Eq. (5) yields a hierarchy of linear equations for each order in ε:

ω0
∂u0

∂τ
= f(u0), (9)

Luj = bj, (10)

where

L = ω0
∂

∂τ
− ∂f
∂u
(u0). (11)

Here bj denotes the inhomogeneous term of the jth order equation for j =
1, 2, . . .. For the first order equation, the inhomogeneous term is

b1 = −∂u0

∂T
− M∇Xu0.∇Xu0 + D∇2

Xu0, (12)

= −u′
0
∂ψ

∂T
− Mu′

0u′
0|∇Xψ |2 + Du′′

0|∇Xψ |2 + Du′
0∇2

Xψ , (13)

where ∇X is the nabla operator with respect to the scaled coordinate X. Thus
the solvability condition for u1 gives the dynamics of the phase waves:

∂ψ

∂T
= c1∇2

Xψ + c2|∇Xψ |2. (14)
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The coefficients c1 and c2 are obtained from the relations,

cj = 〈v†, vj〉
〈v†, u′

0〉
, (15)

where
v1 = Du′

0, and v2 = Du′′
0 − Mu′

0u′
0. (16)

Here

〈v†, v〉 =
2π∫

0

(v†, v)dτ , (17)

and v† is the nontrivial periodic solution to the adjoint differential equation
L†v† = 0. Equation (14) describes slow modulation of the homogeneous oscil-
lation with frequency ω0 by the phase ψ . We note that the coefficient of the
nonlinear term, c2, shows ‘competition’ between diffusion and flow.

In terms of the quantity φ = ω0t + ψ , Eq. (14) becomes

∂φ

∂t
= ω0 + c1∇2φ + c2|∇φ|2. (18)

The dispersion relation is thus estimated from the phase Eq. (18) through the
wave characteristics ω = ∂φ/∂t and k = ∇φ as [1,2]

ω = ω0 + c2k2 + · · · , (19)

where k = |k|.
Since the scaling of coordinates in the perturbation expansions (7) means a

slow spatial modulation, k = O(
√
ε), Eq. (19) is the Taylor expansion for the

dispersion curve, ω = ω(k), in the vicinity of k = 0. Thus, the coefficient of the
nonlinear term in Eq. (18) is c2 = ω′′(0)/2. Here Eq. (19) has no linear term in k
because of reflectional symmetry in the spatial part of Eq. (5). As shown above
in Eq. (16), c2 depends on advection constants as well as diffusion constants.

The dispersion relation, Eq. (19), shows that the wave number, k, can de-
crease at a fixed value of the frequency ω, as c2 varies, depending on the flow
term. But c2 also depends on the diffusion term and the concrete form of the
function was given by Eq. (16).

We note that the dispersion relation, Eq. (19), is only applicable to periodic
waves with constant speed. It does not apply to waves with non-uniform phase
gradients [17]. In such cases, we need to use the phase equation, Eq. (18), or
analyse Eq. (5) directly.

4.1 Application to the Physarum plasmodium model

We now apply the results of this section to determine an approximate dispersion
relation for the model of Sect. 3. From Eqs. (1)–(3) we see that the operator L
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and its adjoint, L† are given by:

L =
(
ω0

∂
∂τ

− ∂f
∂u (u0, v0) − ∂f

∂v (u0, v0)

− ∂g
∂u (u0, v0) ω0

∂
∂τ

− ∂g
∂v (u0, v0)

)
, (20)

and

L† =
(−ω0

∂
∂τ

− ∂f
∂u (u0, v0) − ∂g

∂u (u0, v0)

− ∂f
∂v (u0, v0) −ω0

∂
∂τ

− ∂g
∂v (u0, v0)

)
. (21)

This results in the solvability condition of

0 =
2π∫

0

u†
0

[
−u′

0
∂ψ

∂T
− q(u′

0)
2|∇Xψ |2 + Du′′

0|∇Xψ |2 + Du′
0|∇2

Xψ |
]

dτ

+
2π∫

0

v†
0

[
−v′

0
∂ψ

∂T

]
dτ , (22)

where u0, v0, u†
0 and v†

0 satisfy the equations

ω0

(
∂u0
∂τ

∂v0
∂τ

)
=

(
f (u0, v0)

g(u0, v0)

)
, (23)

and

−ω0

⎛
⎝
∂u†

0
∂τ

∂v†
0

∂τ

⎞
⎠ =

(
∂f
∂u (u0, v0)

∂g
∂u (u0, v0)

∂f
∂v (u0, v0)

∂g
∂v (u0, v0)

)(
u†

0

v†
0

)
. (24)

