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Abstract Cutaneous leishmaniasis is a vector-borne disease transmitted to
humans by sandflies. In this paper, we develop a mathematical model which
takes into account the seasonality of the vector population and the distribution
of the latent period from infection to symptoms in humans. Parameters are
fitted to real data from the province of Chichaoua, Morocco. We also introduce
a generalization of the definition of the basic reproduction number R0 which
is adapted to periodic environments. This R0 is estimated numerically for the
epidemic in Chichaoua; R0 � 1.94. The model suggests that the epidemic could
be stopped if the vector population were reduced by a factor (R0)

2 � 3.76.
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1 Introduction

Leishmaniasis is a complex of vector-borne diseases caused by protozoa of
the genus Leishmania. The parasite is transmitted to humans through bites of
female sandflies (Diptera: Psychodidae: Phlebotominae). The disease is en-
demic in many regions of Africa, South and Central America, southern Europe,
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Fig. 1 Horizontal axis: time. Left vertical axis and solid line: monthly number of reported cases of
cutaneous leishmaniasis in Imi’Ntanout, province of Chichaoua, Morocco. Dots (scale irrelevant):
evolution of the population of Phlebotomus sergenti, the probable vector [10]

Asia and the Middle East. Leishmaniasis includes four major eco-epidemio-
logical entities: zoonotic and anthroponotic visceral leishmaniasis (VL), and
zoonotic and anthroponotic cutaneous leishmaniasis (CL). In anthroponotic
forms, humans are considered to be the sole source of infection for the sandfly
vector; in zoonotic transmission cycles, animals are reservoirs which maintain
and disseminate the Leishmania parasites. Each year, there are about 500,000
new human cases of VL and about 1–1.5 million cases of CL in the world [7].
VL is fatal if untreated. CL is generally self-healing but can leave disfiguring
scars.

According to the Moroccan Ministry of Public Health [19], anthroponotic
CL due to Leishmania tropica is an emerging disease in the province of Chich-
aoua: 1877 cases have been officially reported between the beginning of 2000
and the end of 2004. Figure. 1 shows the monthly evolution of the number of
cases reported in the city of Imi’Ntanout, which represents about 80% of the
cases in the province, between the beginning of the year 2001 and the end of
the year 2004. A few cases (43 in total) had already been observed in the year
2000, but the detailed monthly report is not available. Field investigation [10]
has shown that sandflies of the species Phlebotomus sergenti are responsible for
the transmission and that the transmission is anthroponotic: no animal reser-
voir such as dogs has been detected for this particular epidemic. Figure. 1 also
shows estimations of the population of Phlebotomus sergenti obtained by traps
one or two times per month from June 2002 until December 2003 (PhD work
of S. Guernaoui). Notice that the population of vectors falls to zero between
December and May. This is due to the special life cycle of sandflies in this area:
during these months, only the eggs and larvae survive hidden in the ground.
As the temperature rises at the beginning of each summer, larvae transform to
flying adults. The transformation stops when the cold days reappear.
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The purpose of this work is to develop a mathematical model of this epi-
demic, to estimate some of the parameters of the transmission cycle and to
estimate the classical epidemic threshold R0 which measures in some sense the
amount of effort necessary to stop the epidemic. Interestingly, this particular
study has led us to a new general definition of the basic reproduction number
R0 in a periodic environment.

Various models have already been developed for epidemics of cutaneous
leishmaniasis [3–5,11,15,20]. Only one [3] simulates a fluctuating vector popu-
lation but without mathematical analysis or field data.

For our model, we emphasize in fact two points. First, there are marked
seasonal fluctuations in the population of vectors; the most simple models are
obtained by assuming that the population of vectors is periodic with a period
equal to one year. Secondly, there is a delay of several months between infec-
tion – which occurs in summer or falls when the population of vectors is non-
zero – and the number of symptomatic human cases – which is highest in winter
and spring (see Fig. 1).

