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Abstract Phototropism—the directional curvature of organs in response to
lateral differences in light intensity and/or quality—represents one of the most
rapid and visually obvious reaction of plants to changes in their light envi-
ronment. It is a topic of fundamental interest to understand the mechanics of
plants during growth. We propose a generalization of the scalar Lockhart model
(1965) to three dimensional deformation, solve the new equation in two partic-
ular cases and compare results with empirical data. We believe that carefully
designed experiments linked to our model will provide (by determining the
active transport coefficient) a new method for qualitative description of auxin
redistribution during phototropism. The proposed method supplements very
recent investigations concerning specific auxin-influx and -efflux carriers (LAX
and PIN proteins).

Keywords Auxin redistribution · Dynamic growth rate · Phototropic
response · Protein carriers

Mathematics Subject Classification (2000) 92B05

1 Introduction

The phenomenon of phototropism has been known ever since. Charles Darwin
discovered in 1880 [1] that the phototropic stimulus is positioned at the tip of
the plant. Darwin used grass seedlings for some of his experiments. He found
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Fig. 1 Illustration of plant
phototropism. Auxin
transports actively due to
sunlight from the illuminated
to shaded side
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that the tip of the seedling was necessary for phototropism but that the bending
takes place in the region below the tip (Fig. 1). In the 1920s Fritz Went et al. [2]
attempted to isolate the “diffusible substance” that was responsible for photot-
ropism. The unknown substance that had diffused was named auxin.

The most recent research suggests that auxin is transported through plant
tissues by specific cellular influx and efflux carrier proteins [3–5]. The regulated,
differential distribution of auxin underlies many adaptation processes including
organogenesis, meristem pattering and tropisms [6–10]. Some aspects concern-
ing phytohormones, control of plant development in the context of modelling
plant reactions to external signalling can also be found in [11,12].

In this paper we introduce a physical model suitable for the description of
mechanisms emerging in plants exposed to the irradiation of light (we do not
consider the biochemical aspect). We mainly focus our efforts on understand-
ing the biomechanical aspect of the effect of incident unilateral light onto the
growing seeds of maize Zea mays L. by considering phenomenon of photot-
ropism throughout newly developed dynamic tensor equation of plant growth.
Further theoretical search have resulted in two kinds of examplary solutions
exactly reproducing the main experimental issues. The small number of model
assumptions resulted in analytical solutions which precisely reflected experi-
ments accompanying the theory. This in turn certifies that the physical model
proposed in this article seems to be adequate for the quantitative description
of lateral transport of auxin.

2 Materials and methods

The experiments were carried out with three days old maize plants (Zea mays L.)
grown in tap water at 27◦C. Seeds of maize were cultivated in darkness. Then
individual seeds were transferred to an aerated solution containing standard
micro- and macro-elements. At this time they were selected for straightness
and length, and aligned in parallel by turning each seedling individually. They
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Fig. 2 Gedanken experiments: a the fragment of a coleoptile is exposed to the incident light
through a narrow diaphragm, b the upper fragment of a coleoptile is exposed to the light incident
over a shield

remained in the dark for another day and were, after further selection, used for
the experiments.

We have performed two kinds of experiments where the seeds were exposed
onto the continuous spectrum light source (corresponding to the sun light). In
one of these a single coleoptile (which is in fact kind of multicellular cylindrical
structure surrounding the primary leaf of germinating seed) was shielded in such
a way that only its tiny fraction was brought to the light (see Fig. 2a). In the other
one the upper half of a single coleoptile was irradiated with light and the lower
part was etiolated (shaded), see Fig. 2b. In both experiments the coleoptile elon-
gation and phototropic curvature was measured by the shadow-graph method
(magnification 20 ×). Both experiments were carried out and repeated for five
seedlings and the average bending has been estimated. The error (std. dev.) was
of about 0.01 cm and 1◦ for the elongation and angle measurement, respectively.

