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Abstract. A Chapman-Enskog expansion is used to derive hyperbolic models for chemo-
sensitive movements as a hydrodynamic limit of a velocity-jump process. On the one hand,
it connects parabolic and hyperbolic chemotaxis models since the former arise as diffusion
limits of a similar velocity-jump process. On the other hand, this approach provides a uni-
fied framework which includes previous models obtained by ad hoc methods or methods
of moments. Numerical simulations are also performed and are motivated by recent experi-
ments with human endothelial cells on matrigel. Their movements lead to the formation of
networks that are interpreted as the beginning of a vasculature. These structures cannot be
explained by parabolic models but are recovered by numerical experiments on hyperbolic
models. Our kinetic model suggests that some kind of local interactions might be enough to
explain them.
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1. Introduction

Chemotaxis is a process by which cells change their state of movement reacting
to the presence of a chemical substance, approaching chemically favorable envi-
ronments and avoiding unfavorable ones. In the simple situation where we only
consider cells and a chemical substance (the chemo-attractant), a model for the
space and time evolution of the density n = n(t, x) of cells and the chemical con-
centration S = S(t, x) at time t and position x ∈ � ⊂ R

d has been introduced by
Patlak [28] and Keller & Segel [17] and reads

∂n

∂t
− div(D∇ n − χ n∇S) = 0, (1)

∂S

∂t
− DS �S = g(n, S). (2)

However, this approach is not always sufficiently precise to describe the evolution
of bacteria movements. Indeed, experiments show that bacteria like Escherichia
Coli move along straight lines, suddenly stop to choose a new direction and then
continue moving in a new direction. This phenomenon, called run and tumble, can

Fig. 1. Formation of network of endothelial cells (courtesy of Dr. M. Mirshahi).
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be modeled by a stochastic process called the velocity-jump process, and has been
introduced by Alt [1] and further developed in [11,32]. A kinetic transport model
to describe this velocity jump process reads [27]

∂f

∂t
+ v · ∇xf = T (S, f ), (3)

where f (t, x, v) denotes the density of cells, depending on time t , position x and
velocity v and T is an operator, which models the change of direction of cells. In
fact, parabolic chemotaxis equations such as the Patlak-Keller-Segel (PKS) model
(1)–(2) have been obtained as the diffusion limit of the transport equation (3), thus
allowing to determine the motility D and the chemotactic sensitivity χ [11,26].
A mathematical convergence proof has been subsequently supplied in [2], while
we refer to [2,16] for the existence of solutions to (3). More precisely, the diffu-
sion limit may be seen as the limit of (3) as ε goes to zero after the rescaling
t → ε2 t, x → ε x, which shows that the PKS system (1)–(2) corresponds to a
long time asymptotics of the transport model. A more recent tendency has been to
use hyperbolic equations to describe intermediate regimes at the macroscopic level
rather than parabolic equations like (1)–(2), see for instance [4,5,31]. Our purpose
is to give several ways toward such modeling and especially to assert hyperbolic
chemotaxis models developed either by ad hoc methods [31,8] or by a moments
closure method [12,13] starting from (3). In this paper, we will show that hyperbolic
chemotaxis models may also be derived as a fluid limit of the transport equation
(3), but with a different scaling, the hydrodynamic scaling t → ε t, x → ε x.
The approach used relies on a Chapman-Enskog (or Hilbert) expansion and allows
us to recover the previously mentioned models.

Let us recall recent experiments with human endothelial cells on matrigel. Their
movements lead to the formation of networks that are interpreted as the beginning
of a vasculature (see Fig. 2 or [31,8]). This phenomenon is important since it is
responsible of angiogenesis, a major factor for the growth of tumors [3,19]. These
structures cannot be explained by the above parabolic models which generically
lead to pointwise blow-up, but are recovered by numerical experiments on hyper-
bolic models. Our kinetic model suggests that local interactions between cells might
be part of the mechanism for these network formations and not only the long range
interactions throught a diffused chemoattractant.