The oldest mathematical models of vector-borne diseases go back to Ross
[21], who studied malaria. Our model can be seen as an extension of the “sec-
ond” model of Ross, as it is called in the work of Lotka [16]: the population
of vectors is split between susceptible vectors and infected vectors, whereas
the humans are split between susceptible, infected and immune. Moreover, the
population of vectors is assumed to undergo periodic fluctuations. Numerical
investigations on the influence of seasonality for vector-borne diseases appear
for example in [1, p. 404]; mathematical results in relationship with Floquet’s
theory for periodic differential equations appear in [12,13] and [8, p. 148]. Notice
in [13, §2.3] that the definition of the epidemic threshold supposed to replace
the basic reproduction number R0 for a periodic vector population is rather
awkward: it is the spectral radius of a matrix which is similar (in the sense of
matrix theory) but not equal to the next-generation matrix when specialized to a
constant vector population. These works also do not include any delay between
infection and symptoms in humans other than an exponentially distributed one.
It is clear from Fig. 1 that a constant delay would give a poor fit to data for
the epidemic of cutaneous leishmaniasis in Imi’Ntanout since the population
of vectors is nonzero during six months but human cases occur all year round.
A distributed delay is needed. The first models in epidemiology including dis-
tributed delays go back to Kermack and McKendrick [17] and involve partial
differential equations. Very few works combine distributed delays with the influ-
ence of periodicity in the context of epidemiology: this is the case in [23], but
the discussion focuses mainly on exponential distributions. However, several
works discuss general distributions in other areas of population dynamics: peri-
odic birth rates in linear continuous-time demographic models were considered
by Coale [6] using Fourier techniques; periodic Volterra integral equations were
considered by Thieme [22] in an abstract setting with an application to plant
populations; branching processes in a periodic environment were considered
in [14]; optimal harvesting of an age-structured population with periodic birth
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rates was considered in [2]. Reference [22] provides the theoretical background
for the study of the linearization of the model we present.

In short, from the general point of view of population dynamics, our con-
tribution is to make more explicit the definition of the epidemic threshold R0
for vector-borne diseases with a periodic population of vectors – the definition
seems to be new even if the incubation period were exponentially distributed
so that the model could be reduced to a system of ordinary differential equa-
tions – and to provide an algorithm for its computation. From the point of
view of epidemiology, our contribution is to estimate some parameters in the
transmission of cutaneous leishmaniasis during an epidemic in Morocco: we
estimate the time between infection and symptoms by a Gamma distribution
with mean 6 months and standard deviation 1.5 months; we finally arrive at the
estimate R0 � 1.94. The model suggests that the epidemic could be stopped if
the population of vectors were reduced by a factor (R0)

2 � 3.76.
The plan is the following. Section. 2 presents the system of differential equa-

tions used to model the epidemic. Section 3 analyzes the model, in particular
the stability of the infection-free state. Section 4 presents a simulation with
parameters chosen so as to fit the epidemic data from the city of Imi’Ntan-
out. The epidemic threshold R0 is then estimated for this particular epidemic.
Section. 5 introduces a general definition of the basic reproduction number R0
in a periodic environment and discusses its relationship with some previous
works.

2 The model

Set

s(t): number of susceptible sandflies at time t;
i(t): number of infectious sandflies;
S(t): number of susceptible humans;
I(t, τ): infectious humans at time t structured by the time τ since infection;
R(t): number of immune humans.

To simplify the model, we have not considered the period of time during which
humans or vectors are infected but not yet infectious. The group of “immune”
humans contains both humans whose symptoms have recently appeared and
have been covered by cloth so that they cannot transmit the disease further, and
people whose scars have healed and who have acquired some immunity. The
reported cases are the new people entering state R. It is assumed that scars are
covered as soon as they appear (this is of course a simplification compared to the
real situation). The total number of infectious humans is I(t) = ∫ ∞

0 I(t, τ) dτ .
Set

P = S(t) + I(t) + R(t): total human population;
p(t) = s(t) + i(t): total sandfly population;
�(t): emergence rate of sandflies;
µ: mortality of sandflies;
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β: biting rate of sandflies;
α(τ): rate of advance from infection to immunity in humans;
γ : rate of loss of immunity;
π : transmission probability of CL per bite from sandfly to human;
π̂ : transmission probability of CL per bite from human to sandfly.