3 Results

3.1 Derivation of tensor equation

Time-dependent Lockhart equation has been elaborated in the mid-1960s
[12,13]. It describes elongation of a plant cell resulting from a dynamic bal-
ance between the water uptake and the cell wall yielding:

1
V

dV
dt

= �(P − Y) (1)

where P, Y and � stand for hydrostatic pressure, turgor threshold and cell wall
yielding coefficient, respectively. The above equation describes global proper-
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ties of a plant cell neglecting its local features (like spatial distortions). However,
one may distinguish at least two kinds of geometrical anisotropies concerning
plant cell growth. The “zeroth” kind anisotropy which appears in the most cases
in plant cell growth where plants increase their volume mostly in one direction
(elongation growth), see [15] for details. The “first” kind anisotropy, well known
for a long time [1], consists in plant reaction to the influence of external factors
like light and gravitational force designed as phototropism and gravitropism,
respectively. (Tropism—plant movement reaction in which the direction of the
response is dependent on the direction of the stimulus). Therefore Eq. (1)
should, in principle, also account for the existing anisotropies of growth due
to internal mechanical stresses. Hence, taking the above remarks into consid-
eration, as “constitutive” differential equation, we propose the result of the
following reasoning based on a model including plant cell anisotropic features,
instead. We apply our model to a multicellular problem where we treat the plant
tissue as a massive, homogeneous and viscoelastic structure and additionally,
we consider an organ (e.g. coleoptile) where cells’ elongation (not division)
takes place exclusively and the Lockhart equation holds. We follow the line of
the Lockhart equation re-analysis to multicellular plants [16].

Consider a displacement of a vector ξ = (ξ1, ξ2, ξ3) within time interval
�t = t′ − t. Then a point P from a given fraction of the cell volume V moves
irreversibly (due to the internal stresses) to a new position P′ (see Fig. 3):
P(x1, x2, x3, t) �→ P′(x1 + ξ1, x2 + ξ2, x3 + ξ3, t′). In Eq. (1) we deal with the
relative change of the volume V treated as a global quantity in the course of
time. In order to proceed to the local description we introduce vector ξ rep-
resenting translation of the P point due to the change both the volume and
the shape of the cell. Accordingly, we introduce instead of 1

V
dV
dt the expression

∂
∂t

∂ξi
∂xj

. The quantity ∂ξ̇i
∂xj

(the dot denotes as usual the time-derivative) repre-
sents the change of coordinates of ξ vector in function of time and position
of P. The elements ∂ξ̇i

∂xj
have been derived similarly to the Hooke’s law in the

elastostatic theory. The main difference consists in the fact that we deal with
irreversible distortions (viscoelastic deformations) in a sense that we generalize

Fig. 3 Illustration of
anisotropic deformation of a
plant cell. Area P moves
irreversibly to position P′
causing deformation of the
cell shape due to internal
stresses
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the Lockhart equation. In general, ∀i∈{1,2,3} ξi explicitly depends both on time t
(cell magnifies) and the coordinates x1, x2, x3 (here: due to the auxin action cell
bends toward the unilateral influence of light). Such approach we will justify
in the further part of this article where we derive the special (global) Lockhart
equation as a limiting case of the general (tensor) equation.

Similarly, we perform on the right-hand side of Eq. (1) the following general-
ization: the magnitude P − Y we replace with (P − Y)ij (which denote elements
of a matrix) and subsequently for all i, j ∈ {1, 2, 3}

∂ξ̇i

∂xj
= �(P − Y)ij. (2)

From the physical point of view Eq. (2) represents coupling between the
dynamic deformation field (l.h.s.) and the stress field (r.h.s.). It may be rewritten
in tensor form in the following way: as we define the growth rate as G

ij
R : = ∂ξ̇i

∂xj

and (P − Y)ij : = (P − Y)ij we get

GR = �(P − Y) (3)

where � in general depends on position and time � = �(x1, x2, x3, t). We would
like to make a remark here. In elastostatic theory not ∂

∂t
∂ξi
∂xj

but εij : = ∂ξi
∂xj

consti-
tute elements of deformation matrix used for description of anisotropic changes
in the bulk’s shape. Certainly, both matrices are dependent: G

ij
R = ∂

∂t ε
ij. Hence

the quantity of the l.h.s. of Eq. (3) has local and especially dynamical properties
(as its elements are time-derivatives of the deformation matrix). Therefore we
may label GR the dynamical growth tensor. Yet the r.h.s. of Eq. (3) which is
normally the product of scalar quantities can be expressed as product of a scalar
�(x1, x2, x3, t) (which may depend not only on time and location, but also on
many other parameters like temperature, air composition, pH, etc.) and tensor
P−Y which is responsible for the internal stress (in excess of turgor threshold).
We adopt Cartesian coordinates (and align the growing shoot along z-direc-
tion), see also Fig. 2. Taking as granted such interpretation P − Y must obey:

1. Pascal’s law which states that pressure applied to a confined fluid at any
point is transmitted undiminished throughout the fluid. Thus the stress ten-
sor reads P and according to the Pascal’s principle Pxx = Pyy = Pzz =
P > 0 where P denotes hydrostatic pressure like in the original Lockhart
equation. For the same argument as above the turgor threshold tensor
Y = diag(Y, Y, Y).

