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Abstract. A framework is developed for constructing a large class of discrete generation,
continuous space models of evolving single species populations and finding their bifurcating
patterned spatial distributions. Our models involve, in separate stages, the spatial redistribu-
tion (through movement laws) and local regulation of the population; and the fundamental
properties of these events in a homogeneous environment are found. Emphasis is placed
on the interaction of migrating individuals with the existing population through conspecific
attraction (or repulsion), as well as on random dispersion. The nature of the competition of
these two effects in a linearized scenario is clarified. The bifurcation of stationary spatially
patterned population distributions is studied, with special attention given to the role played
by that competition.

1. Introduction

We consider discrete time, continuous one-dimensional space models of the form

u′ = f [u]. (1.1)

Here u, a function of space, represents a population density at some generation,
and u′ is the resulting density at the next generation. Then (1.1) simply says that u′
is determined uniquely by u. Trivial linear examples are u′ = 0 (total extinction),
u′ = u (nothing happens) and u′(x) = ∫ ∞

−∞ k(x− y)u(y)dy. In this paper we con-
sider u to be a scalar function, although practically all of the concepts, methods,
and conclusions have analogs for multiple species; see Section 5. The environment
is taken to be homogeneous, so that f is translation-invariant.

Some of our analyses will involve bifurcation phenomena; then we introduce a
bifurcation parameter µ, converting (1.1) into u′ = µf [u].

Evolution laws of the form (1.1) have been the subject of many investigations
into single-species populations with discrete nonoverlapping generations, in partic-
ular those involving demographic processes such as growth and dispersal (special
cases of the regulation and redistribution processes considered in this paper). In
these studies, growth occurs at a sedentary stage in the life history of the population.
Nonlinear maps F such as the Ricker curve [23], the Beverton-Holt stock-recruit-
ment curve [3] and discrete forms of the logistic equation, e.g. [21], are still used
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by mathematical biologists, and the behaviour of these growth models has been
extensively investigated [18–20]. A second stage in the life history of the popula-
tion, clearly differentiated from the growth stage — the reason why these models
are particularly suitable for annual species or those showing strong seasonality and
synchronicity — is described by the action of a linear integral operator. Thus the
models take the form

u′(x) =
∫

�

k(x, y)F (u(y))dy, (1.2)

where the dispersal kernel k(x, y), central to this formulation, provides the proba-
bility that an individual in an interval of length dx about a location x in the spatial
domain originates from an interval of length dy about y in the same spatial do-
main. Examples of this growth-dispersal framework can be found (beginning with
Weinberger [28]) in [1,7–16,22,29,28].

The kernel k in (1.2), tied to a probability, is non-negative and represents random
dispersal. Congregation effects do not fit into the described framework; moreover
(as we show) spatial patterning cannot arise through bifurcation from a constant
state. In part to remedy these deficiencies, we construct a framework for popula-
tion redistribution beginning with movement laws which may represent not only
random dispersion but also conspecific attraction. The result is a class of models for
population redistribution which are conceptually more complex than would result
from mere dispersion with a probability kernel. This redistribution is followed by
a sedentary regulation stage, examples of which are the nonlinear mappings F of
the types mentioned above. (Thus the order of the sedentary and migration phases
are reversed from those studied in the above works; this has no real effect.) Each
of these stages is population dependent.

A number of authors have highlighted the importance of intraspecific interac-
tions for the study of population spread [24,25,27]. Indeed, conspecific aggregation
can build a critical mass to locally sustain the population by e.g. providing avail-
ability of mates or avoidance of predators. At a later stage, interspecific repulsion
may be the necessary cue to initiate longer-range dispersal and global spread of the
species. A studied example of congregation effects on the dynamics of a population
is the southern pine beetle. The work of Turchin and others (described in [27]) with
this beetle is of particular relevance to our discussion. The beetle Dendroctonus
frontalis is the most destructive insect pest of the pine forest in the southern United
States. Individuals initiating the attack on a pine tree emit a congregation phero-
mone, frontalin, that attracts other conspecific beetles. These in turn secrete more
frontalin. The result of this positive feedback mechanism of intraspecific attrac-
tion is a mass attack: some 2,000 to 4,000 beetles overcome the resin defenses of
the tree. Larvae are deposited in the inner bark of the tree and feed on it. As this
resource starts to be depleted by the high concentration of beetles present, they
release a repelling pheromone to halt aggregation at the tree and shift the attack to
adjacent trees. See [27, Sec. 6.7] for a decription of efforts to quantitatively observe
and model the movements of this pest.

Another, among many biological examples of movement quantification cited
in that same book, involves a certain species of congregating male butterflies
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[27, Sec. 4.5.2]. It is thought that these insects generally move in a straight line
until they encounter “chasable” objects, conspecific butterflies of either gender.
Then they begin frequently to change their direction, effectively localizing their
position, until their time of flight is over, and they land. The attraction mechanism
of either the pine beetles or the butterflies can, with some reinterpretation, be fit
into the framework of our Section 3.2 below.

Many more biological examples involving migration and interaction can be
observed in systems with several species (or genders or types) than in the present
single species scenario. The models and bifurcation results in the present paper can
be extended, with appropriate changes, to that more general situation; see Section 5.

It should be mentioned that explanations for biological patterning have very
commonly been sought through bifurcation analyses of continuous-time models,
contrary to our procedure. An interesting recent example is [6], in which a two-
species PDE model for vegetation patchiness is constructed and analyzed.

It is intuitively clear that congregative movement of individuals, induced by
conspecific attraction, will play a role in the existence of stable spatially pat-
terned distributions. However, the details of this connection, as well as even the
proper way to model such attraction in the context of discrete generation models,
is far from being obvious. The difficulty is clear in the diffusion approach used by
Turchin, and also in the relatively new integrodifference setting used here. We
present a scenario wherein these things may be clarified.

Our main aims, therefore, are (1) to construct a basic framework, based on
a balance law and movement laws, for modeling and analyzing discrete genera-
tion population processes, (2) to elucidate, in a linearized scenario, the nature of,
and competition between, dispersion and congregation, and (3) to give conditions
under which spatially patterned stationary population distributions bifurcate from
spatially constant states. Especially revealing is the way the competition in (2)
may provide the conditions for bifurcation in (3). Also regarding (2), we note that
congregation comes from conspecific attraction; but by changing the sign of the
coefficient of attraction, we can also treat corresponding repulsion mechanisms.

The basic redistribution-regulation framework is presented in Section 2. Section
3 is devoted to fundamental ideas appropriate to the study of redistribution-regu-
lation laws for nearly constant populations. It is here that a careful study is made
of dispersive and congregative migratory behavior (see Section 3.2). Under certain
natural assumptions, the effects of these two modes of behavior on the redistribu-
tion operator are explored in detail, and the spectrum of the resulting derivative
operator is given.

Specifically, the derivative f ′[c] at a constant population density c is found
typically to have the following form, involving convolutions with a probability dis-
tribution φ1(x) and a function φ2(x), a real parameter A measuring the strength of
the conspecific attraction, and a positive constant C:

f ′[c]v = C[φ1 ∗ v + Aφ2 ∗ v].

The prototypical form for φ2, which must satisfy
∫
φ2(x)dx = 0, will be seen to

be φ2 = δ − φ3 with φ3 a probability distribution whose origin will be explained
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in terms of the attraction mechanism. Although the actual distributions φi and the
parameter A may be difficult to ascertain in concrete cases, examples are worked
out in sections 3.3.1 and 3.3.2. Moreover they can be given generic interpretations
in terms of dispersal and congregative mechanisms, and they figure in conditions
under which bifurcation can occur. The bifurcation analysis for stationary patterns
is presented in Sec. 4. Bifurcations are always of pitchfork type when the move-
ment law is isotropic; whether they are subcritical and unstable or supercritical and
stable is difficult to tell without detailed knowledge of the migration kinetics.