The outline of this paper is as follows. In section 2, we give general assumptions
on the kinetic transport model (turning operator) and use a formal Chapman-Enskog
expansion to derive different hyperbolic systems which depend on the structure of
the turning operator T . We first study linear operators with respect to f and point
out some of their features. We then use this approach to derive nonlinear hyperbolic
models already proposed by Gamba et al. [31] to describe the first stages of blood
vessels formation. Finally, in section 3 we perform some numerical computations
of nonlinear hyperbolic models of chemotaxis, using a second order Lax-Friedrich
scheme. On the one hand, we compare the transient behaviour of the parabolic
model (PKS system) and hyperbolic models. On the other hand, we observe the
formation of networks in hyperbolic models as in the above mentioned experiments.
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2. Derivation of hyperbolic systems

2.1. The kinetic framework

We scale the time and space variables t → εt and x → εx in (3) and thus obtain
the following transport equation for the distribution function f = f (t, x, v)

∂f

∂t
+ v · ∇xf = 1

ε
T (S, f ), (4)

where the position x ∈ � ⊂ R
d and the velocity v ∈ V ⊂ R

d . Here again, the
concentration of the chemo-attractant S(t, x) is a solution to (2), where the density
of cells n is given by

n(t, x) =
∫

V

f (t, x, v)dv.

As in [11,26], we assume herein that the turning operator is of the form

T (S, f ) = T0(f ) + εT1(S, f ), (5)

where T0 represents the dominant part of the turning kernel modeling the tumble
process in the absence of chemical substance and T1 is the perturbation due to
chemical cues. The parameter ε is a time scale which here refers to the turning
frequency. The purpose of this paper is to understand the asymptotics of (4) as ε

goes to zero.
We first mention some assumptions on the turning operators T0 and T1.

• The turning operators T0 and T1 preserve the local mass∫
V

T0(f ) dv =
∫

V

T1(S, f ) dv = 0, (6)

for any S ≥ 0.
• In addition, T0 conserves the population flux, that is,∫

V

T0(f ) v dv = 0. (7)

• For all n ∈ [0, +∞) and u ∈ R
d , there exists a unique function Fn,u ∈

L1(V ; (1 + |v|)dv) such that

T0(Fn,u) = 0 ,

∫
V

Fn,u(v) dv = n,

∫
V

Fn,u(v) v dv = n u. (8)

The most commonly used assumption on the turning operators Ti , i = 0, 1, is that
they are both linear integral operators with respect to f and read

Ti (S, f )(t, x, v) =
∫

V

(
Ti(v, v′)f (t, x, v′) − Ti(v

′, v)f (t, x, v)
)
dv′. (9)

Here the turning kernel Ti(v, v′) describes the reorientation of cells, i.e. the random
velocity changes from v to v′ and may depend on the chemo-attractant concentra-
tion and its derivatives. Notice that a straightforward consequence of the structure
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(9) is that T0 and T1 fulfil (6). Moreover, the assumption (8) simply means that the
kernel of T0 is (d + 1)-dimensional. This is consistent with Remark 2.1 in Othmer
& Hillen [11], where such a condition was expected for the hyperbolic or streaming
character of the transport process to dominate. Usually, the assumption (7) on the
conservation of the population flux by the operator T0 is not made, because classi-
cally, one prefers a diffusive scaling to recover PKS parabolic models. But here, it
is useful in order to derive hyperbolic systems. We give later some examples where
this additional conservation law can be derived.

2.2. Hydrodynamic limit

In this section, we explain why assumptions (6)–(8) lead to hyperbolic systems on
a macroscopic scale. Let f be a solution to the kinetic equation (4) and set

n(t, x) =
∫

V

f (t, x, v)dv, n(t, x) u(t, x) =
∫

V

f (t, x, v) vdv. (10)

We introduce f1 such that

ε f1(t, x, v) = f (t, x, v) − Fn(t,x),u(t,x)(v),

where the equilibrium distribution function Fn,u is defined by (8). Then, the distri-
bution f1 satisfies the following properties

∫
V

f1(t, x, v)dv =
∫

V

f1(t, x, v) v dv = 0.

We integrate (4) over v ∈ V and use (10) and the conservation of mass (6) to obtain

∂n

∂t
+ div(n u) = 0. (11)

We next multiply (4) by v and integrate over V . Owing to the conservation of
momentum (7) by the turning operator T0 , we obtain

∂(nu)

∂t
+ div

(∫
V

v ⊗ v f (t, x, v) dv

)
=
∫

V

T1(S, f ) v dv.