The model consists of the following equations

s′(t) = �(t) − µ s(t) − β π̂ s(t)
I(t)
P

, (1)

i′(t) = β π̂ s(t)
I(t)
P

− µ i(t) , (2)

S′(t) = −β π i(t)
S(t)
P

+ γ R(t) , (3)

I(t, 0) = β π i(t)
S(t)
P

,
∂I
∂t

(t, τ) + ∂I
∂τ

(t, τ) = −α(τ) I(t, τ) , (4)

R′(t) =
∞∫

0

α(τ) I(t, τ) dτ − γ R(t) , (5)

with some initial conditions s(0), i(0), S(0), I(0, τ) and R(0). Notice that p(t) =
s(t) + i(t) satisfies p′(t) = �(t) − µ p(t), and that P = S(t) + I(t) + R(t) is indeed
a constant. If f (τ ) is the probability distribution of the time elapsed from infec-
tion to symptoms in humans and g(τ ) the probability of not having developed
symptoms τ units of time after infection, then

g(τ ) = 1 −
τ∫

0

f (σ ) dσ = exp



−
τ∫

0

α(σ) dσ



 . (6)

Therefore, α(τ) = f (τ )/[1 − ∫ τ

0 f (σ ) dσ ].

3 Analysis

Assume that �(t) is a periodic function of period T. Then system (1)–(5) has
an infection-free periodic solution given by s(t) = p(t), i(t) = 0, S(t) = P,
I(t) = R(t) = 0, where p(t) is the unique periodic solution of p′(t) = �(t)−µ p(t).
Its stability can be studied by linearizing the system. One gets

ĩ
′
(t) = β π̂ p(t)

Ĩ(t)
P

− µ ĩ(t) , (7)

Ĩ(t, 0) = β π ĩ(t) ,
∂ Ĩ
∂t

(t, τ) + ∂ Ĩ
∂τ

(t, τ) = −α(τ) Ĩ(t, τ) , (8)
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with an initial condition ĩ(0, τ) = ĩ0(τ ) and Ĩ(0, τ) = Ĩ0(τ ). This system involves
both a linear ordinary differential equation and a linear partial differential equa-
tion. To have a more symmetric discussion, let us introduce i(t, τ), where τ is the
time since infection in sandflies, and the column vector J(t, τ) = (ĩ(t, τ) , Ĩ(t, τ)).
Then

∂J
∂t

(t, τ) + ∂J
∂τ

(t, τ) =
(−µ 0

0 −α(τ)

)

J(t, τ)

J(t, 0) =
(

0 βπ̂p(t)
P

βπ 0

) ∞∫

0

J(t, τ) dτ ,

with J(0, τ) = J0(τ ) = (ĩ0(τ ) , Ĩ0(τ )). Hence,

J(t, 0) =
t∫

0

(
0 βπ̂p(t)

P e− ∫ τ
0 α(σ) dσ

βπe−µτ 0

)

J(t − τ , 0) dτ

+
∞∫

t

(
0 βπ̂p(t)

P e− ∫ τ
τ−t α(σ) dσ

βπe−µt 0

)

J0(τ − t) dτ .

Set u(t) = J(t, 0). Then the previous equation is of the form

u(t) =
t∫

0

A(t, τ) u(t − τ) dτ + ū(t), (9)

where A(t, τ) is T-periodic in t and ū(t) is a given function. Notice that the
coefficient Ai,j(t, τ) in line i and column j of the matrix A(t, τ) is the expected
number of individuals of type i (type 1 stands for vectors, type 2 for humans)
that one infected individual of type j will infect per unit of time at time t if it
was infected at time t − τ .

Let E be the set of T-periodic continuous functions with values in R
2; with

the supremum norm, this is a Banach space. The asymptotic behavior of equa-
tions such as (9) has been investigated in [22]: u(t) ∼ eλ∗t v(t), where λ∗ is a real
number and v ∈ E is nonnegative, nonzero, and such that

v(t) =
∞∫

0

e−λ∗τ A(t, τ) v(t − τ) dτ . (10)

In fact, there is a unique real number λ∗ for which such a nonnegative and
nonzero element of E can be found [14,22].

Now let R0 be the spectral radius of the linear operator which maps w ∈ E to
the function t �→ ∫ ∞

0 A(t, τ) w(t − τ) dτ , also in E . Recall that since this linear
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operator is nonnegative, R0 can also be characterized by the existence of a
nonnegative and nonzero w ∈ E such that

∞∫

0

A(t, τ) w(t − τ) dτ = R0 w(t). (11)

Then R0 has the properties of an epidemic threshold: λ∗ > 0 if R0 > 1, and
λ∗ < 0 if R0 < 1.