2. Balance laws

2.1. Movement laws

We speak of a populationu(x) distributed on the real line, although the same consid-
erations carry over to higher dimensions. For mathematical reasons, we shall later
restrict attention to densities u(x)which are spatially periodic with fixed period�;
the patterned solutions which we find will then have wavelength �/m for some
integer m. In reality, habitats are bounded and inhomogeneous. The periodicity
assumption here, especially when � is large, is an attempt to model effects which
are independent of boundaries and inhomogeneities.

Suppose there is a function g(x, y, [u]), depending on the entire function u
(the density at the present generation) as well as on x and y, such that between the
present time and the next generation, the number of individuals moving from the
interval (y, y + dy) to the interval (x, x + dx) is given by g(x, y, [u])dx dy. Such
a function g will be called a movement law, as in the book by Turchin [27]. Indi-
viduals may also die or reproduce, but we suppose that population changes due to
those events take place after the movement phase considered here. They constitute
the “regulation” phase, and will be considered later in section 2.3. Notice that by
using this definition, we are implying that g ≥ 0. There is no loss of generality
in thus defining g so that individuals which move the opposite way, from x to y,
can be accounted for by assigning them to the action g(y, x, [u]) with x and y
interchanged. Of course there are intrinsic restrictions on possible movement laws.
For one thing, they should not produce negative distributions at the next generation.
Individuals which do not actually change positions in a generation will still be con-
sidered to migrate; just that their destination is the same as their starting point. With
this understanding, the law g may contain a δ-function singularity to account for a
possible fraction of the population which is sedentary. Moreover, the total number
migrating from (y, y + dy) must be u(y)dy, which implies the a priori restriction

∫ ∞

−∞
g(x, y, [u])dx = u(y). (2.1)

(Although we work with �-periodic densities, the function g is not periodic; the
integral in (2.1) exists.)

We assume the environment is spatially homogeneous, which implies that when
u ≡ c is constant, then g is a function only of the difference x − y:

g(x, y, [c]) = gc0(x − y), (2.2)

where gc0(r) is a nonnegative function (not necessarily even).
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2.2. Redistributions

Since movement according to g does not entail births or deaths, knowing g now
gives us, by simple accounting, an explicit expression for the population distribution
R[u] after the movement is completed:

R[u](x) = u(x)+
∫ ∞

−∞
g(x, y, [u])dy −

∫ ∞

−∞
g(y, x, [u])dy. (2.3)

The first integral represents the change in the density at x due to individuals arriving
from all other locations. The second integral, with its minus sign, is the change due
to individuals leaving location x for any other location. We shall see that if u is
periodic in x, these integrals may be replaced by integrals over the period interval
(0,�), g being replaced by a function ĝ dependent only on u and values of x and
y in [0,�].

Equation (2.3), then, is a balance law: it accounts for all changes in popu-
lation in one generation due merely to the movement of individuals. The result
is a redistribution of individuals. (Balance laws are fundamental in the study of
continuum mechanics; they express conservation of such physical quantities as
energy, momentum, and mass. They are generally supplemented by constitutive
relations expressing perhaps the fluxes in terms of more basic physical quantities.
In the present case, the specification of the function g would be such a constitutive
relation.)

Although movement laws give rise to redistributions (2.3), a given redistribu-
tion R does not uniquely define a movement law. The movement of individuals
can, in fact, be described on several different levels of detail. The least detailed is
a redistribution law R. A movement law g provides more detail. The most detailed
description would give individual trajectories (positions as functions of time) dur-
ing the passage of a generation. We will not be indulging in this complete level
of specificity, but nevertheless later in Section 3.3.1 will speak of certain statistics
involving these trajectories. These statistics represent intermediate levels of detail
between movement laws and individual trajectories.

Note that from (2.2) and (2.3),

R[c] = c for any constant c. (2.4)

The property (2.4) does not mean that movement does not occur when u ≡ c;
just that its overall effect is nil.

2.3. Redistribution–regulation models

Redistribution–regulation models will be the primary focus of attention in this
paper.

They are laws of the form (1.1), where

f [u] = F(R[u]) (2.5)

with R a (generally nonlocal) redistribution process and F an ordinary local func-
tion. The nonlinear “regulation” functionF reflects population changes due to births
and deaths following the spatial movement. In the following it will be taken to be
a nonnegative concave function for values of its argument in some interval [0, U ].
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3. Linearization about constant population densities

Most of our analysis will be concerned with small deviations of the population
around a positive constant value c. This provides a setting in which it is easier to
grasp the competitive ideas of dispersion and congregation. Moreover, such a line-
arization is the starting point for our discussion of bifurcation of patterned stationary
solutions in Sec. 4.

In preparation for this, we now examine certain basic properties of the move-
ment law when the population is either constant or deviates by a small amount from
a constant, so that the movement law can be approximated by a linear law.

3.1. Basic concepts for a constant density population

Suppose the density is constant, u(x) ≡ c. For any r , let

g0(r)dx dy = the number of individuals moving, in one generation, from
the interval (y, y + dy) to (y + r, y + r + dx).

Here g0 ≥ 0 is the function already defined in (2.2) with the superscript c sup-
pressed. Then

c =
∫ ∞

−∞
g0(r)dr, (3.1)

which is a special case of (2.1). Here it should be explained again that not every
individual is assumed to migrate; some fraction of the population may “stay put”.
The sedentary individuals contribute a δ-function singularity at r = 0 to the func-
tion g0. Thus if the sedentary fraction is θs , then possibly g0(r) = cθsδ(r)+g01(r),
where g01 is regular and

∫ ∞
−∞ g01(r)dr = (1 − θs)c.

The basic “ground state” movement law g0 may incorporate any number of
effects, linear or nonlinear, such as those described below in Section 3.2. We are
not at the moment concerned with the identity of those effects, but rather wish to
concentrate on small changes to the basic law due to variations in the density. In
Section 3.2, we show how those changes might be generated by certain properties
of the migration kinetics of individuals in the homogeneous background.

Because of (3.1), the function g0(r)
c

has the properties of a probability distribu-
tion, and in fact can be interpreted on the level of single individuals:

Important observation: g0(r)
c
dr is the probability that a given individual will

migrate a distance in the interval (r, r + dr) in the course of a generation. Since
u ≡ c, the individual moves in a homogeneous background environment.

We use the notation φ1(r) = g0(r)
c

.

3.2. Some specific migration effects

Identifying the correct, or even a feasible, movement law g in specific cases may be
difficult; particularly finding its dependence on [u]. We present a scenario in which
the population distribution is almost constant:

u(x) = c + v(x), |v| � c, (3.2)
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and examine some general dispersive and congregative influences that the devia-
tion from constancy may have on g. It is based in part on the concept of residence
times. Our objective is to identify the possible origin of changes in the move-
ment law g(x, y, [c + v]) due to the increment v, which we will term the excess
population (even though it may be negative). Using the notation Dg for the deriv-
ative of g with respect to u, we make the linearized approximation (see below)
g(x, y, [c+v])≈ g(x, y, [c])+Dg(x, y, [c])v. We shall find some possible forms
thatDg(x, y, [c])v may take, in terms of (1) the basic unperturbed kinetics of indi-
viduals when v = 0, and (2) a linear mechanism of attraction/repulsion to/from
other members of the population (this may give rise to a congregative effect.)