Replacing f by its expansion around the stationary state of T0

f (t, x, v) = Fn(t,x),u(t,x)(v) + εf1(t, x, v),

we are led to the following equation for the population flux n u

∂(nu)

∂t
+ div

(∫
V

v ⊗ v Fn,u(v) dv

)
=
∫

V

T1(S, Fn,u) vdv + O(ε). (12)

Next, we compute
∫

V

v ⊗ v Fn,u dv =
∫

V

(v − u) ⊗ (v − u) Fn,u dv + n u ⊗ u,

= P + n u ⊗ u
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where the pressure tensor is given by

P(t, x) =
∫

V

(v − u(t, x)) ⊗ (v − u(t, x)) Fn(t,x),u(t,x) dv. (13)

Moreover, since T1 also conserves local mass, (12) can be written as

∂(nu)

∂t
+ div(n u ⊗ u + P) =

∫
V

(v − u) T1(S, Fn,u) dv + O(ε). (14)

Then, to first order with respect to ε, we end up with the following hyperbolic
system




∂n

∂t
+ div(n u) = 0,

∂(nu)

∂t
+ div(n u ⊗ u + P) =

∫
V

(v − u) T1(S, Fn,u) dv,

(15)

the evolution of S being still given by the concentration equation (2).
We observe that the influence of the turning operator T0 on the macroscopic

equations (15) only comes into play through the stationary state Fn,u in the com-
putation of the right-hand side of (15) and the pressure tensor P . The structure of
the turning operator T1 determines the effect of the chemo-attractant.

The approach we have developed above is quite general and we now give more
specific examples. In the literature, the turning operator is usually chosen to be
linear with respect to f . We first consider this case, where the system (15) turns out
to be also linear with respect to (n, n u). In particular, a suitable choice of the turn-
ing operators T0 and T1 allows us to recover the Cattaneo system which has been
extensively studied recently (see, e.g., [4,13] and the references therein). We next
derive nonlinear macroscopic models starting from a relaxation turning operator
T0.

2.3. The Cattaneo system

We consider the case where the set of velocities is a sphere of radius s, V = s S
d−1,

with s > 0 and S
d−1 the unit sphere of R

d . Moreover, we assume the stationary
state to be a linear combination of 1,v1,...,vd

Fn,u(v) = 1

ω0

(
n + d

s2 n

d∑
i=1

vi ui

)
,

where ω0 = sd−1|Sd−1|. We take T0 as a relaxation operator to Fn,u, that is,

T0(f ) = µ0 (Fn,u − f ),

while T1 is given by

T1(f ) = µ1

(
n

σd−1
− f

)
− µ2d

s2

(
nu

σd−1
− vf

)
· ∇S,
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where n and u depend on f and are given by (10). Here, µi , i = 0, 1, 2, are real
numbers and σd−1 denotes the measure of S

d−1. With the notations used in (9),
these operators correspond to

T0(v, v′) = µ0

σd−1

(
1 + d

s2 v · v′
)

and

T1(v, v′) = µ1

σd−1
− µ2d

σd−1s2 v · ∇S.

Then, the pressure tensor P = (Pi,j ) defined by (13) is

Pi,j (t, x) = s2

d
n − n ui uj

and ∫
V

T1(S, Fn,u) (v − u) dv = −µ1n u + µ2n ∇S.

Then the model (15) becomes the following linear system




∂n

∂t
+ div(n u) = 0,

∂(nu)

∂t
+ s2

d
∇n = −µ1n u + µ2n ∇S

(16)

which is called the Cattaneo model for chemosensitive movement with density con-
trol [4,13]. One can actually include a more realistic dependence on S by choosing
µ2 = µ2(n, S).

This system has been already obtained by Hillen in [13] using a method of
moments. The Chapman-Enskog expansion requires that the turning operator T0
preserves momentum (7) - a property which is of course fulfilled here - to get a sys-
tem of equations for (n, n u), whereas this assumption is not made in the moment
closure method, where the number of unknowns is not directly related to the number
of invariants of the turning operator T0. In addition, the Chapman-Enskog approach
indicates that the solution to the hyperbolic system is an approximation of order ε

of the density and population flux of the original transport equation (3), which is
not clear for the method of moments. Indeed, recall that the latter is obtained from
the system of equations for the moments of order zero and one of f with respect
to v, which depends on the moments of f of order two, and is thus not closed. The
closure is realized by approximating f by a function which maximizes an entropy
[12]. Since there is no identified small parameter it does not seem to be obvious
to show that the solution to the macroscopic system is an approximation of the
moments of the solution f to (3).