Indeed, for all real number λ, let Aλ be the linear operator which maps w ∈ E
to the function t �→ ∫ ∞

0 e−λτ A(t, τ) v(t − τ) dτ , also in E . Let Rλ be the spectral
radius of Aλ. Notice that this definition is consistent with the definition of R0.
Notice also that for all λ, the linear operator Aλ is nonnegative. Moreover,
λ1 ≤ λ2 implies Aλ1 ≥ Aλ2 . The properties of the spectral radius imply that the
function λ �→ Rλ from R to R is decreasing. But according to equation (10),
Rλ∗ = 1. So if R0 > 1, then λ∗ > 0. And if R0 < 1, then λ∗ < 0. QED.

Notice that if p(t) is a constant p, then A(t, τ) does not depend on t. In this
case, considering a constant function w(t) equal to a nonnegative eigenvector
of the nonnegative matrix

∫ ∞
0 A(τ ) dτ , we see that R0 is the spectral radius of

this matrix, which is generally called the next-generation matrix [8, p. 74]. More
precisely, we get

R0 =

√√
√
√
√

β2 π π̂

P
× p

µ

∞∫

0

g(τ ) dτ , (12)

where we see the product of the mean number of humans infected by one infec-
tious sandfly βπ

µ
with the mean number of sandflies infected by one infectious

human (βπ̂p/P)
∫ ∞

0 g(τ ) dτ .
If p(t) is not constant but T-periodic, then setting w = (w1 , w2), (11) can be

rewritten as

β π̂ p(t)
P

∞∫

0

g(τ ) w2(t − τ) dτ = R0 w1(t)

β π

∞∫

0

e−µτ w1(t − τ) dτ = R0 w2(t).

Inserting the second equation into the first one, we see that if r0 is such that
there exists a nonnegative and nonzero T-periodic function w1(t) satisfying

p(t)

∞∫

0

g(τ )

∞∫

0

e−µσ w1(t − τ − σ) dσ dτ = r0 w1(t), (13)
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Fig. 2 a: emergence rate of sandflies �̄(t). b: population of sandflies p̄(t). The line was computed
using p̄′(t) = �̄(t) − µ p̄(t). The dots represent data from [10]

then

R0 =
√

β2 π π̂

P
× r0. (14)

Formula (14) generalizes the classical formula (12) for vector-borne diseases
with a seasonal (periodic) population of vectors. Notice that r0 is a complex
function of p(t), g(x) and µ. Obviously, r0 is a decreasing function of µ. Besides,
if p(t) is replaced by ε p(t), then r0 becomes ε r0. So the classical conclusion
saying that a vector-borne disease can be eradicated if the population of vectors
is divided by (R0)

2 – valid a priori only for a constant population of vectors –
remains true if the population of vectors is periodic provided that the definition
of R0 presented above is used.

To avoid misunderstanding, let us recall that some authors call R0 what
appears here as R2

0. This point is discussed briefly in [13, §2.1].

4 Simulation and estimation of R0

Now we turn to the estimation of the parameters of the model.
The total population of Imi’Ntanout is about 5,000. However, some parts of

the city are more affected than others because sandflies prefer areas where they
can lay eggs, for example near garbage deposits. The present model considers
only one homogeneous group. One way to deal with this is to consider that the
initial susceptible population P is unknown but with the constraint P ≤ 5, 000,
and should be determined in the process of fitting the epidemic curve with data.

According to current knowledge about sandflies, the life expectation 1/µ of
an adult sandfly is about 10 days. So we took µ = 3 per month.

The sampling in Fig. 1 shows the seasonal fluctuations of the vector popu-
lation up to a constant multiplicative factor from June 2002 until December
2003. We will take as the basis for the periodic population of the model the data
from January to December 2003. Of course, the vector population from June to
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December 2002 was not absolutely the same as from June to December 2003
because the mean monthly temperature for example can be slightly different
from year to year. Let us call pmax the maximum number of sandflies during the
year, p̄(t) = p(t)/pmax, �̄(t) = �(t)/pmax, s̄(t) = s(t)/pmax and ī(t) = i(t)/pmax.
Assuming that the sandfly emergence rate per month �̄(t) is a step function,
the width of the steps being equal to the time between two observations of
sandfly population, it is easy to fit the heights of the steps so that p̄(t) given by
p̄′(t) = �̄(t) − µ p̄(t) coincides with the data (see Fig. 2a, b). More precisely, if
θk < θk+1 are two successive observation times, then

�̄(t) = �̄k = µ
exp(µ θk+1) p̄(θk+1) − exp(µ θk) p̄(θk)

exp(µ θk+1) − exp(µ θk)
(15)

on the interval (θk, θk+1). This choice turned out to be consistent with the data
in the sense that we found �̄ ≥ 0 for each interval except of course for the
last interval at the end of the transmission season for which p̄(θk) > 0 and
p̄(θk+1) = 0, and for which we took �̄(t) = 0.

