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Abstract. If the ureter becomes blocked, the resultant increased pressure may be relieved by
inserting a double-J stent (a polymer tube, usually punctuated with holes). A major clinical
problem associated with stent use is reflux (retrograde flow of urine from the bladder to the
kidney), which may result in infections, scarring, and even renal failure.

We develop a mathematical model, treating the ureter as an elastic tube and the stent as
a permeable rigid tube within it. We investigate how the number of holes in the stent wall
affects the total amount of reflux that occurs when bladder pressure rises, by considering the
limits of a highly-permeable stent, and an impermeable stent. We find that, in the scenarios
we consider, the highly-permeable stent gives rise to less total reflux than the impermeable
one.

1. Introduction

The urinary tract is a conduit, storage and modification system for urine excreted
by the kidney. When produced, urine collects in the funnel-shaped renal pelvis of
the kidney, and passes down the ureter to the bladder, where it is stored at low
pressure until voiding is achieved. Urine is mainly water and contains salts, urea
and a little protein. It is usually supersaturated, but in normal individuals inhibitors
of crystallisation keep it in a liquid state [12]. The urine in the bladder is more
concentrated and of higher pH than the urine in the renal pelvis and, while levels of
bacteria in urine are normally very low (less than 103 per mm3; ‘sterile’), bladder
levels are usually higher than in the renal pelvis since the bladder is nearer the
external environment. The renal pelvis has a very low bacterial tolerance, and is
thus very susceptible to infection.

In a healthy system, rhythmic coordinated contractions of the ureter (peristal-
sis) push urine down the ureter to the bladder at a normal flow rate of about
0.5 ml min−1 for each kidney/ureter (although in disease states such as diabetes
insipidus the rate may be as high as 4 ml min−1) [1,8,9]. The ureter may become
blocked, however, either internally (e.g. by a kidney stone) or by external compres-
sion (e.g. from a tumour) and an obstruction can rapidly become life threatening,
either due to increased intrarenal pressure (which may stop urine production and
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Fig. 1. Schematic showing the upper urinary tract with a stent in one ureter.

over time cause kidney failure) or by causing an infection. Ideally, the obstruction
should be removed, but if this is not possible, the pressure must be relieved. This
may be done by direct drainage of the kidney (a nephrostomy), or via the insertion
of a stent.

A number of different stent designs are available clinically [14]: double-J stents
made of polymers (considered here), which extend the entire length of the ureter;
and a range of shorter metal stents, which sit at the blockage site. The double-J stent
is a tube, usually punctuated with holes, with a typical internal diameter of 1mm
and length of 25cm. It is relatively pliable longitudinally (floppy), but difficult to
compress radially. Curls at each end keep the lower end in the bladder and the upper
end in the renal pelvis [5].

Two major problems are commonly associated with stent use.

(i) Reflux. During normal function, when bladder pressure rises (e.g. when the
bladder is full, or during urination) the bladder-ureter junction (the vesico-ure-
teric junction or VUJ) contracts and closes. After stenting, however, the VUJ
is not able to close fully because of the presence of the stent. Moreover, intro-
duction of the stent causes the ureter quickly to lose muscle tone (this is linked
to the suppression of peristalsis in a stented ureter; see below), and the VUJ
in a stented ureter thus remains dilated [14]. This means that bladder urine is
able to travel back up the ureter to the renal pelvis. This is known as reflux
[2] and may result in renal infections such as pyelonephritis and subsequent
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scarring, and, over time, a fall off in renal function.1 Stented patients are par-
ticularly prone to high bladder pressures as the lower curl of the stent rests
on a sensitive part of the bladder called the trigone. This causes irritation (as
well as unpleasant symptoms including increased urinary frequency, pain and
haematuria), leading to pressure rises in the bladder due to muscle contractions
(referred to as twitches). Furthermore, and for reasons which do not appear to
be fully understood, the presence of a stent abolishes peristalsis [2,11,13,14].
For example, the study of [13], also cited in [14], found that peristalsis was
rarely seen in stented patients before 2 months, after which it reappeared in one
third of patients, but was weak in quality. Thus flow in the ureter is immedi-
ately susceptible to pressure fluctuations in the bladder, again resulting in an
increased likelihood of reflux.

(ii) Encrustation. Around 15%–20% of patients require a stent to be inserted
indefinitely, but over several months, the stent can become encrusted with crys-
talline deposits of salts from urine which, as well as causing discomfort, can
lead to inflammation and further blockage. While a certain amount of encrus-
tation can be tolerated on the bladder end of the stent, encrustation within the
renal pelvis is extremely problematic, as stent removal becomes difficult and
may even require an open operation [6,14].

For those 80–85% of patients only requiring a stent in the short term, reflux
(as defined above) is a far more serious issue than encrustation. However, the two
issues are closely linked. The insertion of a stent leads to the potential for introduc-
ing bacteria into the system. As well as the obvious infection risk, certain bacteria,
e.g. Proteus spp and Morganella morganii (commonly found in the urine) pro-
duce urease, an enzyme that catalyses the hydrolysis of urea in the urine to carbon
dioxide and ammonia, thus elevating the urinary pH. The rate of encrustation (crys-
tallisation) increases with pH; thus since both bacteria and pH levels are higher in
the bladder, reflux can exacerbate encrustation within the renal pelvis.

Previous theoretical models of ureteric flow dynamics have focused on healthy
ureteric function, in which the flow is driven by peristaltic contraction waves (see,
for example, [1,8,9] and references therein). Since a double-J stent abolishes peri-
stalsis, however, most of this work is not applicable here. In this paper we develop
a simple mathematical model for the flow in a stented ureter. The ureter is modelled
as an elastic tube, and the stent as a permeable rigid tube, both of the same length.
The ureter is usually lobular or slit-like in cross-section (except when a fluid bolus
passes through). When stented however, loss of muscle tone due to the suppression
of peristalsis [2,11,14], and the higher-than-normal pressures resulting from the
system still being partially blocked, combine to cause ballooning of the ureter wall
[2]. It is therefore reasonable to restrict attention to the case of axisymmetric geom-
etry. Moreover, without peristalsis, the ureter drains passively, the urine flow being
driven only by the pressure difference between the renal pelvis and the bladder [14].
Usually (when the patient is standing or sitting) this pressure difference is purely

1 We note that a ‘non-reflux’ stent design has been reported by Dauleh et al. [3], in which
the lower end curl of the stent is replaced by a thread, so that the VUJ is no longer held open
by the stent. However this design is not in widespread use.
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hydrostatic due to the renal pelvis typically being 20cm above the bladder. How-
ever, twitches and voiding both increase bladder pressure considerably, increasing
the likelihood of reflux.