2. Symmetry: because εij = ∂ξi
∂xj

in general is not a proper deformation tensor in
the physical sense, it may contain not only pure deformations but also rigid
rotations (cell may rotate or be shifted as a whole), in particular it is not a
symmetric one. Then the symmetrized form of ε is the proper deformation
tensor and consequently not P − Y is the stress tensor but its symmetrized
form (P − Y) = 1

2 ((P − Y) + (P − Y)T).
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3. (P−Y)ij elements represent the following properties: the diagonal elements
(P − Y)ii are normal stresses (perpendicular to the corresponding surfaces)
while the off-diagonal elements (P−Y)ij for i �= j are the tangential stresses,
which act onto the surface perpendicular to the xi and parallel to the direc-
tion xj. The diagonal elements (P − Y)ii reflect isotropic pressure inside
vacuole. For the case of the whole plant tissue (P − Y)ii = (PA + σ − Y)ii

should be estimated as the sum of apoplasm hydrostatic pressure in excess
of turgor threshold PA − Y and the tension σ in the cell wall (PA is the
suction component while σ is proportional to the turgor, see [16]). Such
estimation is related to the phenomenon of turgor recovery in absence of
water uptake or loss. Since the shape of a plant cell is almost entirely deter-
mined by its wall the off-diagonal elements reflect tangential stresses in
plasmalemma and cell wall itself or in the apoplasm for the whole plant
tissue case. In this sense, in a single cell generalization of the Lockhart
equation we impose the boundary conditions.

4. Following the elastostatic theory we know that half of a sum of deforma-
tion matrix’ elements ∂ξ1

∂x2
and ∂ξ2

∂x1
constitutes γ3 deviation angle from x2x3

plane, similarly 1
2 (

∂ξ1
∂x3

+ ∂ξ3
∂x1

) gives γ2 angle of deviation from x1x2 plane and

eventually 1
2 (

∂ξ2
∂x3

+ ∂ξ3
∂x2

) = γ1 angle of deviation from x1x3 plane.

3.2 Illustrative solutions

Equation (3) is the general equation. In order to find some of its special
solutions we make the following simplifying assumptions: (a) Zeroth time
approximation for variables: �, P, Y, D = const(t) (D stands for auxin active
transport coefficient); (b) Initial conditions ∀i=x,y,z, ξi(x, y, z, t = 0) = 0; (c)
Cell wall yielding coefficient � obeys �|x = �|y = 0, �|z = � (we denote
�|x : = �(x, y = const, z = const)) which expresses the fact that wall yielding
and growth (not bending) takes place exclusively in the vertical z direction (the
“zeroth” kind anisotropy); (d) Boundary conditions: �, P and Y are confined
to the cell interior; (e) Auxin is a phytohormone which acts, among others, as
a substance accelerating plant cell growth. Auxin influenced by unilateral ac-
tion of light transports actively into and through shaded side of plant cell and,
accordingly, it causes its inhomogeneous growth (see Fig. 1). This phenomenon
is strictly bounded — as we know from elastostatic theory - with additional
non-zero tangential stresses. The analysis of P − Y tensor elements has led us
to conviction that only yz and zy of the P − Y matrix should remain non-zero
in order to observe the bending toward the light source as in Fig. 2 (the other
elements would give additional bending that in the considered cases does not
appear). These non-zero values must be coupled to the auxin inhomogeneous
distribution which depends linearly on z direction.

After solving Eq. (3) we assign its two particular solutions to the related
experiments performed with the use of a diaphragm or semi-plane screen
to obtain point or semi-plane light source. Although the presented model is
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founded on the Lockhart equation elaborated for plant cells it may be ex-
tended to whole plant organs, like for example, coleoptiles as it has been done
in our experiments. In theory it can be accomplished by replacing the cell wall
yielding coefficient � with an effective one �eff for the apoplasm. Given Eq. (3)
and the presented assumptions we discuss its example solutions as illustrated
in Fig. 2a, b. Here we make an additional assumption: Auxin diffusion through
a plant cell as a result of the action of light takes place in a positive y direc-
tion. Thus Pxy = Pxz = Pyx = Pzx = 0 and Pyz = Pzy = Dz where D is a
coefficient bounded with nonequilibrium auxin transport by the protein car-
riers, [D] = Pa/mm. We assume symmetry of the stress tensor as we do not
take into account plant cell (or in fact coleoptiles as in the authors’ performed
experiments) rigid rotations. We put D > 0 (positive phototropism).