We assume that at t = 0, say at the beginning of the year 2000, one human
imports the infection into the susceptible population. At that time, the pop-
ulation of vectors is zero. The initial condition will be: s(0) = 0, i(0) = 0,
S(0) = P − 1, I(0, τ) = δτ=0 (Dirac’s mass at τ = 0), and R(0) = 0.

To get α(τ), one assumes that f (τ ), the probability distribution of the time
elapsed from infection to symptoms in humans, is a Gamma distribution:

f (τ ) = aν τ ν−1 e−a τ /�(ν). (16)

For computational purposes, notice that when τ → +∞:

α(τ) = f (τ )

1 − ∫ τ

0 f (σ ) dσ
� − f ′(τ )

f (τ )
= a − ν − 1

τ
.

Consider system (1)–(5). Dividing the first two equations by pmax, we see that

s̄′(t) = �̄(t) − µ s̄(t) − β π̂ s̄(t)
I(t)
P

, ī
′
(t) = β π̂ s̄(t)

I(t)
P

− µ ī(t) , (17)

S′(t) = −β π pmax ī(t)
S(t)
P

+ γ R(t) , (18)

I(t, 0) = β π pmax ī(t)
S(t)
P

,
∂I
∂t

(t, τ) + ∂I
∂τ

(t, τ) = −α(τ) I(t, τ) , (19)

R′(t) =
∞∫

0

α(τ) I(t, τ) dτ − γ R(t) . (20)

Hence, �̄(t) and µ being known, the only unknown parameters left are: P, the
product β π̂ , the product β π pmax, γ , and the two parameters a and ν which



430 N. Bacaër, S. Guernaoui

2000 2001 2002 2003 2004 2005 2006 2007
0

100

200

Fig. 3 Number of new cases of cutaneous leishmaniasis per month computed from the model
(dotted line) and number of reported cases (step function). The population of sandflies (bold solid
line) is also shown (scale irrelevant)

define α(x). Recall that for the Gamma distribution, ν/a is the mean and
√

ν/a
the standard error.

Simulating system (17)–(20) with different sets of parameter values, we found
that a relative good fit to the number of cases reported each month between
January 2001 and December 2004 (i.e. to the data shown in Fig. 1) was obtained
with P = 800, β π̂ = 1.1 per month, β π pmax = 16, 230 per month, 1/γ = 1.2
years, ν/a = 6 months and

√
ν/a = 1.5 month (see Fig. 3).

Using these parameter values, one can compute numerically R0 as defined in
the previous section. First, in order to simplify Eq. (13), we use the change of
variable θ = τ + σ to get

p(t)

∞∫

0

g(τ ) eµτ

∞∫

τ

e−µθ w1(t − θ) dθ dτ = r0 w1(t) .

Integrating by parts and noticing that the “integrated term” vanishes, we arrive
at

p(t)

∞∫

0

h(τ ) w1(t − τ) dτ = r0 w1(t) , (21)

where we set

h(τ ) = e−µτ

τ∫

0

eµσ g(σ ) dσ . (22)
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Since w1(t) is T-periodic, it follows that

∞∫

0

h(τ ) w1(t − τ) dτ =
t∫

−∞
h(t − θ) w1(θ) dθ

=
t∫

0

h(t − θ) w1(t − θ) dθ

+
∞∑

n=0

T∫

0

h(t + (n + 1)T − θ) w1(θ) dθ

=
t∫

0

H(t − θ) w1(θ) dθ +
T∫

t

H(t − θ + T) w1(θ) dθ ,

where we set

H(τ ) =
∞∑

n=0

h(τ + nT) . (23)

So the eigenvalue problem (21) is equivalent to

p(t)






t∫

0

H(t − θ) w1(θ) dθ +
T∫

t

H(t − θ + T ) w1(θ) dθ





= r0 w1(t) , (24)

which can be easily approximated since it involves only the values of w1(t) on
the interval (0, T). Indeed, let N be a large integer, set ti = (i − 1)T/N for
i = 1 . . . N, and let ρ̄0 be the spectral radius of the following matrix eigenvalue
problem

p̄(ti)
T
N






i−1∑

j=1

H(ti − tj) Wj +
N∑

j=i

H(ti − tj + T ) Wj





= ρ̄0 Wi , (25)

which is of the form A W = ρ̄0 W, where A is a N × N nonnegative matrix and
W = (W1, . . . , WN). Considering the relation (14) between R0 and r0, one can
conclude that

√
(β π̂) × (β π pmax) × ρ̄0/P −→

N→+∞ R0 .