To justify the linear approximation under the simple assumption |v| � c, we
normalize the population density and rate of movement by the constant c, defining
ũ = u

c
= 1 + v

c
, and

g̃(x, y, [ũ]) ≡ 1

c
g(x, y, c[ũ]),

and make the basic assumption that
g̃(x, y, [ũ]) = (

g̃(x, y, [1])+Dg̃(x, y, [1]) v
c

) (
1 + o

(
v
c

))
. Neglecting the error

term, we obtain the given linear approximation.
We will find that it is natural to split the linear operator Dg into three parts:

D1g +D2g +D3g, each associated with a different mechanism. The three mech-
anisms are characterized by dispersion, congregation, and depletion. The last two
parts,D2g andD3g, rely on conspecific attraction (or repulsion, which is negative
attraction). Later we combine these two into a single effect.

Because we are operating on a linearized level, the interactions of the effects
producing the Di may be neglected, and they can be studied independently of one
another.

This decomposition ofDg induces a corresponding decomposition of the differ-
entialDR (2.3). One of our main goals will be to display, in (3.34), the convolution
representation

(DR[c]v)(x) = φ1 ∗ v(x)− Aφ2 ∗ v(x), (3.3)

where the two convolution terms come, in an explicit way, from dispersion and
congregation, respectively. The function φ1 ≥ 0 is a probability distribution,A is a
constant measuring the strength of conspecific attraction, and

∫
φ2(x)dx = 0. The

prototypical expression for φ2 is φ3 − δ, where φ3 is a probability distribution.
From this representation, the spectrum of the linear operatorDR can be written

(Section 3.5).

3.2.1. Dispersion
First, we introduce the dispersive property of an individual moving in the back-
ground environment of a uniform population distribution, u ≡ c.

For simplicity, consider individuals beginning their intergenerational migration
from the origin, y = 0. There will be a dispersion kernel φ1(r), which is a proba-
bility distribution for the signed distance (since r could be negative) an individual
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migrates in one generation. According to Section 3.1, we may identify φ1 with a
scaled version of g0:

φ1(r) = g0(r)

c
, (3.4)

so that φ1 may have a δ-function singularity at r = 0.
To obtain the corresponding increment in the movement law due to v and this

one effect, we multiply by the excess population v(0) at the originating point 0. We
express the resulting increment in g as

D1g(x, 0, [c])v(x) ≡ φ1(x)v(0). (3.5)

More generally,

D1g(x, y, [c])v(x) ≡ φ1(x − y)v(y). (3.6)

We next look at the influence exerted by other members of the population in
the course of the migrant’s journey. Again, consider movements of individuals in
the environment u ≡ c. The ultimate destinations of the migrants are described
approximately by the probability distribution φ1(x); but we now also consider cer-
tain properties of the trajectories enroute to those destinations, related to residence
times.

3.3. Congregative effects

We have found in (3.6) the effect due to the excess population v at the point of
departure y; we now consider the possible effects of v at other locations. We shall
postulate a linear attraction/repulsion mechanism that the migrant may have to/from
existing individuals. When u≡ c is constant, this effect (and possibly many others)
has already been incorporated into the basic flow. But when v �= 0 in (3.2), it can be
formulated with the aid of a postulate of conspecific attraction, to be given below
(3.28), plus the concept of residence times. The postulate essentially says that a
migrant is induced to terminate its journey at a given location with a probability
proportional to how much time it spends near that location (residence time) times
the excess population density there.

Initially, we shall assume that the attraction depends on the excess popula-
tion v(x) only at the beginning of the generation. Later, building on this analysis,
we shall indicate extensions that can be made to account for the intergenerational
variation in v.

First, we explain the concept of residence time.

3.3.1. Residence times
Although we will not assume known all the statistical properties of the movement
of individuals in the interval between generations, we refer symbolically to their
unknown paths of migration in order to define the properties we shall need. So con-
sider the possible dynamics of individuals from time t = 0 to t = 1. We suppose
they move in two stages: (1) a migratory phase lasting a generally random period
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of time t� ≤ 1, followed by (2) a quiescent phase during which their position x�
does not change. By homogeneity, there is no loss of generality in assuming the
migrant begins its journey (at t = 0) at the origin. Let X(t) be the migration path.
The time of landing t� and the location x� of the landing are random quantities.
Since no one moves after landing, x� = X(t�) = X(1) is also the location of the
individual at time t = 1.

Let K(x, t), 0 < t < 1, be the distribution of locations X(t) of those individ-
uals with X(0) = 0 that are still migrating at time t . More specifically, for fixed t ,∫ a2
a1
K(x, t) dx is the probability that an individual will be still migrating at time t

(i.e. t < t�), and moreover is located then in the interval [a1, a2]. Also we set

Tr(a1, a2) =
∫ 1

0

∫ a2

a1

K(x, s) dx ds; (3.7)

it is the total expected residence time in (a1, a2), i.e. the total expected time that
an individual will spend in that interval during the migratory phase. The residence
time counts only the time the individual is in that interval while still moving; when
the migrant “lands”, its clock stops.

The specific expected residence time is

τ(x) = d

dx
Tr(−∞, x) =

∫ 1

0
K(x, s)ds. (3.8)

Summing, we find that

∫ ∞

−∞
τ̄ (x)dx

.= θ (3.9)

is the total expected migration time. Being a fraction of the unit generation time,
θ ∈ [0, 1].

We now calculate τ and θ for two special movement laws.

Example 1: Movement at constant speed and direction. As a first canonical exam-
ple, suppose that for some constant speed |q| > 0, every individual in the migratory
stage moves with constant velocity q = |q| or −|q| with equal probability (unequal
probability could be handled with a slight extension of the following). It will always
move away from the origin, either right or left. The location x� where the movement
stops is random, with probability distribution g0(x�)

c
= φ1(x�). In this example, no

migrant can travel further than the distance |q| in one generation, so that φ1(x) = 0
for |x| > |q|.

First, suppose q = |q| > 0 (Case 1). The probability that a migrant has not
stopped (t < t�) and lies in (−∞, x) at time t is 0 if qt > x, because during
this time it will have remained in the migratory stage, so it would have moved a
distance qt /∈ (−∞, x). On the other hand if qt < x, this probability is simply
the probability of not stopping (still moving) while it travels to the location qt , i.e.
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the probability that x� ≥ qt . This probability is
∫ ∞
|q|t φ1(ξ)dξ . Thus for Case 1 we

have, in terms of the Heaviside function H ,

Pr
(
t < t�, X(t) < x

∣
∣ q > 0

) = 2
∫ ∞

|q|t
φ1(ξ)dξ H(x − |q|t). (3.10)

By similar reasoning, we know that if q = −|q| < 0 (Case 2), then this same
probability is

Pr
(
t < t�, X(t) < x

∣
∣ q < 0

) = 2
∫ −|q|t

−∞
φ1(ξ)dξ H(x + |q|t). (3.11)

Since the two cases occur with equal probability, we have

Pr (t < t�, X(t) < x) =
∫ ∞

|q|t
φ1(ξ)dξ H(x − |q|t)

+
∫ |q|t

−∞
φ1(ξ)dξ H(x + |q|t). (3.12)

Differentiating with respect to x, we get

K(x, t) = d

dx
P r (t < t�, X(t) < x)

=
∫ ∞

|q|t
φ1(ξ)dξ δ(x − |q|t)+

∫ −|q|t

−∞
φ1(ξ)dξ δ(x + |q|t); (3.13)

τ(x) =
∫ 1

0
K(x, s)ds =

∫ 1

0

∫ ∞

|q|t
φ1(y)dy δ(x − |q|t)dt

+
∫ 1

0

∫ −|q|t

−∞
φ1(ξ)dξ δ(x + |q|t)dt

=
∫ |q|

0

1

|q|
∫ ∞

t ′
φ1(ξ)dξ δ(x−t ′)dt ′ −

∫ −|q|

0

1

|q|
∫ t ′

−∞
φ1(ξ)dξ δ(x−t ′)dt ′

= 1

|q|
∫ ∞

x

χ[0,|q|](x)φ1(ξ)dξ + 1

|q|
∫ x

−∞
χ[−|q|,0](x)φ1(ξ)dξ

= 1

|q|χ[0,|q|](x)
∫ ∞

x

φ1(ξ)dξ + 1

|q|χ[−|q|,0](x)