Observe that the Cattaneo model (16) is also linear with respect to (n, n u).
Other choices of T1, depending on S, are proposed and investigated numerically in
[4]. In particular, assuming a nonlinear dependence of µ2 in (16) on n, numerical
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experiments are performed in [4] to observe pattern formation and seem to give
good results which agree well with experiments.

However, one drawback of this macroscopic model is that the density n(t, x)

need not be nonnegative. Indeed, it satisfies a linear wave equation with a source
term and the positivity is not preserved during the evolution in general.

2.4. Nonlinear relaxation models

As already mentioned, the geometrical structure of the turning operator T0 does not
play a major role in the derivation of macroscopic models in our approach, since it
only appears through the stationary states in (8). For this reason, we here only con-
sider relaxation models associated with a given stationary solution F . For simplicity
we choose V = R

d and consider a nonnegative function F ∈ L1(V , (1 + |v|)dv),
a positive function ϑ : R −→ (0, +∞) and λ > 0, such that

∫
V

F (v) dv = 1,

∫
V

v F (v) dv = 0.

and

T0(f )(v) = λ

(
n

ϑd/2(n)
F

(
v − u

ϑ1/2(n)

)
− f (v)

)
.

Here again, n and u depend on f and are given by (10). Thanks to the structure of
T0 and the properties of F , T0 clearly enjoys (6), (7) and (8). Presently, this turning
operator may lack a biological interpretation, but as we said before, macroscopic
quantities do not depend on the specific structure of the turning operator T0. Never-
theless, this operator might be seen as a coarse model for local interactions between
the cells, which can be observed in some recent experiments with human endothelial
cells on matrigel [24]. Also, it has the advantage of compatibility with nonnegative
densities. These are the reasons why such relaxation operators are widely used in
physics and their mathematical properties well studied [29]. On the other hand, the
structure of the turning operator T1 is much more important because the dynamics
is mainly driven by the chemoattractant and we present different models below.

The computation performed in §2.2 allows us to derive the pressure tensor,
which only depends on the stationary state of T0 and reads

P = n

ϑd/2(n)

∫
V

(v − u) ⊗ (v − u)F

(
v − u

ϑ1/2(n)

)
dv = nϑ(n) p,

with the constant matrix p given by

p =
∫

V

v ⊗ vF (v)dv.
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2.4.1. Scattering-type turning operator T1
We consider here that T1 = T1(S, f ) is given by

T1(S, f ) =
∫

V

K1(v, v′, S) · ∇S f (v′) dv′ −
∫

V

K1(v
′, v, S) · ∇S dv′ f (v).

Obviously, T1 satisfies (6) and we easily check that∫
V

(v − u) T1(S, Fn,u) dv

= n

ϑd/2(n)

∫
V ×V

v K1(v, v′, S) · ∇S F

(
v′ − u

ϑ1/2(n)

)
dvdv′

− n

ϑd/2(n)

∫
V ×V

K1(v
′, v, S) · ∇S F

(
v − u

ϑ1/2(n)

)
dv′ dv,

= n ϑ(d+1)/2(n) χ (n, u, S) ∇S,

where the matrix χ is given by

χ(n, u, S) =
∫

V ×V

(v − v′) ⊗ K1(u + ϑ1/2v, u + ϑ1/2v′, S)F (v′) dv′ dv.

We then obtain the following model for the cell movements


∂n

∂t
+ div(n u) = 0,

∂(nu)

∂t
+ div(n u ⊗ u + nϑ(n)p) = n ϑ(d+1)/2(n) χ(n, u, S)∇S,

(17)

coupled with the concentration equation (2) for S.

2.4.2. Nonlinear turning operator T1
More generally, the turning operator T1 may also depend nonlinearly on f . For
instance, when only macroscopic quantities computed from the distribution func-
tion f are taken into account, a possible choice is

T1(S, f ) =
∫

V

K1(v − u, v′ − u, n, S) · ∇Sf (v′)dv′.