The key dimensionless parameters in our model are the stiffness of the ureter
wall (its resistance to stretching under pressure) and the permeability of the stent
wall (a measure of how much fluid will flow out through the holes in the stent wall,
relative to the amount that flows directly down the centre of the stent). We inves-
tigate flow in the stented ureter in different parameter regimes, and in particular,
study situations in which reflux occurs.

2. Modelling

2.1. Physiological parameter values and definitions

Here we list the dimensional governing parameters of the system, with estimations
of their physiological values. Stars denote dimensional quantities throughout.

µ∗ = viscosity of urine, assumed to be that of water (0.654 g cm−1 s−1 at 40◦ C).
ρ∗ = density of urine, again assumed to be that of water (1 g cm−3).
P ∗

b = pressure in the bladder. Usually this is 2–5 cm H2O, but during a twitch
or on voiding it can reach 30 cm H2O or 50 cm H2O respectively.
P ∗

k = pressure in the renal pelvis ≈ 20 cm H2O in stented patients (≈ 4 cm H2O
unstented).
L∗ = total length of ureter (and stent) ≈ 25cm.
a∗ = internal radius of stent ≈ 1mm.
b∗ = internal radius of ureter, usually less than 3mm.
b∗
a = ambient internal radius of ureter (when pressures inside and outside ureter

are equal), here taken to be 2mm.
k∗ = stiffness of ureter wall, in the sense defined in (2.3) ≈ 41-45cm H2O mm−1

at typical voiding pressures (based on the data of [10]).
h∗ = thickness of stent wall ≈ 0.5mm.
e∗ = radius of holes in stent wall ≈ 0.25mm.
N = number of holes in stent wall ≈ 50.
n∗ = number of holes per unit area in stent wall ≈ 3.18cm−2.
λ∗ = stent wall permeability, as defined by (2.2) (must be determined experi-
mentally, or estimated as discussed later).

2.2. Preliminaries

Throughout this paper we assume that the stent-ureter system is axisymmetric.
The basic geometry is sketched in figure 2. We use cylindrical polar coordinates
(r∗, θ, z∗), with associated unit vectors (er , eθ , ez), where the z∗-axis lies along
the centre of the stent (and ureter). The velocity of the fluid (urine, which being
mainly water is assumed Newtonian) is represented by u∗ = u∗(r∗, z∗, t∗)ez +
v∗(r∗, z∗, t∗)er . Gravity (represented by g∗) is assumed to act along the z∗-direc-
tion. (Even if it has a component perpendicular to this direction its effect will not



60 L.J. Cummings et al.

KIDNEY BLADDER

P ∗
k (t∗)

r∗ = b∗(z∗, t∗) (ureter)

z∗ = 0

P ∗
b (t∗)

z∗ = L∗

z∗Region �∗
s

Region �∗
u

r∗ = a∗ (stent)

Fig. 2. Schematic showing axisymmetric coordinate system and definitions used.

enter the leading order equations in the r∗- and θ -equations, so it is simplest to
assume this at the outset.) If the patient is lying down, the gravity parameter can
be set to zero in the model. All our calculations for reflux during urination will be
based on a standing/sitting patient (a ‘best-case’ scenario as far as reflux is con-
cerned, since any refluxing urine has then to overcome the effect of gravity to reach
the kidney).

The pressures in the stent interior (region �∗
s) and in the gap between the stent

and the ureter wall (region �∗
u) are denoted by p∗

s and p∗
u, respectively (we will

use ‘s’ and ‘u’ elsewhere to distinguish between other quantities, such as velocity,
in these two regions). The ambient pressure in the body outside the ureter p∗

body
is taken to be hydrostatic, induced only by gravity. It proves convenient to work
throughout with reduced pressures: p̂∗ = p∗ − (ρ∗g∗z∗ + p∗

c ) for some constant
p∗

c , as this removes gravity from the Navier-Stokes equations. The reduced pressure
p̂∗

body is then just a constant, which, by choosing

p∗
c = p∗

body

∣
∣
∣
z∗=0

≈ 4 cm H2O (2.1)

(assuming the ambient body pressure at the renal pelvis is more or less the same
as that in an unstented renal pelvis), is zero: p̂∗

body ≡ 0. Henceforth, when we say
‘pressure’, ‘reduced pressure’ is understood.

2.3. Flow through the permeable stent wall

Since the stent has holes in its side, urine will flow between the stent and the ureter
if there is a pressure difference across the stent wall, as indicated in figure 3. The
total flux through the stent wall will be linear in the pressure drop across the wall.
Hence, assuming that the stent wall is thin, so that conditions on the outer and inner
stent walls may both be applied at r∗ = a∗, this gives conditions on the radial
velocity v∗ at the stent wall of the form:

v∗
u = λ∗(p̂∗

s − p̂∗
u) = v∗

s on r∗ = a∗, (2.2)
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Fig. 3. Flow through the permeable wall of the stent.

where λ∗ is a measure of the wall permeability, which could be determined exper-
imentally.2 In any case, it seems reasonable to assume that λ∗ will be a linear
function of the number of holes per unit area in the stent wall, and it can clearly be
regarded as an adjustable parameter in the model.

2.4. Compliant tube model of ureter

The flow in regions �∗
s and �∗

u is governed by the Navier-Stokes equations, subject
to appropriate boundary conditions. At the ureter wall, z∗ = b∗(z∗, t∗), the no-slip
condition states that the fluid velocity must equal the velocity of the ureter wall.
We also assume the following simple law for the elastic ureter wall:

k∗(z∗)(b∗(z∗, t∗) − b∗
a(z

∗)) = p̂∗
u (if p̂∗

u > 0), on r∗ = b∗. (2.3)

Here, b∗
a(z

∗) denotes the ‘ambient’state of the ureter wall, when the pressure within
it tends to zero (which, recall, is the value of the pressure p̂∗

body external to it); and

the function k∗(z∗) is a measure of how difficult it is to stretch the ureter radially,
i.e. of the stiffness of the ureter. Allowing k∗ to vary spatially allows us to model
a blockage as a region where k∗(z∗) is locally large (a large internal pressure is
then required to increase the ureter radius in this region). We do not stipulate what
happens if p̂∗

u ≤ 0 as this never happens physiologically; but clearly b∗(z∗, t∗) can
never be less than a∗ for a stented ureter (an unstented ureter can contract to closure
during peristalsis).