∫ x

−∞
φ1(ξ)dξ, (3.14)

where χA denotes the characteristic function of a set A.
Finally, by (3.9), (3.14) and the fact that φ1 = 0 for |x| > |q|,

θ = 1

|q|
[∫ |q|

0
|ξ |φ1(ξ) dξ +

∫ 0

−|q|
|ξ |φ1(ξ) dξ

]

= 1

|q|
∫ |q|

−|q|
φ1(ξ)|ξ | dξ <

∫ |q|

−|q|
φ1(ξ) dξ = 1. (3.15)
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Example 2: Brownian motion. This is a limit of random walk migration patterns.
Assume that the random walk proceeds without stopping, until t = 1. Thus t� = 1.
We have

K(x, t) = 1√
4σ tπ

exp

(

− x2

4σ t

)

, (3.16)

where σ is the Brownian parameter. Also by (3.8),

τ(x) =
∫ 1

0

1√
4σ tπ

exp

(−x2

4σ t

)

dt.

By first treating the case x > 0, changing to the integration variable y = x/
√

4σ t ,
and then observing that τ(x) is even in x, we obtain

τ(x) = ζ√
σπ

∫ ∞

ζ

y−2 exp
(
−y2

)
dy, (3.17)

where ζ = |x|
2
√
σ
.

Of course since t� = 1, we also have θ = 1.

3.3.2. Conditional residence times
We go one step further. Let K̃(ξ, x, t) be the distribution in ξ , at time t , of positions
ξ = X(t) of migrants with X(0) = 0 and X(1) = x, i.e., x� = x.

Analogous to (3.7), the conditional expected residence time for (a1, a2) under
the condition x� = x is

Tr(a1, a2; x) =
∫ 1

0

∫ a2

a1

K̃(ξ, x, s) dξ ds,

and the specific conditional expected residence time at ξ is

τ̂ (ξ, x) = d

dξ
Tr(−∞, ξ ; x) =

∫ 1

0
K̃(ξ, x, s) ds. (3.18)

Also

K̃(ξ, x, t) = d

dξ
P r

(
t < t�,X(t) < ξ

∣
∣ x� = x

)
. (3.19)

Using the definition of conditional distribution function as in [5], we have

Pr
(
t < t�,X(t) < ξ

∣
∣ x� = x

) =
d
dx
P r (t < t�,X(t) < ξ, x� < x)

d
dx
P r (x� < x)

=
d
dx
P r (t < t�,X(t) < ξ, x� < x)

φ1(x)
.

(3.20)
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Example 1 revisited. Referring again to the constant speed example given above,
we find the following probability relations. First, assume x ≥ 0. Under this condi-
tion q = |q|.Also notice that from (3.20), t < t� is equivalent with X(t) = |q|t <
x�. Thus

Pr
(
t < t�,X(t) < ξ

∣
∣ x� = x

) =
d
dx
P r (|q|t < x� < x, |q|t < ξ)

φ1(x)

=
d
dx

(∫ x
|q|t φ1(y)dy H(x − |q|t)

)
H(ξ − |q|t)

φ1(x)

= H(x − |q|t)H(ξ − |q|t). (3.21)

To see this more clearly, consider for example the case that x > |q|t and ξ > |q|t .
The right side of (3.21) is 1. We verify independently that the left side is also 1. In
this case, x� = x implies that x� > |q|t , so that the migrant hasn’t stopped, and
t < t�. Hence X(t) = |q|t , so that X(t) < ξ . Therefore the probability on the left
of (3.21) is indeed 1.

From (3.21) and (3.19) we have

K̃(ξ, x, t) = δ(ξ − |q|t)H(x − |q|t). (3.22)

In the opposite case, when x < 0 and thus q = −|q| < 0, we similarly obtain

K̃(ξ, x, t) = δ(ξ + |q|t)H(−|q|t − x). (3.23)

These two expressions characterise the desired probability for any landing point
x� = x and

τ̂ (ξ, x) =
∫ 1

0
K̃(ξ, x, s)ds

= 1

|q|
[
H(x − ξ)χ[0,|q|](ξ)+H(−x + ξ)χ[−|q|,0](ξ)

]
. (3.24)

Example 2 revisited. These quantities can be worked out explicitly also in the
case of Brownian motion. Specifically, since t� = 1, we have K(x, 1) = φ1(x), so
that with K given by (3.16),

Pr (t < t�,X(t) < ξ, x� < x) =
∫ x

−∞
dz

∫ ξ

−∞
dy K(y, 1)K(z− y, 1 − t),

K̃(ξ, x, t) =
∂2

∂x∂ξ

∫ x
−∞ dz

∫ ξ
−∞ dy K(y, 1)K(z− y, 1 − t)

K(x, 1)

= K(ξ, 1)K(x − ξ, 1 − t)

K(x, 1)
, (3.25)

τ̂ (ξ, x) =
∫ 1

0
K̃(ξ, x, s) ds. (3.26)

So in the examples, the functions τ̄ and τ̂ can be readily found.
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Remark In all cases, the conditional and unconditional probabilities are related
as follows:

τ̄ (ξ) =
∫ ∞

−∞
τ̂ (ξ, x)φ1(x) dx. (3.27)

The reason is that φ1(x)dx is the probability that x� lies in (x, x+dx). This relation
could be verified in the examples.

These quantities are always simply a matter of kinetics. We assume that they do
not depend on the population distribution, except through the removal and addition
of individuals to the group of migrants, which will be our main concern. Among
other things, this means that the attraction or repulsion that an individual may feel in
the presence of the extra population v does not make the migration speed decrease
or increase, so that the residence times are not changed. We allow that an individ-
ual may terminate its journey more readily, for example, where the population is
denser, but the termination must be done instantaneously.

3.3.3. Interactions with existing excess population
This postulate refers only to individuals which are induced to terminate their journey
(land) near the location x due to attraction to the excess population. It is responsible
for two other increments in g, analogous to the one in (3.6).

Postulate of conspecific attraction:

Pr
[
landing in (x, x + dx)

] = ατ̄ (x)v(x) dx, (3.28)

which we now explain. Of course the probability should be proportional to the
interval size dx. The other factor ατ̄ (x)v(x), representing the influence of others,
is of the form B v(x), since that influence should be proportional to how many
others there are, when there are few. The factor B, representing the intensity of
the attraction effects, depends on how long the individual, while migrating, stays
in that neighborhood. If its residence time Tr(x, x + dx) = τ(x) dx (3.7) were
known, then B = ατ(x), where α (which has dimensions of inverse time) is the
rate of attraction (in the following we denote repulsion by negative attraction). But
since we only know a probability distribution for τ , we must set B = ατ̄ (x). Thus
τ is replaced by its expected value. This is the rationale for postulate (3.28), except
that we have neglected any dependence of the function v, hence the left side of
(3.28), on t . That will be considered in Sec. 3.4. .