Then,∫
V

(v − u)T1(S, Fn,u)dv

= n

ϑd/2

∫
V ×V

(v − u) ⊗ K1(v − u, v′ − u, n, S)F

(
v − u

ϑd/2

)
dvdv′ ∇S,

= n χ(n, S) ∇S,

where the matrix χ is given by

χ(n, S) = ϑ(d+1)/2(n)

∫
V ×V

w ⊗ K1(ϑ(n)1/2w, ϑ(n)1/2w′, n, S)F (w′)dwdw′.
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We finally show that the model for blood vessels formation introduced in [31,8] can
be obtained from (4) by the approach we have developed, with a turning operator
T1 depending nonlinearly on f . More precisely, we assume further that

K1(v, v′, n, S) = a(n) l1(v)v,

with ∫
V

l1(v) dv = 1,

∫
V

v l1(v) dv = 0,

∫
V

v ⊗ v l1(v)dv = Id.

We then obtain∫
V

(v − u)T1(S, Fn,u)dv = a(n) n ϑ(d+1)/2(n) ∇S.

Taking a(n) = ϑ−(d+1)/2(n), we end up with the following system proposed by
Gamba et al. in [31,8]




∂n

∂t
+ div(n u) = 0,

∂(nu)

∂t
+ div(n u ⊗ u + nϑ(n) p) = n∇S,

(18)

still coupled with the concentration equation (2) for S. The model considered in
[31,8] is actually (18) with p = Id coupled to (2) and is used to describe vas-
culogenesis (early formation of blood vessels). This model has also been used to
describe the emergence of network-like patterns in the large-scale distribution of
masses of the Universe [34].

At this stage we may discuss more precisely the differences between hyper-
bolic systems as (18)–(2) and parabolic systems as PKS model (1)–(2). Both of
them exhibit singular pattern formation, and in particular blow-up patterns. There
is however a striking difference between the transient states before the blow-up
occurs. Indeed, for the PKS parabolic model (1)–(2), the density n of cells concen-
trates in the neighbourhood of isolated points, these concentration regions becoming
more and more narrow and ultimately leading to finite time pointwise blow-up. We
refer to [10,21,33] for mathematical proofs for spherically symmetric solutions in
a ball, the blow-up point being the center of the ball (and these are the only possi-
ble singularities). In the nonsymmetric case blow-up results are established in [14,
15,30], the blow-up points being located on the boundary. Numerical evidence of
this fact may be found in [23], see also [7], remark 4.5. This pointwise blow-up
is compatible with well-established experiments for Dictyostelium Discoı̈deum or
Escherichia Coli. On the other hand, finite time blow-up was also proved in [22]
for spherically symmetric solutions to the hyperbolic system (18). But it is more
expected that shock-type structures appear before blow-up, which could explain
that the density concentrates in the vicinity of the edges of a network. These are
indeed recovered in the numerical simulations below and seem to be compatible
with the experiments on endothelial cells.
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Remark 1. System (18) can be also derived as an hydrodynamic limit of the
Vlasov-Fokker-Planck equation, which appears in the study of the mass distribution
in the Universe and reads

∂f

∂t
+ v · ∇xf + ∇S · ∇vf = 1

ε
T0(f ) (19)

where T0 is the nonlinear Fokker-Planck operator

T0(f ) = divv ((v − u)f + ϑ(n)∇vf ) ,

the concentration S is given by (2) and (n, n u) represents the density and the popu-
lation flux computed from f given by (10). The stationary state of the Fokker-Planck
operator is the Maxwellian

Mn,u(v) = n

(2 π ϑ(n))d/2 exp

(
−|v − u|2

ϑ(n)

)
,

and the pressure tensor reads

P =
∫

Rd

(v − u) ⊗ (v − u) Mn,u(v) dv = n ϑ(n) Id.

Performing a similar Chapman-Enskog expansion on (19), we recover (18). More-
over, a diffusive limit of the Vlasov-Fokker-Planck model (19) with u = 0 allows
us to get the parabolic PKS model (1)–(2) [25]. Thus, at the kinetic level the
Vlasov-Fokker-Planck model may also be an interesting approach to the study
of cell movements.