Equation (2.3) is a linear approximation to a true nonlinear wall law, as illus-
trated in figure 4. Obviously, different linearisations of the true law are appropriate
in different situations. For low values of (p̂∗

u − p̂∗
body) the slope of the appropriate

tangent will be larger, leading to a lower value for the ureter stiffness k∗; and the
converse applies for large pressures. If one knows the exact nonlinear law, then
the choice of the point about which we linearise it (marked by A in figure 4) is
dictated by a typical value of p̂∗

u in the situation we wish to model. If there are large
variations in p̂∗

u then obviously the linear law will be less accurate, but in fact for
most of our analysis the variations are only small, and the linear approximation we
employ is quite accurate.

2 We note that, if the flow through the holes is assumed to be Poiseuille – which will not
be the case as the stent wall is not thick enough for such a flow to develop – an explicit
expression λ∗ = πe∗4n∗/(8µ∗h∗) may be obtained, where e∗ and h∗ are indicated in figure
3 and n∗ is the number of holes per unit surface area. In the absence of experimental data,
this may provide an order of magnitude estimate of the wall permeability.
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p̂∗
u

Fig. 4. Linear approximation to general wall law. The lower curve illustrates a general non-
linear response of the ureter radius to the pressure drop across it; the upper line, with gradient
1/k∗(z∗), represents the linear wall response we adopt. The point of tangency, A, will be
chosen such that the corresponding pressure drop is in the physiological regime we wish to
model.

Since we are interested in the voiding situation, when most reflux occurs, we
use a linearisation about a typical voiding pressure and ureter radius. If we assume
(as stated earlier) that the ambient (absolute) pressure in the body at the renal pelvis
is around the same as that in the unstented renal pelvis, i.e. 4 cm H2O, then based
on the data of §2.1, the reduced pressure in the renal pelvis is around 16 cm H2O
(and only a little higher in the bladder) when voiding, hence we take 16 cm H2O
as a typical pressure drop across the ureter wall in this situation.

We estimate the physiological value of k∗ using the data of Knudsen et al [10]
obtained from pig ureters. In this in vivo study, a balloon is used to inflate the pigs’
ureters, and the inflation pressure p∗ (in cm H2O) and balloon cross-sectional area
A∗ (in mm2) are measured simultaneously, and plotted. We estimate the slope of
their graph at the relevant pressure to be S∗ = 2.96 cm H2O mm−2. Then, since

S∗ = �p∗

�A∗ = �p∗

π(b∗ + b∗
a)(b

∗ − b∗
a)

,

we find that

(b∗ − b∗
a)
[
π(b∗ + b∗

a)S
∗] = �p∗.

Comparing with our wall law (2.3), we may identify k∗ with the quantity in square
brackets on the left-hand side. The data of [10] gives an ambient ureter radius b∗

a of
around 2 mm, and a radius at �p∗ = 16 cm H2O of b∗ ≈ 2.4 mm. Thus we arrive
at the estimate

k∗ = 41cm H2O mm−2. (2.4)
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At the permeable stent wall r∗ = a∗ we assume no tangential slip of fluid on
either side of the stent wall: u∗

s = 0 = u∗
u (this is justified since the holes occupy a

very small fraction of the stent wall surface area); and condition (2.2) also holds.
Finally, we must also impose boundary conditions at the ends of the stent,

z∗ = 0 (the kidney) and z∗ = L∗ (the bladder). It seems clear that the pressure
within the stent, p̂∗

s , must be equal to the kidney and bladder pressures, P̂ ∗
k (t∗)

and P̂ ∗
b (t∗), at the respective ends. Since the pressure in the ureter, p̂∗

u, is related
to the ureter radius through the boundary condition (2.3), we must choose whether
to prescribe p̂∗

u, b∗, or some relation between them, at the ends. As mentioned in
the Introduction, the ureteric wall quickly becomes passive after insertion of the
stent (muscle tone is lost due to the lack of peristalsis), so the VUJ cannot contract
around the stent but remains flaccid and dilated [14]. Hence we assume that the
pressure p̂∗

u in the region between ureter and stent is also equal to the kidney and
bladder pressures at the respective ends, the ureter radius being free to adapt to
these pressure conditions.

2.5. Nondimensionalisation

We nondimensionalise the Navier-Stokes equations, scaling z∗ with L∗, and r∗,
b∗ and b∗

a with the stent radius a∗ = εL∗ (0 < ε � 1). Pressures are scaled
with �̂∗, a typical value of the pressure in the kidney (which, following the dis-
cussion above we will take to be 16 cm H2O); the velocity component u∗ with
U∗ = �̂∗a∗2/(µ∗L∗) (to give a leading-order balance in the z-component of the
Navier-Stokes equations), and v∗ with V ∗ = εU∗ (to give a balance in the continu-
ity equation). Time is scaled with L∗/U∗. If absolute pressures are also scaled with
�̂∗ then absolute and reduced pressures are related by p̂ = p − pc − zBo, where
Bo = ρ∗g∗L∗/�̂∗ is the Bond number, and pc = p∗

c /�̂
∗, with p∗

c as defined in
(2.1).

Due to the tiny aspect ratio of the system ε � 1, and the smallness of the
reduced Reynolds number εRe = ερ∗U∗L∗/µ∗, lubrication theory is applicable.
To leading order in ε the dimensionless Navier-Stokes equations are

∂p̂s,u

∂z
= 1

r

∂

∂r

(

r
∂us,u

∂r

)

, (2.5)

1

r

∂

∂r

(
rvs,u

)+ ∂us,u

∂z
= 0, (2.6)

where p̂s,u(z, t) is independent of r .
Under the assumptions of lubrication theory, the leading-order motion of the

ureter wall is in the radial direction only, and the boundary conditions at the ureter
wall become:

(a) uu = 0, (b) vu = ∂B

∂t
, (c) p̂u = K(B − Ba), on r = B(z, t), (2.7)

where K(z) = εL∗k∗(L∗z)/�∗ and B(z, t) = b∗(L∗z, L∗t/U∗)/(εL∗) are the
dimensionless ureter stiffness and radius respectively (Ba(z) = b∗

a(L
∗z)/(εL∗)).
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In fact, since p̂u is independent of r , (2.7)(c) gives the pressure throughout �u.
Using the value of k∗ given by (2.4), we estimate the value of the parameter K (for
a healthy porcine ureter) as K = 2.6. At the stent wall we have

(a) uu = 0 = us, (b) vu = 


16
(p̂s − p̂u) = vs, on r = 1, (2.8)

where 
 = 16λ∗µ∗/(L∗ε3) is the dimensionless stent permeability, which may be
regarded as an adjustable parameter.