Now the number of individuals originating in the interval (0, dy) which land
in (x, x + dx) due to attraction is this probability (3.28) times the total number of
potential migrants leaving from the interval (0, dy). This latter number (except for
higher order terms, which we neglect) is given by c dy. Therefore the number of
individuals landing in that interval due to attraction is

cατ̄ (x)v(x) dx dy (3.29)
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This effect, attraction to other individuals at the final location x, thus gives rise
to an additional increment, besides D1 (3.5), namely

(D2g(x, 0, [c])v) (x) = cατ̄ (x)v(x), (3.30)

where higher order terms have also been neglected.
We pass on to a third effect. The number migrating from (0, dy) to (x�, x�+dx),

namely g0(x�)dx dy (once again neglecting higher order terms), has to be modified
by the action of depletion enroute to the destination. That is, it may be reduced since
some of the migrants will be attracted to other excess individuals during the course
of the migration. The probability of a migrant being removed from the migrating
population this way is given by

α

∫ ∞

−∞
τ̂ (ξ, x�)v(ξ)dξ. (3.31)

This integral (3.31) samples all possible locations ξ where the migrant may be
induced to leave its normal trajectory due to attraction by the excess population
v(ξ). The strength of this attraction is proportional to the conditional residence
time τ̂ (ξ, x) as well as to v(ξ).

The arriving population size is therefore reduced from g0(x�)dx dy to

[1 − α

∫
τ̂ (ξ, x�)v(ξ)dξ ]g0(x�)dx dy.

The effect of this depletion is to introduce a third increment in g:

(D3g(x, 0, [c])v) (x) = −α
∫ ∞

−∞
τ̂ (ξ, x)v(ξ)dξ g0(x). (3.32)

3.3.4. Summing up
In all, we have the total change in g ((3.5), (3.30), (3.32)) given by

(Dg(x, 0, [c])v) (x) = ((D1 +D2 +D3)g(x, 0, [c])v)(x)

= φ1(x) v(0)+ cατ̄ (x)v(x)− α

∫ ∞

−∞
τ̂ (ξ, x)v(ξ)dξ g0(x)

(3.33)

Theorem 3.1. The expression (3.33) implies the validity of the representation

(DR[c]v)(x) = φ1 ∗ v(x)− αcθ(φ3 ∗ v(x)− v(x)). (3.34)

for DR in terms of certain probability distributions φ1(x) and φ3(x) (defined be-
low).

Proof. From (3.33), we have

(Dg(x, 0, [c])v) (x) =
∫ ∞

−∞
G(x, 0, ξ)v(ξ)dξ, (3.35)
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where

G(x, 0, ξ) = φ1(x)δ(ξ)+ αcτ̄ (x)δ(x − ξ)− αcφ1(x)τ̂ (ξ, x).

We have thus far looked only at the flow originating near y = 0. But the same
holds for any value of y. We obtain, in place of (3.35),

(Dg(x, y, [c])v)(x) =
∫ ∞

−∞
G(x, y, ξ)v(ξ)dξ, (3.36)

where

G(x, y, ξ) = φ1(x − y)δ(ξ − y)+ αcτ̄ (x − y)δ(x − ξ)

−αcφ1(x − y)τ̂ (ξ − y, x − y). (3.37)

As a side comment, using expression (3.37), we may check that g satisfies the
condition in (2.1), i.e.,

∫ ∞

−∞
dx

∫ ∞

−∞
G(x, y, ξ)v(ξ) dξ = v(y). (3.38)

For this, note by (3.27) that

∫ ∞

−∞
φ1(x − y)τ̂ (ξ − y, x − y)dx = τ̄ (ξ − y).

And from (3.37),

∫ ∞

−∞
G(x, y, ξ)dx = δ(ξ − y)+ αcτ̄ (ξ − y)− αcτ̄ (ξ − y) = δ(ξ − y).

Hence (3.38) follows.
Now applying (3.36) to the derivative of (2.3) at u = c, we find

(DR[c]v)(x) = v(x)+
∫ ∞

−∞
(Dg(x, y, [c])v)(y)dy−

∫ ∞

−∞
(Dg(y, x, [c])v)(y)dy

= v(x)+
∫ ∞

−∞
dy

(∫ ∞

−∞
dξ v(ξ)[G(x, y, ξ)−G(y, x, ξ)]

)

.

(3.39)

We calculate from (3.37) and (3.9)

G(x, y, ξ)−G(y, x, ξ) = φ1(x − y)δ(ξ − y)

−φ1(y − x)δ(ξ − x)+ αcτ̄ (x − y)δ(ξ − x)− αcτ̄ (y − x)δ(ξ − y)

−αcφ1(x − y)τ̂ (ξ − y, x − y)+ αcφ1(y − x)τ̂ (ξ − x, y − x);
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∫ ∞

−∞
dy[G(x, y, ξ)−G(y, x, ξ)] = φ1(x − ξ)− δ(ξ − x)

+αcθδ(x − ξ)− αcτ̄ (ξ − x)− αc

∫ ∞

−∞
φ1(x − y)τ̂ (ξ − y, x − y)dy

+αc
∫ ∞

−∞
φ1(y − x)τ̂ (ξ − x, y − x)dy

= φ1(x − ξ)− δ(ξ − x)+ αcθδ(x − ξ)− αcτ̄ (ξ − x)

−αc
∫ ∞

−∞
φ1(x − y)τ̂ (ξ − y, x − y)dy + αcτ̄ (ξ − x)

= φ1(x − ξ)− δ(ξ − x)+ αcθδ(x − ξ)

−αc
∫ ∞

−∞
φ1(x − y)τ̂ (ξ − y, x − y)dy.

Finally
∫ ∞

−∞
dy

∫ ∞

−∞
dξ v(ξ)[G(x, y, ξ)−G(y, x, ξ)]

= φ1 ∗ v(x)− v(x)+ αcθv(x)− αcψ ∗ v(x), (3.40)

where

ψ(x − ξ) =
∫ ∞

−∞
φ1(x − y)τ̂ (ξ − y, x − y)dy. (3.41)

To see that this integral is a function only of the combination (x − ξ), change the
variable of integration from y to ω = x − y to convert the integral to

∫ ∞

−∞
φ1(ω)τ̂ (ω − (x − ξ), ω) dω ≡ ψ(x − ξ). (3.42)

Clearly ψ(x) ≥ 0. We calculate, by (3.9), (3.27),
∫ ∞

−∞
ψ(x)dx =

∫ ∞

−∞
dy

∫ ∞

−∞
φ1(x)τ̂ (ξ − y, x) dx

=
∫ ∞

−∞
τ̄ (ξ − y)dy =

∫ ∞

−∞
τ̄ (η)dη = θ. (3.43)

The function

φ3(x) = ψ(x)

θ
(3.44)

is therefore a probability density and (3.40), (3.39) imply (3.34), which completes
the proof.

This is where, partly for mathematical reasons, we assume that u and v are
periodic functions of x. Space may be rescaled, so there is no loss of generality in
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taking the period to be 2π . In place of (3.34), it may be natural to seek a represen-
tation ofDR[c] involving only integrals over the interval [0, 2π ]. This can be done
by expressing the convolutions in the form

φ ∗ v(x) =
∫ ∞

−∞
φ(x − y)v(y)dy =

∑

m

∫ 2π

0
φ(x − y + 2mπ)v(y) dy

=
∫ 2π

0
φp(x − y)v(y) dy, (3.45)

where

φp(x) =
∑

m

φ(x + 2mπ), x ∈ [0, 2π ].

It can be checked directly that

∫ 2π

0
(DR[c]v)(x) dx =

∫ 2π

0
v(x)dx, (3.46)

which is consistent with (2.3) being a balance law.

3.4. Accounting for the time variation of v

In the previous subsection, the basic postulate (3.28) was used to construct an
expression (3.34) for the differentialDR involving two probability distributions φ1
and φ3, the latter fashioned in an explicit but involved way in terms of residence
times. However, a simplified interpretation of (3.28) was used: the function v(x)
there was meant to signify the population distribution at the beginning of the gen-
eration rather than at the time we are computing the probability of landing. This
section is devoted to showing how this possible modeling inadequacy can largely
be overcome.