We conclude this section by some remarks on the connection between the hyper-
bolic chemotaxis model (18)–(2) and the parabolic chemotaxis model (1)–(2). We
first notice that, when p = Id , the stationary solutions to (18) with a zero popula-
tion flux (n u = 0) are the same as those of the PKS model. Indeed, such stationary
solutions satisfy

n∇S − ∇(nϑ(n)) = 0,

which is the equation satisfied by stationary solutions to the diffusive model for
chemotaxis [26,27]. Finally, a further rescaling in time and space of the hyperbolic
model formally leads to the parabolic system (1)–(2) - see [20].

3. Numerical simulations

We now present some numerical simulations on the nonlinear hyperbolic system
(18), (2) and first briefly describe the numerical scheme in a two-dimensional set-
ting. We refer to [6] for a more precise description of high order methods and for
more numerical experiments showing the accuracy and robustness of the scheme
to approximate non-smooth solutions to nonlinear hyperbolic systems as (18), (2).

We write (18) in the following form

∂U

∂t
+ ∇x · F(U) = R(U), (20)
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where

U =
(

n

n u

)
, F (U) =


n u1 n u2

n u2
1 + n ϑ(n) n u1 u2

n u1 u2 n u2
2 + nϑ(n)


 ,

with u = (u1, u2) and the source term is

R(U) =
(

0
n ∇xS

)
.

We fix a time step �t and set tk = k �t . The method is based on a time splitting
scheme between the conservative part and the source term, that is, the approxima-
tion Uk+1 of U(tk+1) is computed from the approximation Uk of U(tk) in two
steps:

Uk+1/2 = Uk − �t∇x · F(Uk), (21)

and

Uk+1 = Uk+1/2 + �tR(Uk+1/2). (22)

We next turn to the space discretization and consider grid points (xi)i∈N in the
box (0, L)2. We approximate the solution Uk(x) by discrete values Uk

i . A finite
volume method is used for solving (21). On the one hand, the discretization of the
conservative part is performed by integrating (21) on the square Ci centered at xi .
The approximation U

k+1/2
i is given by

U
k+1/2
i = Uk

i + �t

�x2 (Fi+1/2 − Fi−1/2).

Here, the flux Fi+1/2 is approximated by the Lax-Friedrichs flux [9,18]

F(Ur, Ul) = 1

2
(F (Ur) + F(Ul)) + α

2
(Ul − Ur),

where α is an upper bound of the Jacobian |∇xF |, and Ur (resp. Ul) is a high order
reconstruction of Uk in Ci (resp. Ci+1). On the other hand the diffusion equation
(2) is approximated by a classical second order finite difference scheme [18].

3.1. Influence of the population flux

We first present a simple numerical test to figure out the influence of the new variable
n u (population flux) on the dynamics. For that purpose, we perform a comparison
between the PKS model (1)

∂n

∂t
− div(∇ n − n∇S) = 0 (23)
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and the nonlinear hyperbolic model (18) with the choice ϑ(n) = 1 and p = Id

∂n

∂t
+ div(n u) = 0, (24)

∂(nu)

∂t
+ div(n u ⊗ u + n Id) = n∇S. (25)

In both cases, the evolution of S is still given by (2) with the choice g(n, S) = n

∂S

∂t
− DS �S = n. (26)

For the numerical simulations, we take DS = 0.001 and the initial datum S(0) = 0.
For the density and population flux, we consider an initial datum, which is at rest
u(0) = 0 and a distribution of cells with high density in two localized regions

n(0, x, y) = n0

2 π σ 2

(
e−((x−x0)

2+(y−y0)
2
)
/2 σ 2 + e−((x+x0)

2+(y+y0)
2
)
/2 σ 2

)
, (27)

where n0 = 1/4, (x0, y0) = (3 σ, 3 σ) and σ = 3. 10−2.
In Figs 2 and 3, we present the numerical solution for the parabolic model (23)

and (26) and the hyperbolic model (24), (25) and (26). Clearly, the transient behav-
iour of the two models differs due to the non-vanishing variation of the population
flux (n u). In the hyperbolic system (Fig. 3), we also observe the appearance of a
third bump between the two initial high density regions of n, where the population
flux is the largest. During time evolution we observe the elongation of the third
bump which can be interpreted as a first step of the formation of an edge of density

Fig. 2. Chemosensitive movement: evolution of the cell density n(t, x) obtained from the
parabolic PKS model.
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Fig. 3. Chemosensitive movement: evolution of (1) the cell density n(t, x) and (2) the veloc-
ity field u(t, x) obtained from the nonlinear hyperbolic model.
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concentration. Also, we note that the final maximal value of the density n is the
same in both simulations, but the final time is larger for the hyperbolic model than
for the parabolic one. This is expected because of the finite speed of propagation
property enjoyed by the former.