From this we have a dispersion relation of the form

ω = ω0 + c2k2 + · · · , (25)

for small k, where

c2 =
2π∫

0

u†
0

[
Du′′

0 − q(u′
0)

2
]

dτ

/ 2π∫

0

[
u′

0u†
0 + v′

0v†
0

]
dτ . (26)

Since Eqs. (23) and (24) cannot be solved analytically, we employ numerical
techniques to gain an estimate of the coefficient c2 for varying values of the
flow parameter, q. We solve the system of differential equations in Matlab and
then evaluate the integrals by employing the trapezoidal rule. The dispersion
relation for differing values of q is plotted in Fig. 6.
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Fig. 6 Dependence of the
dispersion relation upon the
flow. Equations (23) and (24)
were solved numerically and
then the parameter c2 was
calculated for varying values
of the flow parameter, q. As q
is increased the frequency, ω,
increases for fixed values of
the wave number, k. We note
that this is in agreement with
numerical simulations of the
system shown in Figs. 4 and 5.
Parameters were as follows:
a = 0.18, b = 0.5 and D = 1.0
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Application of the method of Sect. 4 to the Physarum plasmodium model
neatly demonstrates the competition between rates of diffusion, D, and advec-
tion, q in determining the dispersion relation (see Eq. (26)). However, without
the aid of numerical tools, it is difficult to make remarks (either qualitative
or quantitative) on the behaviour of c2 as D and q are varied. This is due to
the highly nonlinear nature of the problem: the effects of varying q and D will
depend specifically on the problem at hand.

5 Conclusion

We began by motivating our theoretical studies with observations on wave
propagation rates in the actual organism, Physarum plasmodium. From consid-
eration of the spatio-temporal patterns of rhythmic oscillation we inferred that
decreased protoplasmic flow results in a decrease in wave propagation speed.

We then studied the effects of self-consistent flow on the wave behaviour
of the oscillatory reaction-diffusion model proposed for the Physarum plasmo-
dium. We used numerical techniques to solve the system of Eqs. (1)–(3), and
through this obtained a dispersion relation for varying values of the flow rate,
q, and wave number, k. The addition of self-consistent flow had a number of
profound effects on the phase waves, such as acceleration of the wave. We noted
that this is equivalent to elongation of the wavelength since the frequency of
the phase waves remained almost unchanged.

These theoretical results are in agreement with the inferences of Sect. 2
regarding the actual organism: protoplasmic streaming was able to accelerate
the phase wave speed. As discussed in the text, it is clear this effect could
provide advantages for intracellular signal communication due to the fact that
physiological information is encoded in the phase of oscillation.

To consider the effect of flow on the dispersion relation in a more general set-
ting, we derived phase dynamics for a generic reaction-diffusion system, given
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by Eq. (5) and used asymptotic techniques to derive an estimate of the disper-
sion relation for phase waves. The dispersion relation, Eq. (19), showed that the
wave number decreased at a fixed value of frequency as c2 varied depending
on the flow term. The flow effect on wave acceleration could be understood by
this generic relation. We concluded that the flow term was able to accelerate
the phase wave speed (similar to elongation of wavelength).
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Appendix: Numerical methods

The system solved numerically in Sect. 3 was of the form:

∂u
∂t

+ q∇u.∇u = f (u, v)+ D∇2u, (27)

∂v
∂t

= g(u, v), (28)

where f and g are as in Eq. (3). The system was solved on the domain x ∈ [0, λ],
with periodic boundary conditions: u(0, t) = u(λ, t), and similarly for v. The
initial conditions were taken in the form of a ‘pulse’:

u(x, t) = 1
2

+ sin

(
2πx
λ

)
, (29)

v(x, t) = 1
2

+ 9
5

cos

(
2πx
λ

)
. (30)

The system was discretised using the following methods: an explicit Euler
method for the reaction terms; an upwind method for the advection term; a
leapfrog method for the flow, w, and an implicit method for the diffusion terms.

Letting Un
j ≈ u(xj, tn) and Vn

j ≈ v(xj, tn), where xj+1−xj = ∆x and tn+1−tn =
∆t, results in the following discretised system:

Un+1
j − Un

j

∆t
+q

[
Un

j+1 − Un
j−1

2(∆x)

] [
Un

j+1 − Un
j

∆x

]
= f (Un

j , Vn
j )+ D

×
⎡
⎣Un+1

j+1 − 2Un+1
j + Un+1

j−1

(∆x)2

⎤
⎦

Vn+1
j − Vn

j

∆t
= g(Un

j , Vn
j ). (31)
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For each value of the flow parameter, q, accuracy was ensured by suitably
refining the spatial and temporal mesh parameters.
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