The results are presented in Table 1. In practice, the terms in (25) were
computed in the following way:
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Table 1 Estimation of R0. N is the number of points discretizing the interval (0, T), which repre-
sents 1 year

N 25 50 100 200 400

R0 1.901 1.926 1.938 1.940 1.940

− For the normalized vector population p̄(ti), the equation p̄′(t) = �̄(t) −
µ p̄(t) and the assumption saying that �̄(t) is a step function given by for-
mula (15) imply that p̄(ti) = e−µ(ti−θk)[p̄(θk) − �̄k/µ] + �̄k/µ if θk ≤ ti <

θk+1. Recall that p̄(t) is shown in Fig. 2b.
− For the function H(τ ), we truncated the sum (23), keeping only the first two

terms. Taking more than the first two terms in the sum did not change any
of the digits in Table 1. For the function h(τ ), which is necessary to compute
H(τ ), we used equations (6) and (22) and an integration by parts to get the
more practical form h(τ ) = [e−µτ

∫ τ

0 eµσ f (σ ) dσ+1−e−µτ−∫ τ

0 f (σ ) dσ ]/µ.
− The spectral radius ρ̄0 can be computed using numerical mathematics soft-

ware such as Scilab (www.scilab.org).

Finally, it seems that R0 � 1.94. The epidemic could be stopped if the population
of vectors were reduced by a factor (R0)

2 � 3.76. We have checked numeri-
cally that a simulation of system (17)–(20) of partial differential equations with
the product β π pmax divided by 3.7 still yields an epidemic, while there is no
epidemic if it is divided by 3.9. If instead of using the complicated method of
this section, we had used as an approximation formula (12) with the symbol p
replaced by the mean of the fluctuating p(t), we would have found R0 � 2.76,
which overestimates the effort necessary to stop the epidemic.

Currently, there are no prophylactic drugs or vaccines that can be used to
prevent leishmaniasis. The breeding sites of sandflies are generally unknown,
and control efforts that focus on immature stages are generally not feasible [9].
The control of leishmaniasis therefore relies upon measures taken to reduce
sandfly density. Such a reduction in the number of vectors could be achieved
by spraying insecticides. However, the province of Chichaoua is a poor rural
area, and this solution requires probably too much money and effort compared
to local resources. Nevertheless, its geographic position, halfway between two
major touristic zones of Morocco, Marrakesh and Agadir, would certainly jus-
tify such an intervention even from a purely economic point of view at the
national level.

5 Generalization and other possible applications

The definition of the basic reproduction number R0 presented in this work can
be generalized as follows. Let A(t, τ) be an n × n nonnegative and continuous
matrix function, with Ai,j(t, τ) representing the expected number of individuals
of type i infected per unit of time at time t by one individual of type j that was
infected at time t − τ . Assume that A(t, τ) is T-periodic with respect to t for all
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τ , and that
∫ ∞

0 A(t, τ) dτ is finite for all t. Under suitable positivity assumptions
on the matrix function A(t, τ), there exists a unique real number R0 such that
there exists a nonnegative, nonzero, continuous and T-periodic vector function
w(t) such that

∞∫

0

A(t, τ) w(t − τ) dτ = R0 w(t) .

Moreover, if ū(t) is a given vector function and u(t) satisfies

u(t) =
t∫

0

A(t, τ) u(t − τ) dτ + ū(t) , (26)

then u(t) ∼ eλ∗t v(t) as t → +∞, where v(t) is a nonnegative T-periodic vector
function such that

∞∫

0

e−λ∗τ A(t, τ) v(t − τ) dτ = v(t) . (27)

Finally, λ∗ > 0 if R0 > 1 and λ∗ < 0 if R0 < 1. The definition of R0 can be
also used in other fields of population dynamics, e.g. demography (the verb “to
infect” should then replaced by “to give birth”).