3.2. Formation of networks

As in [31,8], we perform numerical simulations of the hyperbolic model (18), (2)
on a square box of length L = 0.2 cm with periodic boundary conditions, using a
finite difference method. We set

g(S, n) = α n − 1

τ
S

in (2), where α represents the rate of release and τ is the characteristic degradation
time of soluble mediators. Here, we take α = 1, τ = 3600 sec. and the diffusion
rate in (2) is DS = 10−7, which correspond to the choice made in [31,8]. We also
choose the pressure to be

ϑ(n) = (σ 2 n)3,

where σ is the mean cell radius, which is of order 30 µ m.
The initial datum n(0) is chosen by throwing randomly cells inside the box,

with zero population flux (n u)(0) = 0 and zero concentration S(0) = 0 initially.
More precisely, for (x, y) ∈ (0, L)2, we choose

n(0, x, y) = 1

(2 πσ)2

N∑
i=1

exp
(
−
(
(x − xi)

2 + (y − yi)
2
)

/2 σ 2
)

,

where (xi, yi)1≤i≤N are uniformly distributed random points in the box (0, L)2,
each Gaussian bump of width σ representing a single cell. Thus N denotes the total
number of cells.

We present different numerical simulations when the initial total cell density
N varies. The simulation is stopped when either a stationary state is reached or the
network is formed.

In Fig. 4, the cell density is only 50 cells/mm2. Cells become closer and closer,
but the total density is not high enough to initiate a network. In Fig. 5 and 6, the den-
sity is taken as 100 cells/mm2 and 400 cells/mm2, respectively. We then observe
the formation of high density regions which are joined by chords. These results
reproduce well experiments (see Fig. 1 or [31,8]).

4. Discussion

In this paper we have developed a unified approach relying on the Chapman-Enskog
expansion to understand the link between kinetic models and hyperbolic systems
of chemotaxis. Using an appropriate scaling of the kinetic transport equations we
derive macroscopic models for the cell density and population flux. In contrast to
the moment method, our approach guarantees (at least formally) that the solution to
the macroscopic model (15) is indeed an approximation of order one (with respect
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Fig. 4. Formation of network:(1) density and zoom on the left-bottom corner of (2) the
density and (3) velocity field obtained with 50 cells/mm2.

Fig. 5. Formation of network:(1) density and zoom on the left-bottom corner of (2) the
density and (3) velocity field obtained with 100 cells/mm2.

Fig. 6. Formation of network: (1) density and zoom on the left-bottom corner of (2) the
density and (3) velocity field obtained with 400 cells/mm2.
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to the rescaling parameter ε) to the cell density and population flux of the solution
to the kinetic equation (3). Furthermore, it provides explicitly formulae for the flux
n u⊗u+P associated to the population flux n u and the chemotactic sensitivity χ

in terms of the turning operator T , which is not the case in the previous empirical
derivations [31].

From a mathematical viewpoint, the rigorous convergence of the nonlinear
kinetic equation to the hyperbolic system is an interesting issue, but this kind of
problem is currently one of the main open questions in kinetic theory [29]. A first
step in this direction would be to prove the existence of a solution to the hyperbolic
system which is beyond the scope of this paper.

We have also developed a numerical scheme to solve hyperbolic models for
chemosensitive movement. A high order approximation has been subsequently
implemented in [6], where further numerical simulations have been performed.
Let us mention here that the difficulty encountered in a convergence proof for one
of these schemes is similar to the one mentioned above for an existence result.

In summary, chemosensitive movement models are the starting point to per-
form computer simulations of biological processes, which can be compared with
experiments [31]. Based on these mathematical derivations at the kinetic scale and
numerical simulations, this paper gives a hint that network formations for human
endothelial cells on matrigel could be also due to local interactions and not only to
long range interactions. More precisely, hyperbolic models seem to represent well
the phenomena and can be derived from a local interaction kernel at the kinetic
level.
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