Finally, following the discussion of boundary conditions at the ends of the stent,
at z = 0 we have dimensionless pressures p̂s = p̂u = P̂k(t) ≡ Pk(t) − pc, and at
z = 1 p̂s = p̂u = P̂b(t) ≡ Pb(t) − pc − Bo.

3. Evolution equations for the ureter radius and pressures

We now use the model (2.5)–(2.8) to derive a fourth-order system of nonlinear
PDEs relating the fluid pressures in the stent and ureter, and the ureter radius. We
can solve for us,u using (2.5), (2.7)(a) and (2.8)(a):

us = 1

4

∂p̂s

∂z
(r2 − 1), uu = 1

4

∂p̂u

∂z
(r2 − 1 + C1 log r2),

where C1 = −B2 − 1

log B2 . (3.9)

The radial velocities vs,u are then given by (2.6) as

vs = 1

16

∂2p̂s

∂z2 r(2 − r2), (3.10)

vu = − 1

16

∂2p̂u

∂z2 r
(
r2 − 2 + 2C1(log r2 − 1))

−1

8

∂p̂u

∂z

∂C1

∂z
r(log r2 − 1) − f (z, t)

16r
, (3.11)

where we used vs = 0 on r = 0, and f (z, t) in vu is a function of integration.
Using (2.8)(b) in (3.10), the pressures p̂u and p̂s are related via:

p̂u = p̂s − 1




∂2p̂s

∂z2 . (3.12)

Conditions (2.7)(b) and (2.8)(b) on vu allow us to eliminate f (z, t) from (3.11),
giving a single equation linking B(z, t), p̂s and p̂u (C1 defined in (3.9) depends
only on B(z, t)), which, using (3.12), may be written in the form

16B
∂B

∂t
+ ∂2p̂u

∂z2 B2(B2 − 2) + ∂2p̂u

∂z2 − ∂2p̂s

∂z2

−2
∂

∂z

(
∂p̂u

∂z

(B2 − 1)

log B2

)

(B2 log B2 − B2 + 1) = 0. (3.13)
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Equation (2.7)(c) gives B(z, t) in terms of p̂u and hence, using (3.12), in terms
of p̂s:

B = Ba + p̂u

K
≡ Ba + 1

K

(
p̂s − 1




∂2p̂s

∂z2

)
. (3.14)

Equations (3.12)–(3.14) are the governing evolution equations. They may be re-
duced to a single equation by substituting in (3.13) for p̂u and B in terms of p̂s, using
(3.12) and (3.14), giving a single 4th-order nonlinear partial differential equation
for the pressure in the stent, p̂s. As noted below equation (2.8) we have boundary
values for p̂s and hence, using (3.12), for ∂2p̂s/∂z2 at z = 0, 1:

p̂s = Pk(t) − pc ≡ P̂k(t),
∂2p̂s

∂z2 = 0, at z = 0,

p̂s = Pb(t) − pc − Bo ≡ P̂b(t),
∂2p̂s

∂z2 = 0, at z = 1. (3.15)

An initial condition on the pressure completes the system.
The two key dimensionless parameters in the model are the ureter stiffness

K(z), and the stent permeability 
. The asymptotic limit of small K is not phys-
iologically relevant according to the porcine data of Knudsen et al. [10]. Also,
this limit would, by (2.7)(c) and (3.12), necessitate either (a) very small pressures
(which, recall, were made dimensionless on a typical system pressure and must
therefore be order one); or (b) very large ureter wall displacements, which are not
physiologically sensible. The large-K limit may be relevant in an externally-com-
pressed ureter, as noted earlier, though we do not consider this limit here. We may,
however, consider the obvious limits of large and small stent permeability. Clini-
cally, the most important aspect of the fluid dynamics is the possibility of reflux;
hence we will investigate situations that lead to reflux, and quantify how much
reflux occurs in each of the asymptotic regimes investigated.

4. Solutions for large permeability (� → ∞)

Given that the estimate for λ∗ provided by footnote 2 leads to 
 ≈ 117 for a
typical stent, we first consider the behaviour of the system as 
 → ∞. Writing
B = B0 +O(1/
), and similarly for p̂u and p̂s, equations (3.12) and (2.7)(c) give:

p̂s0 = p̂u0 = K(z)(B0(z, t) − Ba(z)); (4.16)

Equation (3.13) then gives a second-order nonlinear PDE for B0(z, t):

16B0
∂B0

∂t
+ B2

0 (B2
0 − 2)

∂2

∂z2 [K(B0 − Ba)] − 2(B2
0 log B2

0 − B2
0 + 1)

× ∂

∂z

(

(B2
0 − 1)

log B2
0

∂

∂z
[K(B0 − Ba)]

)

= 0. (4.17)
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The boundary conditions on B0 come from the pressure conditions (3.15) at z =
0, 1 via (4.16):

B0(0, t) = Ba + P̂k(t)

K(0)
, B0(1, t) = Ba + P̂b(t)

K(1)
, (4.18)

and we also require the initial ureter shape B0(z, 0) (if the initial pressure distribu-
tion is specified then B0(z, 0) is given by (4.16)).

When the pressures P̂k(t) and P̂b(t) at the ends of the ureter have the same
value, which by our nondimensionalisation we may take to be 1 without loss of
generality, equations (4.16) and (4.17) have the obvious steady solution

p̂u0 = 1 = p̂s0, B0(z) = Ba(z) + 1

K(z)
, (4.19)

for arbitrary ureter stiffness K(z). This steady state solution may be used to describe
voiding (which easily lasts long enough for a nearly steady state to be set up), since
then the pressures at either end of the ureter are nearly equal (see the parameter
values given in §2.1).