If A(t, τ) does not depend on t, i.e. A(t, τ) = A(τ ), then taking for w(t) an
eigenvector of the matrix

∫ ∞
0 A(τ ) dτ , we see that R0 is the spectral radius of

this matrix. Besides, λ∗ is the unique real number such that the spectral radius
of the matrix

∫ ∞
0 e−λ∗τ A(τ ) dτ is equal to 1. Any eigenvector associated to the

eigenvalue 1 of this matrix can be chosen for v(t) to satisfy (27).
There is another special case for which the basic reproduction number R0

can be computed easily, namely the case where n = 1 and

A(t, τ) = p(t) e− ∫ t
t−τ φ(σ )dσ (28)

with T-periodic functions p(t) and φ(t). Indeed, the eigenvalue problem can
then be rewritten as

p(t)

∞∫

0

e− ∫ t
t−τ φ(τ )dτ w(t − τ) dτ = R0 w(t) . (29)
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Deriving this equation and integrating by parts, one gets

R0 w′(t) = p′(t)
∞∫

0

e− ∫ t
t−τ φ(σ )dσ w(t − τ) dτ + p(t)

∞∫

0

e− ∫ t
t−τ φ(σ )dσ w′(t − τ) dτ

+p(t)

∞∫

0

e− ∫ t
t−τ φ(σ )dσ

[
φ(t − τ) − φ(t)

]
w(t − τ) dτ

= p′(t) R0 w(t)
p(t)

− p(t)

∞∫

0

φ(t − τ) e− ∫ t
t−τ φ(σ )dσ w(t − τ) dτ

−p(t)
[
e− ∫ t

t−τ φ(σ )dσ w(t − τ)
]∞

0

+p(t)

∞∫

0

e− ∫ t
t−τ φ(σ )dσ

[
φ(t − τ) − φ(t)

]
w(t − τ) dτ

= p′(t)
p(t)

R0 w(t) − φ(t) R0 w(t) + p(t) w(t).

The previous equation can be rewritten as

w′(t)
w(t)

= p′(t)
p(t)

− φ(t) + p(t)
R0

,

which can be integrated to get

w(t) = K p(t) e− ∫ t
0 φ(τ)dτ+ 1

R0

∫ t
0 p(τ ) dτ (30)

where K is a positive constant. The function w(t) thus obtained is T-periodic if
w(t + T) = w(t) for all t. Using the periodicity of p(t) and φ(t), we see that this
condition holds if and only if

R0 =
∫ T

0 p(τ ) dτ
∫ T

0 φ(τ) dτ
. (31)

Conversely, the function w(t) given by (30) with R0 given by (31) satisfies equa-
tion (29). Formula (31) appears in [18, §3.1] for an SIR epidemic model with
periodic contact rate and death rate, whose linear stability analysis can be put
in the form (26) with A(t, τ) of the form (28). But the authors hesitate to call R0
the right-hand side of (31) (they call it R̄) because they do not have a general
definition of R0. This expression “appears” just at the end of their analysis.
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The same computation (derivation, integration by parts, etc) starting from
(27) shows that

v(t) = K p(t) e−λ∗ t−∫ t
0 φ(τ) dτ+∫ t

0 p(τ ) dτ ,

which is T-periodic if and only if

λ∗ = 1
T

T∫

0

p(τ ) dτ − 1
T

T∫

0

φ(τ) dτ . (32)

For this case, the epidemic threshold (R0 > 1 or λ∗ > 0) depends only on the
mean value of p(t) and φ(t). For the even more particular case where φ(t) is
constant, formula (32) is the result “proved” in [23] using Fourier techniques
and divergent series!

We also mention that the linear stability of the SEIR epidemic model with
periodic contact rate in [18, §2] can be put in the form (26) with a 2 × 2 matrix
A(t, τ) similar to the one from Sect. 3. As in the present paper, no closed formula
for R0 can be expected, but numerical estimation is possible.

From the point of view of applications, the definition of R0 we propose might
be used to evaluate the risk for vector-borne diseases to appear in areas that
have been disease-free until now, provided that enough information is known
about the vector population and the disease. This has become a popular topic in
epidemiology because many people believe that the climate is getting warmer
and that the tropical diseases from the “South” could appear or reappear in
the “North”. We mention in particular the project called EDEN (“Emerging
Diseases in a changing European eNvironment”, www.eden-fp6project.net).
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