Consider the duration of the generation to be divided into m equal time inter-
vals, each of length 1/m. The total change during the generation will then be the
sum of changes during each interval. If the time interval 1/m is small, we may use
the expression (3.34) to account approximately for the change DiR in R during
the i−th subinterval. Note that the convolution functions in (3.34) depend on i; we
write this version of (3.34) as

(DiR[c]v)(x, i/m) = φi1 ∗ v(x, i/m)− A(φi2 ∗ v(x, i/m)) (3.47)

where A = αcθ . Here we have written φi2 = φi3 − δ, and the superscript i denotes
the subinterval. The total change during the generation is then the composition of
these m linear differential operators DiR. This composition can be taken as our
model. We show that the new dR remains of the form (3.3). Note that each φi2
satisfies

∫
φi2(x)dx = 0; (3.48)
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this will be the crucial property of those functions, which of course were derived
from consideration of residence times.

Note also that the composition of linear operators of the form (3.47), (3.48), is
an operator of the same type.

Finally, observe that the composition of the random dispersal operators φi1∗
is a random dispersal operator over the combined time interval. Thus (φ2

1∗)(φ1
1∗)

describes dispersion over the time interval [0, 1/m] with the original kernel φ1, and
so on. Therefore the composition of all m operators produces

DR[c]v(x) =
m−1∏

i=0

(DiR[c])v(x) = φ1 ∗ v(x)− Aφ2(x,A), (3.49)

for some function φ2 satisfying (3.48). It will depend onA in a polynomial fashion.
The function φ1 here is the given dispersion kernel over one generation.

3.5. The spectrum of DR[c]

For a 2π -periodic function g(ξ) we denote its scaled Fourier Transform by

ĝ(k) =
∫ 2π

0
eikξ g(ξ)dξ, (3.50)

for every integer k. Similarly, although our probability kernels φi are not periodic,
their transforms are defined the same way, integrating over all space. Set ek(x) =
eikx . Note that

∫ 2π
0 eikx(φ

p
i ∗v)(x)dx = φ̂

p
i (k)v̂(k) and (φpi ∗ek)(x) = φ̂

p
i (k)e

ikx .
Also φ̂i (k) = φ̂

p
i (k).

Applying the operator DR[c] to ek = eikx , we find from (3.49) that

DR[c]ek(x) = φ̂1(k)e
ikx − Aφ̂2(k, A)e

ikx ≡ R̂(k)ek(x), (3.51)

R̂(k) = φ̂1(k)− Aφ̂2(k, A), (3.52)

where A = αcθ can be considered a dimensionless parameter measuring the
strength of the conspecific attraction. Thus ek are the eigenfunctions of the operator
DR[c], with eigenvalues R̂(k).

Recall that φ1 is a probability distribution which governs random dispersion,
and φ2 governs congregation. These kernels may be difficult to measure precisely
in any example existing in nature; nevertheless it is important to know the typical
form (3.49) that DR[c] takes, and the interpretation of the parameter A = αcθ

as measuring the strength of the attraction mechanism, whatever that may be. It is
also important to recall the prototypical form (3.33): φ2 = φ3 − δ where φ3 is a
probability distribution. As regards the appearance of patterned solutions, the most
important property concerns the value k∗ of k at which |R̂(k)| has a maximum. For
bifurcation, we need

k∗ �= 0, |R̂(k∗)| > 1.
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As we shall see in Sec. 5, sufficient conditions, in terms of the variances of
the φi and A, for this to happen in the prototypical case can be given. Necessary
conditions will also be given.

To reiterate, the basic random dispersion mechanism in spectral form φ̂1(k),

associated with (3.5), is tempered with a term −cαθφ̂2(k) due to congregation. If
α < 0, so that repulsion replaces attraction, then both terms appear dispersive, but
in fact the sum is not. In this case, the movement law is such that when v(x) > 0,
the number of individuals migrating away from a neighborhood of x due to the
presence of that excess is greater than that excess itself.

If only linear dispersion occurs, then the spectrum |R̂(k)| ≤ 1; and < 1 when
k �= 0.

The isotropic case. If φ1(x) and τ̄ (x) are even (see (3.4), (3.8)), so that in this
sense the movement law is isotropic, it can be shown that the φi functions are also
even. It then follows from (3.34) that DR[c] is given by convolutions with even
functions, and therefore that R̂(k) is real and even in k. Therefore the relation (3.51)
reduces to

DR(cos kx) = R̂(k) cos kx, (3.53)

and the set of eigenfunctions in this case consists of cosines.

3.6. Spectrum of the linearization

3.6.1. The anisotropic case
We take our basic space S to consist of periodic functions in x with period (wave-
length) 2π , which are L2 within a period.

We have

Df [c]v = F ′(c)DR[c]v, (3.54)

where the derivative DR[c] is given by (3.34).
The eigenvalues and eigenfunctions can be enumerated by integers k. The ei-

genfunctions

ψk ≡
√

1

2π
eikx, k = 0,±1,±2 . . . . (3.55)

lie in the class of functions S we are considering for u. Moreover, they form a
complete orthonormal basis for S , in terms of the L2 norm.

It is seen from (3.51) that the eigenvalues of Df [c] are

L̂(k) = F ′(c)R̂(k), (3.56)

where R̂(k), the eigenvalues of R, are given by (3.52).
Thus the infinite discrete set of functions ψk , for all integers k ≥ 0, form a

complete set of eigenfunctions with associated eigenvalues L̂(k).
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3.6.2. The isotropic case
Isotropy implies, among other things, that the function g0(r) = gc0(r) (2.2), hence
φ1(r) (3.4), is even in r . The same is true of τ(x), and finally we have τ̂ (x, ξ) =
τ̂ (−x,−ξ).

It follows that φi(x) are even, and hence φ̂i (k) in (3.51) and (3.52) are even.
Since now R̂(−k) = R̂(k), each eigenvalue R̂(k) of DR([c]) is double: eikx and
e−ikx are both eigenfunctions of the same eigenvalue. This is normally disallowed
by assumption 4.3 to be given below. However, reconciliation may be effected by
redefining S . In the case of isotropy, we take our basic space S to be a subspace
of the one before, namely the subspace of even functions.

With this difference, the assumptions below will be seen to be reasonable in
both the isotropic and anisotropic cases.

4. Bifurcation of patterned solutions from constants

We shall now revert to the original expression (1.1), with a bifurcation parameter
µ adjoined.

u′ = µf [u] = µF(R[u]), (4.1)

where u(x) is a population distribution lying in S and f is a redistribution-reg-
ulation function from S to itself with certain properties to be given below in the
following section.

Our object will be to find a value µ∗ of µ, such that when µ is near µ∗ (perhaps
restricted to one side of it), there is a constant population level cµ, such that small
amplitude spatially patterned stationary solutions, which are perturbations of cµ,
appear. They arise through a bifurcation process.

Our principal assumption, leading to the possibility of such a bifurcation, is
about the spectral function R̂(k). We will assume that |R̂(k)| attains its maximum
at some single value of k = k∗ �= 0 (hence this maximum is larger than 1, since
(3.52) together with φ̂1(0) = 1, φ̂2(0) = 0 imply R̂(0) = 1). We will then dis-
cuss conditions that guarantee bifurcation. The spectral function R̂(k) was found
already (3.52) within the scenario of the movement laws considered in Sec. 3.2.
We continue in that scenario, and merely specify the properties that we need. These
really are assumptions about the functions f and R̂(k).

4.1. The main assumptions on our redistribution-regulation models

Assumption 4.1. f is three times continuously differentiable.

Assumption 4.2. F(0) = 0, F ′(0) = 1, and F ′′(u) < 0 for u ≥ 0.