Taking into account all these remarks we end up with the following explicit
tensor equation for the dynamic growth rate

GR =



0 0 0
0 0 �Dz
0 �Dz �(P − Y)


 (4)

by virtue of point (c). Accordingly, accepting the zeroth time approximation for
�, P, Y and D after integration we obtain the set of six independent equations
for the deformation matrix elements: ∂ξx

∂x = ∂ξx
∂y = ∂ξx

∂z = ∂ξy
∂y = 0, ∂ξy

∂z = ∂ξz
∂y =

�Dzt and ∂ξz
∂z = �(P − Y)t. From the above equations we have γ = �Dz t.

Depending on the actual type of experiment the coefficient D = d 1
z ((a) point-

like case) or D = const. ((b) semi-plane case). We eventually obtain the follow-
ing solutions for the ξ vector




ξy(z, t)
∣∣∣
z

= �D zt ⇐⇒ ξz(y, t)
∣∣∣
y

= �D yt

ξz(z, t)
∣∣∣
z

= �(P − Y) zt
(5)

or 


ξy(z, t)
∣∣∣
z

= 1
2�D z2t ⇐⇒ ξz(y, t)

∣∣∣
y

= �D yzt

ξz(z, t)
∣∣∣
z

= �(P − Y) zt
(6)

for the point-like and semi-plane cases, respectively. The remaining deforma-
tions in both cases vanish: ξx = 0, ξz|x = 0, ξy|y = 0, ξy|x = 0. In Eqs. (5)
and (6) the solutions depend explicitly on time. Hence we receive two kinds
of solutions: (a) linear (γ =const(z)) and (b) non-linear (γ ∝ z) bending.
For the “diaphragm case” we may draw the following conclusion. By assum-
ing the existence of non-zero tangential stress (strictly bounded with the light
action onto the auxin redistribution) constant in a narrow range exposed to the
light we have obtained γ = �Dt angle and consequently the linear bending.
(In spite of the fact that we have generally assumed the existence of the vertical
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gradient of auxin distribution we notice that in the point-like case in the lighted
tiny fragment of the coleoptile D can be considered as almost constant at a
short distance and vanishing in its close vicinity like 1/z.) We may determine
this angle in experiment. As we can check in Fig. 4 (“diaphragm case”) γ after
t = 2h is constant and equal to 5◦.

In the “semi-plane case” γ = �Dzt, what implies from Eq. (6), and γ angle
increases linearly with time and, in contrary to the previous example, depends
on z coordinate. This causes a gentle bending of a probed coleoptile which is
expressed by a curvature toward the light source (see Fig. 2b). We assign this
solution to an experiment where the upper half of a coleoptile is exposed to
the light and the lower part is etiolated. We also notice that since in Eq. (6)
quadratic solution appears (ξy ∼ z2) then the bending of a coleoptile toward
the light source has parabolic character. We may formulate this result in a fol-
lowing way. Auxin greater concentration in the apical part of the coleoptile
(which is equivalent to the assumption that tangential stress linearly depends
on z coordinate) causes stronger (parabolic) bending of plant toward the light
source. Thus bending angle γ depends on the height, γ = �Dzt, and—as one
can compare in Fig. 4 (“semi-plane case”)—agrees with the empirical data for
which γ (z) � 46.7z deg (after t = 4 h) with determination coefficient R = 0.996.

3.3 Back from local to global equation

Accepting Eq. (3) as a starting point the Lockhart equation may be easily
obtained (as a limiting case) if one uses the foregoing assumptions (corre-
sponding to the original Lockhart model): (1) The variables �, P and Y do not
depend on x, y and z coordinates; (2) All off-diagonal elements of the stress
tensor vanish (there are no tangential stresses which would cause cell bending).
Thus in the stress tensor only diagonal (P − Y)xx = (P − Y)yy = (P − Y)zz ele-
ments remain non-zero according to the Pascal’s principle; (3) �(x, y, z, t) has
the following properties: �|x = �|y = 0 and �|z = � because of the “zeroth”
kind anisotropy. Hence, from Eq. (3) we receive a system of nine equations
among which only one is non-trivial

∂ξ̇z

∂z
= �(P − Y). (7)

The remaining derivatives are equal to zero.
In order to proceed from local to global properties we evaluate the following

integral:
∫ z

0
∂ξ̇z
∂z dz′ = ∂

∂t

∫ z
0

∂ξz
∂z dz′ = dz

dt which represents the total change of the
length z in time t. Similarly, we integrate the r.h.s. of Eq. (7) and divide both
sides by z = ∫ z

0 dz′ to obtain

1
z

dz
dt

= 1
z
�(P − Y)

z∫

0

dz′
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by virtue of the assumption (1). Thus we receive

1
z

dz
dt

= �(P − Y)
/xy

xy
1

xyz
d(xyz)

dt
= �(P − Y)

arriving back (xyz = V) to the Lockhart Eq. (1) which has been obtained from
the more general tensor equation of growth.