4.1. Perturbations to the steady state

The solution (4.19) describing voiding is only approximate, and for a more accu-
rate description, we can consider perturbations to this steady state. Since the flow
is driven by the pressures in the renal pelvis and bladder, we consider small pertu-
bations, of size δ (0 < (1/
) � δ � 1), to P̂k and P̂b. Writing

P̂k(t) = 1 + δP̂k1(t) + O(δ2), P̂b(t) = 1 + δP̂b1(t) + O(δ2),

B(z, t) = (Ba(z) + 1/K(z)) + δB1(z, t) + O(1/
, δ2), (4.20)

(P̂k1(t) and P̂b1(t) are specified), and similarly for p̂s and p̂u, we substitute these
expansions into (3.13) and (3.14) above, and obtain, at order δ:

16B0
∂B1

∂t
=
(

B4
0 − 2(B2

0 − 1)2

log B2
0

)

∂2

∂z2

(
KB1

)

+2(B2
0 log B2

0 − B2
0 + 1)

∂

∂z

(

B2
0 − 1

log B2
0

)

∂

∂z

(
KB1

) = 0, (4.21)

where B0(z) = Ba(z) + 1/K(z). This is much simpler if both Ba(z) and K(z) are
constant (K constant is a good approximation for an unobstructed ureter), since
then we obtain the diffusion equation

∂B1

∂t
= D∞

∂2B1

∂z2 , D∞ = K

16B0

[

B4
0 − 2(B2

0 − 1)2

log B2
0

]

, (4.22)

which must be solved subject to boundary conditions

B1(0, t) = P̂k1(t)

K
, B1(1, t) = P̂b1(t)

K
, (4.23)

and an appropriate initial condition.
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The diffusion coefficient D∞, which depends only on K and Ba, is always
positive for K > 0, Ba ≥ 1, but has the asymptotic behaviour

D∞ = K

16Ba

(

B4
a − 2(B2

a − 1)2

log B2
a

)

+ O(1) as K → ∞;

and D∞ = 1/(16K2) + O(1/(K2 ln K)) as K → 0+. Solutions to this model are
considered in §6.

5. Solutions for small permeability (� → 0)

There are sometimes problems with stents fracturing in vivo, and it is conjectured
by some urologists that the holes in the stent wall may be partly responsible for this
[4,7]. This could be an argument in favour of an impermeable, or less permeable,
stent, with no, or fewer, holes in the wall. However, reducing the permeability of
the stent obviously affects the fluid dynamics in the ureter; in particular, the degree
of reflux that occurs. Hence we study the limit 
 → 0 in equations (3.12)–(3.14),
with the aim of quantifying the differences in the flow dynamics, which may enable
us to draw some conclusions as to the usefulness of the holes.

We make asymptotic expansions for the functions p̂s, p̂u and B in powers of the
small parameter 
. Equation (2.7)(c) for the pressure in the ureter is unchanged;
and for the pressure in the stent, at leading order (3.12) gives p̂s0 varying linearly
between the prescribed values at the ends:

p̂s0 = P̂k(t) + z(P̂b(t) − P̂k(t)), (5.24)

so that the leading-order flow in the stent is Poiseuille. As before we can derive
a second-order nonlinear PDE for the leading order ureter radius, which is very
similar to equation (4.17) for the large permeability case:

16B0
∂B0

∂t
+ (B2

0 − 1)2 ∂2

∂z2

(
K(B0 − Ba)

)− 2(B2
0 log B2

0 − B2
0 + 1)

× ∂

∂z

(

B2
0 − 1

log B2
0

∂

∂z

(
K(B0 − Ba)

)
)

= 0. (5.25)

The boundary conditions at z = 0, 1 are exactly as in (4.18).
As in §4, when both end pressures P̂k(t) and P̂b(t) are equal to 1, (4.19) gives

a steady solution to (5.25), about which we may perturb.

5.1. Perturbations to the steady state

We assume asymptotic expansions exactly as in (4.20), except that now the condi-
tion we impose on the relative sizes of the small parameters is 0 < 
 � δ � 1
(so that we can proceed beyond leading order in δ using just leading order in 
).
To order δ the pressures are then given by

p̂s0 = 1 + δ
(
P̂k1(t) + z(P̂b1(t) − P̂k1(t))

)+ O(δ2),

p̂u0 = 1 + δK(z)B1 + O(δ2). (5.26)
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At order δ we obtain

16B0
∂B1

∂t
=
(

B4
0 − 1 − 2(B2

0 − 1)2

log B2
0

)

∂2

∂z2

(
KB1

)

+2(B2
0 log B2

0 − B2
0 + 1)

∂

∂z

(

B2
0 − 1

log B2
0

)

∂

∂z

(
KB1

)
, (5.27)

which, if K is constant, simplifies to a diffusion equation analogous to (4.22):

∂B1

∂t
= D0

∂2B1

∂z2 , D0 = D∞ − K2

16(K + 1)
, (5.28)

(D∞ is defined in (4.22)), again subject to boundary conditions (4.23) and an
appropriate initial condition.

6. Explicit solutions corresponding to voiding

We now consider some explicit solutions to equations (4.22) and (5.28). Recall
that these two models describe the ureter shape during voiding (in the large- and
small-permeability limits respectively), when the pressures in bladder and renal
pelvis are nearly equal, differing only by an amount of O(δ) (0 < δ � 1). Finding
physiologically-relevant solutions to these models enables us to calculate explicitly
the amount of reflux that occurs in the two limiting cases, and make a comparison
between them.

6.1. Similarity solutions

As is well-known, equations (4.22) and (5.28) have similarity solutions of the form:

B1(z, t) = c1erf(η) + c2; η = (z + z0)

2
√

D(t + t0)
, erf(x) := 2√

π

∫ x

0
e−s2

ds,

(6.29)

where D denotes either D∞ or D0, for constants c1, c2, z0 and t0. Since t0 represents
only a choice of time origin, we set it to be zero. At the ends of the ureter B1 is
related to the pressure perturbations by (4.18):

B1(0, t) = c1erf

(
z0

2
√

Dt

)

+ c2 = P̂k1(t)

K
, (6.30)

B1(1, t) = c1erf

(
(1 + z0)

2
√

Dt

)

+ c2 = P̂b1(t)

K
, (6.31)

from which we see that such similarity solutions are possible only for pressure
perturbations that vary in time in this specific manner.

Such a solution can be used to describe a small extra contraction of the bladder
during voiding, where the bladder pressure suddenly rises to 1+δ, and is then main-
tained at this constant value: P̂b1(t) = 1 for t > 0. If we impose P̂k1(0) = 0 (no
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initial perturbation to the pressure in the renal pelvis), then the similarity solution
describing the behaviour of the ureter radius is

B(z, t) = Ba + 1

K
+ δ

K

(

1 − erf

(
1 − z

2
√

Dt

))

+
{

O(δ2, 1/
)

O(δ2, 
).
(6.32)

Although we have insisted that the excess bladder pressure remain constant, the
restricted form of the solution means that we cannot also specify the excess pressure
in the renal pelvis; it must increase in time according to:

P̂k(t) = 1 + δ

(

1 − erf

(
1

2
√

Dt

))

+
{

O(δ2, 1/
)

O(δ2, 
).
(6.33)

Although we might expect the pressure within the renal pelvis to increase if reflux
persists over long times, its behaviour in time will in reality be determined by a
specific pressure-volume law within the renal pelvis, as the amount of fluid within it
increases. However, we expect the above similarity solution to capture the general
features.