As a consequence of Assumption 4.2, we have

Proposition 4.1. For any µ > 1, the equation

c = µF(c) (4.2)

has exactly one positive solution cµ, which is therefore a stationary solution of
(4.1).
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The proof is trivial.
We introduce the operators Lµ and H by

Lµ = µDf [cµ] = µF ′(cµ)DR[cµ], H = µD2f [cµ]. (4.3)

The operator H(v,w), which also depends on µ, is a bounded bilinear function
from S × S to S . There is no loss of generality in assuming H to be symmetric.

The following is a restatement of our conclusion in Section 3.6.

Proposition 4.2. The operator Lµ has, for each µ > 1, a complete countable set
of orthonormal eigenfunctions {ψk} (independent of µ), with eigenvalues L̂(µ, k).
Here the index k ranges over the integers (in the isotropic case, only the nonnegative
ones). The eigenfunction with k = 0 is constant, and the others are not constant.

Thus

Lµψk = L̂(µ, k)ψk. (4.4)

In the context of Section 3.2, these eigenvalues are given via (4.3) by (3.51) and
(3.52): L̂(µ, k) = µF ′(cµ)R̂(k).

Since limk→∞ L̂(µ, k) = 0, for each µ > 1 there is an integer k∗(µ) such that

max
k

|L̂(µ, k)| = |L̂(µ, k∗(µ))|. (4.5)

Assumption 4.3. There is a value µ∗ such that for µ in a neighborhood of µ∗,
k∗(µ) is positive, unique, and constant, so that k∗(µ) = k∗(µ∗) (we denote this
constant integer simply by k∗), bµ ≡ L̂(µ, k∗) is real, and

bµ∗ = 1,
d

dµ
bµ < 0. (4.6)

Note: bµ = µF ′(cµ)R̂(k∗). If R̂(k∗) > 0, which is implied here, this assump-
tion means that d

dµ

(
µF ′(cµ)

)
< 0, which is a natural condition to require for the

concave function F .
Let ψ∗ = ψk∗ . Note that in the isotropic case,

ψ∗(x) = 1√
π

cos k∗x. (4.7)

4.2. The existence of bifurcating branches

The problem for stationary solutions can be written

Z(µ, u) ≡ u− µF(R[u]) = 0, (4.8)

where we consider Z as a mapping from I × S to S . Here I is a small enough
interval on the real µ-axis containing µ∗ (Assn. 4.3), and S is the L2 space of
2π -periodic functions, further restricted in the isotropic case to be even. There is
a given branch of constant solutions u = cµ. The well known results of Crandall
and Rabinowitz [4, Thm. 1] give conditions under which there is another branch of
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solutions intersecting the given one. Our assumptions ensure that those conditions
are fulfilled, and we conclude the existence of that other branch. Moreover, the
cited paper provides an approximate form for the new solutions near the bifurca-
tion point, and in the present case it takes the form c+ εψ∗, where ψ∗ = 1√

π
eik

∗x

(or 1√
π

cos (k∗x) in the isotropic case), which we call ψ∗(x) below. Denote by Q

the orthogonal projection onto the complement of span{ψ∗}.
Theorem 4.3. Let (4.7) hold. For some positive ε0 and all 0 < ε < ε0, there exist
regular functions B̂(ε) and W : I = (0, ε0) −→ QS , such that uε = cµ(ε) +
ε(ψ∗ + εW(ε)) satisfies (4.8) with µ = µ∗ + ε2B̂(ε) and ψ∗(x) = 1√

π
cos (k∗x).

Moreover, the stability of the bifurcating solutions can be calculated, and we
address that issue below. For this and other later studies, we shall need details about
the bifurcation, and so record them in the following sections for that purpose. This
will provide an independent proof of Theorem 4.3. Only the isotropic case will be
considered.

4.3. Taylor expansion and stability of the constant solutions in the isotropic case

We now consider functions u near cµ for some fixed µ. We look for solutions of
(4.1) in the form

u = cµ + εv, u′ = cµ + εv′, (4.9)

where ε is a small real parameter to be characterized later, and v is a new function,
bounded independently of ε. Our construction will seek v �= const. Thus u �= const
and the functions (4.9) will be “patterned”. The equation (4.1) becomes

cµ + εv′ = µf [cµ + εv]

= µF(cµ)+ εLµv + ε2H(v, v)+O(ε3), (4.10)

By (4.2), (4.10),

v′ = Lµv + εH(v, v)+O(ε2) ≡ Lµv + εz. (4.11)

Consider first the linearized equation obtained from this by setting ε = 0:

v′ = Lµv. (4.12)

Because of the completeness of the eigenfunctions {ψk}, it suffices to seek the
solutions with v = ψk . With this choice of v we obtain Lµv = L̂(µ, k)v, so that

v′ = L̂(µ, k)v. (4.13)

Iterating (4.13) and calling the iterates v(n), we have

v(n) = (L̂(µ, k))nv(0). (4.14)
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This leads to the criterion of linearized instability: The constant solution cµ is
unstable if there is a k such that

|L̂(µ, k)| > 1. (4.15)

Remark. If |L̂(µ, k)| > 1 for some k �= 0, the growth in time of the iterates (4.14)
of v = ψk can be regarded as a clumping phenomenon. As we shall see, it leads to
the emergence of spatially patterned stationary solutions of the original nonlinear
problem.

4.4. Properties of the bifurcating stationary patterns

4.4.1. Reformulation
We now return to the nonlinear problem (4.11), and reformulate it in terms of the
patterned function ψ∗.

We can define the orthogonal projection P onto the one-dimensional subspace
spanned by ψ∗, and the complementary projection Q = I − P . In terms of these
projections, we set

Pv = aψ∗, Qv = εW, Pv′ = a′ψ∗, Qv′ = εW ′. (4.16)

We have PW = PLµW = 0, Pψ∗ = ψ∗ and

v(x) = aψ∗(x)+ εW(x), v′(x) = a′ψ∗(x)+ εW ′(x). (4.17)

Thus (from (4.9)) εa and εa′ are amplitudes of the projections of u − cµ and
u′ − cµ onto the span of ψ∗. The orthogonal projections εW and εW ′ are written
with a coefficient ε because according to our construction, it will turn out that they
are indeed O(ε) as ε→0.

The real parameter a′ and function W ′ are to be determined in terms of a, W ,
ε and µ. Also note Lµψ∗ = L̂(µ, k∗(µ))ψ∗, so that according to Assumption 4.3
Lµψ

∗ = bµψ
∗ (see the definition of bµ in that assumption).

Substituting (4.17) into (4.11), we find

a′ψ∗ + εW ′ = abµψ
∗ + εLµW + εz. (4.18)

Thus we have

(a′ − a)ψ∗ + ε(W ′ − LµW) = a(bµ − 1)ψ∗ + εz. (4.19)

We shall work with values of µ which are near µ∗; hence by (4.6) bµ is close
to 1.
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4.4.2. Stationary patterns
Suppose that the function f is quadratic (this can be relaxed with a few more
details); then

f [cµ + εv] = F(cµ)+ εLµv + ε2H(v, v). (4.20)

Thus in (4.11),

z = H(v, v) (4.21)

and (recall (4.17))

z = H(v, v) = a2H(ψ∗, ψ∗)+ 2εaH(ψ∗,W)+ ε2H(W,W). (4.22)

First, we consider stationary solutions of (4.19). We set a = a′ = 1, and thereby
identify ε for the first time as the magnitude of the projection of the stationary solu-
tion u−cµ onto the span ofψ∗. This magnitude turns out to be related toµ. Setting
a′ = a = 1, W ′ = W , we have

(1 − Lµ)W = (bµ − 1)

ε
ψ∗ + z. (4.23)

Therefore applying P to (4.23), we conclude that P [(bµ − 1)ψ∗ + εz] = 0,
which implies the orthogonality condition (recall the ψk are orthonormal)

(bµ − 1)+ ε〈z, ψ∗〉 = 0, (4.24)

where z is given by (4.11), (4.22). This is an equation relating µ to ε. We will show
that for small ε it can be expressed as

µ = µ(ε) ≡ µ∗ − η(ε). (4.25)

One of our objectives will be to characterize the function η(ε). From this point
on, we consider only the isotropic case.