4 Discussion

In this paper we have introduced a generalization of the classic Lockhart equa-
tions of turgor driven cell expansion in plants. Then we apply newly devel-
oped equations to explain phototropism, the unilateral growth of plant shoots
towards light. The Lockhart equation looks at cell elongation as the result of a
dynamic balance between water uptake (driven by salt concentration gradient)
and cell wall expansion. We rewrite the equations in tensor form, to capture
also changes in cell shape, not only its length. Even though it is well known that
phototropy results from unequal growth rates at either sides of the shoot the
mathematical treatment formalizes the insight. It looks as though that the model
does not help distinguish the current controversy of the mechanism of differen-
tial auxin distribution. Nevertheless, it may either involve auxin redistribution
as in the lateral transport of auxin (point–light case) or impaired basipetal
transport on the shaded side leading to local accumulation (semi-plane case).

We have also found solutions of Eq. (3) in two particular cases. In one of
these ((a) point-light case) the calculated bending angle γ does not depend
on zth coordinate. In the other ((b) semi-plane case) γ linearly depends on z.
These theoretical results have been next probed in two experiments. In one of
these the coleoptile was shielded in such a way that its tiny fraction was brought
to the light (Fig. 2a) while in the other the upper half of the coleoptile was
irradiated with light and the lower part was etiolated (Fig. 2b). The outcome
of these experiments was as previously expected. Indeed, both curves as pre-
sented in Fig. 4 have exactly reproduced theoretical results. The experimental
data in both cases are interpolated by linear function via Levenberg–Marquadt
algorithm and the exactness of the fits is confirmed by very high determination
coefficients (see the legend in Fig. 4). One of these lines, however, is parallel
to the z axis (γ does not depend on z and is approximately equal to 5◦) while
the other one increases with z (γ linearly depends on z). Both results are in
accordance with the theoretical predictions, Eqs. (5) and (6), respectively.

To sum up, in this article we have developed tensor description of time
evolution of plant cell in the presence of light illumination causing auxin
redistribution. Even though we have considered a single cell model only it
is evident, in a certain approximation, that the whole system of bound and spe-
cialized cells (tissue) would evolve in a similar way providing that we replace a
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Fig. 4 Actual experiments:
the bending angle (in
degrees), corresponding to
the phototropic curvature,
versus z axis for both cases
considered in this paper. In
the diaphragm experiment the
γ angle was measured after
t = 2h while in the semi-plane
one – after t = 4h. R stands for
the determination coefficient.
The error bars indicate the
estimated error (1◦) for the
angle measurement and
0.01 cm for the length

cell wall yielding coefficient � with an effective one (� �→ �eff, for the stem).
Such approach is fully justified providing that the turgor recovery is relatively
small (P > Y), see [16]. We have considered, in our opinion, the two most inter-
esting example solutions of Eq. (3) and, accordingly, suitable experiments have
been designed. A one-to-one correspondence between our model calculations
and the authors’ performed experiments have been acquired.

Auxin distribution and activity in growing plant tissue has also been measured
using fluorescent protein markers and microscopy [3–5]. Hence we propose a
complementary method based on our model: It seems possible to describe
quantitatively the process of auxin redistribution coupled to the value of the
coefficient D (via the measured γ angle at least in case of phototropic response
due to incident light for living plants). In our study, we relate the introduced
coefficient D to the intracellular movement of auxin transport proteins (AUX1
and [LAX] family for auxin influx while [PIN] family for auxin efflux). The
asymmetric positioning of the latter in the cell determines the non-zero tangen-
tial tensions in P − Y tensor and nonvanishing D coefficient. The connection
between light perception and protein relocation as well as the signalling of auxin
lateral distribution together with theoretically derived γ angle dependence
of active transport D coefficient looks apparently to be cleared up. Charles
Darwin’s observations made in the Nineteenth Century seem to have gained a
new physical insight.
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