The ureter radius is plotted as a function of (dimensionless) distance z along
its length, for various times t and for various values of the permeability parameter
K in figures 5(a)–10(a). The general features of the solution are always the same,
though clearly as the ureter stiffness decreases, the variations in the ureter radius
increase.
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(a) Similarity solution, 
 → ∞
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t = 0.001

(b) Separable solution, 
 → ∞

t = 5

t = 0.25

t = 0.1

t = 0.02

t = 0.001

Fig. 5. The dimensionless ureter radius B(z, t), plotted as a function of z at various times,
for the similarity solution (6.32) and the separable solution (6.38) of equation (4.22) in the
limit 
 → ∞ (neglecting terms of order δ2, 1/
). Note the scaling of the axes. Parameter
values δ = 0.25, Ba = 2, K = 0.5 are taken, and 100 modes are used to plot the separable
solution.
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(b) Separable solution, 
 → 0
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t = 0.25

t = 0.1
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t = 0.001

Fig. 6. The dimensionless ureter radius B(z, t), plotted as a function of z at various times,
for the similarity solution (6.32) and the separable solution (6.38) of equation (5.28) in the
limit 
 → 0 (neglecting terms of order δ2, 
). Note the scaling of the axes. Parameter
values δ = 0.25, Ba = 2, K = 0.5 are taken, and 100 modes are used to plot the separable
solution.
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Fig. 7. As for figure 5 but with K = 3.
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Fig. 8. As for figure 6 but with K = 3.
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Fig. 9. As for figure 5, but with K = 10.
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Fig. 10. As for figure 6, but with K = 10.

6.2. More general solutions

Although similarity solutions have the general properties we require, and have sim-
ple closed-form expressions, they restrict us to boundary conditions of a specific
form at the bladder and kidney. If we wish to solve for more general end conditions,
the solution will have a more complicated form.

In general, the bladder pressure during voiding will be a specified function of
time (the patient controls this by how hard he squeezes the bladder). We assume for
simplicity, as in the similarity solutions, that it is maintained constant, at a slightly
higher level than the usual pressure in the renal pelvis. The pressure in the renal
pelvis is constant before voiding, but as reflux occurs, will slowly rise. Hence we
consider the boundary conditions:

P̂b(t) = 1 + δ + O(δ2, 1/
), P̂k(t) = 1 + δKg(t) + O(δ2, 1/
), (6.34)

for some function g satisfying g(0) = 0 (no excess pressure in renal pelvis ini-
tially). The perturbation to the ureter radius is then given by the diffusion equation
(4.22), together with the boundary conditions

B1(0, t) = g(t), B1(1, t) = 1

K
, (6.35)

and the initial condition

B(z, 0) = 0 0 ≤ z < 1. (6.36)
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The solution can be found by taking a Laplace transform in time:

B(z, t) = Ba + 1

K
+ δ

{

z

K
+ 2

πK

∞∑

n=1

(−1)n

n
exp

(−Dn2π2t
)

sin(nπz)

+ 2πD

∞∑

n=1

(−1)nn sin nπ(1 − z)

∫ t

0
exp

(−Dn2π2τ
)
g(t − τ)dτ

}

+O(δ2, 1/
). (6.37)

The above provides a solution for any choice of function g(t) describing the var-
iation of the excess pressure within the renal pelvis. If, as mentioned above, we
wish to determine this pressure variation systematically (rather than make an ad
hoc choice), we have first to work out the volume of reflux into the renal pelvis gen-
erated by this solution (for arbitrary g), and hence work out the resulting pressure
within the renal pelvis at any given time, using a suitable pressure-volume law.
This must be equal to P̂k(t), given by (6.34), which will finally provide us with an
equation to determine g(t).

Since the principal goal of this paper is to determine qualitatively how the
porosity of the stent affects the degree of reflux, we do not carry out this messy
calculation here. Instead, we shall calculate the refluxes generated by two simple
solutions: the similarity solution given in (6.32), and the solution (6.37) in the
simplest case g(t) = 0:

B(z, t) = Ba + 1

K
+ δ

{

z

K
+ 2

πK

∞∑

n=1

(−1)n

n
exp

(−Dn2π2t
)

sin(nπz)

}

+O(δ2, 1/
) (6.38)

(this solution can be obtained more easily by seeking separable modes). This solu-
tion is illustrated in figures 5(b)–10(b) for various values of K , in both limits

 → ∞ and 
 → 0. As with the separable solution, the general features of the
solution are the same in all cases, increases in K simply acting to supress the vari-
ations in the ureter radius. Physiologically, taking g(t) = 0 assumes that the renal
pelvis provides a rather large reservoir for urine to reflux into, so that the pressure
does not rise over time to the order considered. The volume of the renal pelvis is
of the order of 10 cm3, and numerical values for the total volume of reflux during
voiding are given in §7.

7. Reflux

We now focus our attention on reflux, and its dependence upon the system param-
eters. The flux of urine Q(z, t) through the ureter at any point z is defined by:

Q(z, t) = Qs(z, t) + Qu(z, t) ≡
∫ 2π

0

∫ 1

0
usr drdθ +

∫ 2π

0

∫ B0

1
uur drdθ. (7.39)
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The axial velocities within the stent-ureter system for the perturbed steady solu-
tions of §4.1 (
 → ∞) and §5.1 (
 → 0) are found, using equations (3.9) and the
results of §§4.1, 5.1, to be

us(r, z, t) = δ

4
K

∂B1

∂z
(r2 − 1) + O(1/
, δ2) 
 → ∞

us(r, z, t) = δ

4
(P̂b1 − P̂k1)(r2 − 1) + O(
, δ2) 
 → 0





0 < r < 1, (7.40)

uu(r, z, t) = δ

4
K

∂B1

∂z
(r2 − 1 − B2

0 − 1

log B2
0

log r2)

+
{
O(1/
, δ2) 
 → ∞
O(
, δ2) 
 → 0

}

1 < r < B0, (7.41)

where δ is the size of the perturbation to the bladder pressure, and all other quantities
are as defined in the relevant sections. In particular, B0 = 1 + 1/K . Thus

Qs(z, t) = −πδK

8

∂B1

∂z
+ O(1/
, δ2) 
 → ∞,

Qs(z, t) = −δπ

8
(P̂b1 − P̂k1) + O(
, δ2) 
 → 0,

(7.42)

Qu(z, t) = −2δπ(1 + K)D0

K

∂B1

∂z
+
{

O(1/
, δ2) 
 → ∞,

O(
, δ2) 
 → 0,
(7.43)

with D0 as defined in (5.28).