Lemma 4.4. In the isotropic case,

〈H(ψ∗, ψ∗), ψ∗〉 = 0. (4.26)

Proof. Let σa denote the shift operator: σaψ(x) = ψ(x+ a). Spatial homogeneity
for f implies that for any function u, we have f [σau] = σaf [u].
Setting u = c + εv for a fixed constant c, function v and variable ε, and differ-
entiating twice with respect to ε, we get D2f [c](σav, σav) = σaD

2f [c](v, v).
We now set a = π

k∗ , v = ψ∗, and observe that σaψ∗ = −ψ∗ and that the
scalar product is invariant under σ = σπ/k∗ . We obtain that 〈H(ψ∗, ψ∗), ψ∗〉 =
〈D2f [c](ψ∗, ψ∗), ψ∗〉 = 〈σD2f [c](ψ∗, ψ∗),−ψ∗〉 = 〈H(−ψ∗,−ψ∗),−ψ∗〉.
Thus defining β(v) = 〈H(v, v), v〉, we know that β(−ψ∗) = βψ∗. On the
other hand, β(−ψ∗) = −β(ψ∗) since β is cubic, therefore odd. It follows that
β(ψ∗) = 0, which completes the proof.

Thus from (4.26) we see that the term involving a2 in the scalar product in
(4.24) (considering (4.22)) vanishes.
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We now use (4.22) (a = 1) to write (4.24) as

(bµ − 1)+ ε2〈(2H(ψ∗,W)+ εH(W,W)), ψ∗〉 = 0. (4.27)

Applying Q to (4.23), we obtain

(1 − Lµ)W = Qz. (4.28)

Recall from (4.6) that d
dµ
bµ < 0, bµ∗ = 1. Thus by the implicit function

theorem, recalling (4.25), we may solve (4.27) for

η = ε2q(W, ε). (4.29)

Or more directly,

bµ − 1 = ε2B(W, ε), (4.30)

where

B(W, 0) = −2〈H(ψ∗,W),ψ∗〉.
Our next task is to solve (4.28). Using (4.22) (a = 1), we obtain

W = (I − Lµ)
−1QH(ψ∗, ψ∗)+O(ε). (4.31)

We have recognized that the operator (I − Lµ) restricted to QS is invertible. The
implicit function theorem now yields a solution W = W̄ (ε) as a function of ε, for
small ε. Note that

W̄ (0) = (I − Lµ)
−1QH(ψ∗, ψ∗). (4.32)

Referring to (4.30), we let

B̂(ε) = B(W̄(ε), ε). (4.33)

The equation (from (4.30))

bµ − 1 = ε2B̂(ε) (4.34)

can be solved for µ:

µ(ε) = µ∗ − ε2r(ε) ≡ µ∗ − η(ε). (4.35)

We shall call the steady solution (using the notation in (4.9))

v̄ε = ψ∗ + εW̄ (ε), ūε = cµ(ε) + εv̄ε . (4.36)

This proves Theorem 4.3.
According to Assumption 4.3, the trivial solution cµ loses stability as the bifur-

cation parameter µ decreases through the value µ∗. The stability of the resulting
nontrivial solution (4.36) is determined according to whether the bifurcation is
supercritical, i.e. occurs for µ < µ∗, or subcritical, µ > µ∗. This choice in turn is
determined by the sign of B̂(0) in (4.34). If B̂(0) > 0, the new solutions occur for



186 C. Carrillo, P. Fife

bµ > 1, i.e. µ < µ∗, so they are supercritical and stable. The opposite occurs if
B̂(0) < 0.

It is therefore important to know the sign of B̂(0), which according to (4.33)
and (4.32), is

B̂(0) = −2〈H(ψ∗, W̄ (0)), ψ∗〉, W̄ (0) = (I − Lµ)
−1QH(ψ∗, ψ∗). (4.37)

The sign of this expression, then, determines the stability of the bifurcating pat-
terned solutions, except in degenerate cases.

5. Multispecies models; discussion

We have considered patterning through bifurcation in general single-species dis-
crete-time population models of distribution-regulation type. It was mentioned in
Section 1 that there are analogs, in the multispecies scenario, of the concepts,
methods, and results expounded here. In (1.1), the symbol u would represent an
n− component vector u = (u1, . . . , un), and f as well. Similarly for movement
laws g, redistribution operators R (2.3), and regulation functions F (2.5). In Sec-
tion 3.1, c and g0 will have n components, and f ′[c] will be a matrix. In (3.34),
there will be a dispersion kernel φ1i and other kernel φ3i for each i = 1, . . . , n,
and the attraction parameter A = αdθ will be an n × n matrix, the elements Aij
representing the force of attraction that species i undergoes toward species j . The
equation (3.34) then will become

(DR[c]v)i(x) = φ1i ∗ vi(x)−
∑

j

Aij
[
φ3i ∗ vj (x)− vj (x)

]
. (5.1)

The spectral and bifurcation analyses will proceed as before in a straightforward
way.

Coming back to the single-species case, we have argued ((3.34) and (3.54)) that
the linearization of the operator f about a constant solution typically assumes the
form

Df [c]v = F ′(c) (φ1 ∗ v(x)− Aφ2 ∗ v(x)) , (5.2)

where in the prototypical case φ2 = φ3 − δ and φ1 and φ3 are probability kernels
representing the competing actions of random dispersion and congregation; and
the parameter A is a measure of the strength of conspecific attraction. We have
developed, mainly in terms of the spectral function R̂(k) (3.52), conditions for the
existence and for the stability of bifurcating stationary patterned solutions.

For the existence of a bifurcation, the most important criterion is Assumption
4.3 in Sec. 4. In the typical case (3.52) holds, and

L̂(µ, k) = µF ′(cµ)R̂(k) = µF ′(cµ)(φ̂1(k)− Aφ̂2(k)). (5.3)

In the isotropic case when R̂(k) is real and even, if φ2 = φ3 − δ the assumption
will typically be fulfilled if the spectral function

R̂(k) = φ̂1(k)+ A(1 − φ̂3(k))
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has a global maximum occurring at a finite positive value k = k∗, and R̂(k∗) > 1.
This condition cannot happen whenA ≤ 0, so some attraction is necessary for pat-
terning in the present context. Also if A is too large, sup R̂(k) will only be attained
at k = ∞.

It is useful to have a simpler sufficient condition for the existence of these pat-
terns. Think of k as being a continuous variable. Then a sufficient condition for the
criterion is that

R̂′′(0) > 0, A < 1. (5.4)

The reason is that R̂′(0) = 0, R̂(0) = 1, so that R̂(k) will assume values> 1; but
R̂(∞) = A < 1, so that 0 < k∗ < ∞.

Letting Vi be the variance of φi , we have the relation

Vi = −φ̂′′
i (0), so that R̂′′(0) > 0 if A > V1/V2. (5.5)

In short, this sufficient condition is that A lie in the interval

V1

V2
< A < 1. (5.6)

For this to hold, it is of course required thatV1 < V2, i.e. that the dispersion have
a shorter range than the congregation. This condition is reminiscent of other bio-
logical models involving activation and inhibition, the activation having a shorter
range than the inhibition.

One may model repulsion by setting A < 0; then various consequences of the
model may be easily deduced.

The form (5.2) for the derivative was derived in the context of our postulate of
conspecific attraction in Section 3.3.3; that postulate was general enough to provide
justification for our claim that (5.2) is typical.
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