7.1. Comparison of reflux for permeable and non-permeable stents

Reflux for similarity solution (6.32) We evaluate the reflux at z = 0, that is, into the
renal pelvis, since this is where it is most problematic. The ureter radius is given
by (6.32), hence

∂B1

∂z
= 1

K
√

πDt
exp

(

− (1 − z)2

4Dt

)


 → ∞, 0. (7.44)

Thus for t > 0 (7.42) and (7.43) give the total refluxes as

(−Q

δ

)


→∞
= 2(K + 1)

K2

√
πD∞

t
exp

(

− 1

4D∞t

)

, (7.45)

(−Q

δ

)


→0
= 2(K + 1)

K2

√
πD0

t
exp

(

− 1

4D0t

)

+ π

8
erf

(
1

2
√

D0t

)

. (7.46)

For small times t � 1, the reflux is greater for the 
 → 0 stent:
(−Q

δ

)


→0
−
(−Q

δ

)


→∞
= π

8
+ O

(
1√
t

exp

(

− 1

4Dt

))

> 0,
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and at large times also:

(−Q

δ

)


→0
−
(−Q

δ

)


→∞
= 2(1 + K)

K2

√

D∞π

D0t
(
√

D∞ −
√

D0) + O

(
1

t3/2

)

.

The reflux-time curves for the specific cases K = 0.5, 3, 10 are shown in figures
11, 12 and 13, which demonstrate that there is less total reflux in the limit 
 → ∞
(although for smaller values of K the difference in refluxes is only small).

The total reflux over time may be found by integrating the expressions (7.45)
and (7.46) with respect to t . Clearly the integrals do not converge over infinite time,
but for T � 1 we obtain:

∫ T

0

(−Q

δ

)


→∞
dt = 4(K + 1)

K2

√
πD∞T + O(1), (7.47)

for the very permeable stent. For the non-permeable stent, for T � 1 we find

∫ T

0

(−Q

δ

)


→0
dt = 4(K + 1)

K2

√
πD∞T

√

D∞
D0

+ O(1). (7.48)

Comparing (7.47) and (7.48), since D∞ > D0, the total amount of fluid that has
refluxed by time t = T � 1 is clearly larger for the non-permeable stent than for
the permeable stent.
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Fig. 11. Comparison of reflux over time for similarity and separable solutions when δ =
0.25, Ba = 2 and K = 0.5. 100 modes are used when plotting the reflux for the separable
solution. In both cases it is clear that the difference in reflux is small for this value of K .
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Fig. 12. Comparison of reflux over time for similarity and separable solutions when δ =
0.25, Ba = 2 and K = 3. 100 modes are used when plotting the reflux for the separable
solution.
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Fig. 13. Comparison of reflux over time for similarity and separable solutions when δ =
0.25, Ba = 2 and K = 10. 100 modes are used when plotting the reflux for the separable
solution.
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Dimensional total reflux The dimensional total reflux over a time T ∗ is given by

R∗(T ∗) = δa∗2L∗
∫ T

0

(−Q

δ

)

dt ≈ 0.0625
∫ T

0

(−Q

δ

)

dt cm3, (7.49)

using the values provided in §2.1, and δ = 0.25. Considering different voiding
scenarios with voiding times of T ∗ = 5, 10, 20, 40s, we arrive at dimensionless
voiding times T ≈ 2.5, 5, 10, 20. Performing the integral numerically for various
K-values, we obtain the following values.

Over 5 seconds:

K = 0.5 
 → ∞ R∗(5) = 1.72cm3

K = 0.5 
 → 0 R∗(5) = 1.74cm3

K = 3.0 
 → ∞ R∗(5) = 0.090cm3

K = 3.0 
 → 0 R∗(5) = 0.109cm3

K = 10.0 
 → ∞ R∗(5) = 0.046cm3

K = 10.0 
 → 0 R∗(5) = 0.064cm3.

Over 10 seconds:

K = 0.5 
 → ∞ R∗(10) = 3.07cm3

K = 0.5 
 → 0 R∗(10) = 3.10cm3

K = 3.0 
 → ∞ R∗(10) = 0.170cm3

K = 3.0 
 → 0 R∗(10) = 0.201cm3

K = 10.0 
 → ∞ R∗(10) = 0.077cm3

K = 10.0 
 → 0 R∗(10) = 0.109cm3.

Over 20 seconds:

K = 0.5 
 → ∞ R∗(20) = 5.08cm3

K = 0.5 
 → 0 R∗(20) = 5.12cm3

K = 3.0 
 → ∞ R∗(20) = 0.291cm3

K = 3.0 
 → 0 R∗(20) = 0.342cm3

K = 10.0 
 → ∞ R∗(20) = 0.124cm3

K = 10.0 
 → 0 R∗(20) = 0.174cm3.

Over 40 seconds:

K = 0.5 
 → ∞ R∗(40) = 7.99cm3

K = 0.5 
 → 0 R∗(40) = 8.05cm3

K = 3.0 
 → ∞ R∗(40) = 0.469cm3

K = 3.0 
 → 0 R∗(40) = 0.551cm3

K = 10.0 
 → ∞ R∗(40) = 0.190cm3

K = 10.0 
 → 0 R∗(40) = 0.268cm3.

Since the volume of the adult renal pelvis is of the order of 10 cm3, the reflux
values obtained for the value K = 0.5 are clearly unphysiological. The values cor-
responding to K = 3 and K = 10 are reasonable though, and (if these K-values
are physiological for a stented human ureter) demonstrate that over the voiding
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duration up to a 30 per cent reduction in reflux is obtained with the very porous
stent.
Reflux for separable solution (6.38) Here we have

∂B1

∂z
= 1

K
+

∞∑

n=1

2(−1)n

K
exp(−Dn2π2t) cos nπz. (7.50)

The expressions (7.42) and (7.43) then give the total reflux in the limit 
 → ∞ as

(−Q

δ

)


→∞
= 2π(K + 1)D∞

K2

{

1 + 2
∞∑

n=1

(−1)n exp(−D∞n2π2t)

}

, (7.51)

and in the limit 
 → 0 as
(−Q

δ

)


→0
= π

8
+ 2π(K + 1)D0

K2

{

1 + 2
∞∑

n=1

(−1)n exp(−D0n
2π2t)

}

. (7.52)

These expressions are plotted in figures 11, 12 and 13 which show that for small
times the reflux is greater in the limit 
 → 0, but for later times it is greater for the

 → ∞ stent; so it is not immediately clear which limit gives greater total reflux.
By integrating in time we can evaluate the total amount of fluid that has refluxed
in the time interval (0, T ):

∫ T

0

(−Q

δ

)


→∞
dt = 2π(K + 1)

K2

{

D∞T + 2
∞∑

n=1

(−1)n

n2π2

×(1 − exp(−D∞n2π2T )
)
}

, (7.53)

∫ T

0

(−Q

δ

)


→0
dt = 2π(K + 1)

K2

{

D∞T + 2
∞∑

n=1

(−1)n

n2π2

×(1 − exp(−D0n
2π2T )

)
}

. (7.54)

As can be seen, the O(T )-contributions to reflux are exactly the same in both cases
(the first terms within the curly brackets), and the remaining terms decay (rap-
idly) as T increases, so that the two expressions (7.53) and (7.54) become equal as
T → ∞. Considering the function

f (DT ) :=
∞∑

n=1

(−1)n

n2π2

(
1 − exp(−DT n2π2)

)
,

it may be seen that this is a negative, monotone decreasing, function of DT . Hence,
since D∞ > D0, it follows that there is greater reflux for the 
 → 0 stent, over
any given time interval (0, T ). However, the difference is very small for any O(1)

times, as illustrated below.
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Dimensional total reflux The dimensional total reflux over a time T ∗ is again given
by (7.49). Again assuming voiding times of T ∗ = 5, 10, 20, 40s (so the dimension-
less voiding times are T ≈ 2.5, 5, 10, 20) and performing the integral numerically
for various K-values, we obtain the following values for the separable solution:

Over 5 seconds:

K = 0.5 
 → ∞, 0 R∗(5) = 3.92cm3

K = 3.0 
 → ∞, 0 R∗(5) = 0.193cm3

K = 10.0 
 → ∞, 0 R∗(5) = 0.114cm3.

Over 10 seconds:

K = 0.5 
 → ∞, 0 R∗(10) = 8.23cm3

K = 3.0 
 → ∞, 0 R∗(10) = 0.415cm3

K = 10.0 
 → ∞, 0 R∗(10) = 0.235cm3.

Over 20 seconds:

K = 0.5 
 → ∞, 0 R∗(20) = 16.85cm3

K = 3.0 
 → ∞, 0 R∗(20) = 0.858cm3

K = 10.0 
 → ∞, 0 R∗(20) = 0.478cm3.

Over 40 seconds:

K = 0.5 
 → ∞, 0 R∗(40) = 34.10cm3

K = 3.0 
 → ∞, 0 R∗(40) = 1.746cm3

K = 10.0 
 → ∞, 0 R∗(40) = 0.963cm3.

In this case, the total volumes refluxed are virtually identical for all times consid-
ered, as may be deduced by considering (7.53) and (7.54). As with the similarity
solution, the value K = 0.5 leads to reflux volumes that are clearly unphysical,
while the larger K-values give reasonable reflux volumes.

8. Discussion and conclusions

We have developed a new mathematical model for urine flow in a stented kidney-
ureter-bladder system. The ureter is modelled as an elastic walled tube, and the stent
as a rigid permeable tube, of the same length, inside it (the end curls of the stent
were ignored). Axisymmetry is assumed, which is thought not to be too unrealistic
in view of the ballooning of the ureter lumen that occurs in a stented system. The
flow is governed by the Navier-Stokes equations (which simplify due to the small
aspect ratio of the system – lubrication theory), subject to appropriate boundary
conditions at the ureter and stent walls. Since the presence of a stent abolishes peri-
stalsis, the flow is driven solely by pressure differences between the renal pelvis
and the bladder. The model results in a fourth-order system of partial differential
equations relating the pressures within the stent and ureter, and the ureter radius
B(z, t). The key dimensionless parameters are the ureter wall stiffness, K , and the
ureter wall permeability, 
.
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We considered in detail two limiting cases: large (
 → ∞) and small (
 → 0)
wall permeability, to investigate what effect the holes in the stent wall have on the
flow. In both cases, asymptotic expansions were exploited to find steady solutions
to the governing equations which have equal reduced pressures at either end of the
ureter (so the reduced pressure is constant throughout the system). This solution is
appropriate to voiding (which certainly lasts long enough for a steady state to be
set up), since the reduced pressures in the bladder and renal pelvis are then nearly
equal. We then considered small time-dependent perturbations to this steady state,
in order to capture more accurately the flow dynamics during voiding. In particular
we found that, in each case, the correction to the steady-state ureter radius satisfies a
simple diffusion equation, the diffusion coefficient for 
 → ∞ being greater than
that for 
 → 0, so that perturbations take longer to decay in the limit 
 → ∞.
Simple explicit solutions to the diffusion equations were found, and thus the ureter
wall shape identified.

The main focus of our study is on reflux, where bladder urine flows back up the
ureter towards the renal pelvis. For those 80–85% of patients only requiring a stent
in the short term, reflux is a far more serious issue than encrustation. For long-term
stent patients reflux is closely linked with the encrustation problem; bladder urine
has higher levels of both salts and bacteria and, since bacteria can increase urinary
pH, which enhances crystal formation, reflux can accelerate encrustation in the
renal pelvis.

We evaluated the reflux predicted by the model for two simple test solutions: a
similarity solution, and a solution expressible as a sum of separable modes. While
for both solutions the bladder pressure was assumed constant throughout (uniform
squeezing of the bladder by the patient), conditions at the renal pelvis differed. The
similarity solution has the feature that the pressure within the renal pelvis slowly
rises as the reflux occurs, mimicking, though in an ad hoc manner, the pressure rise
that would occur as the volume of fluid within the renal pelvis increases. In the
separable solution, the renal pelvis pressure was held fixed, the assumption being
that for only small amounts of reflux, it will not change much.

The results of the model indicate that when the bladder pressure rises sufficiently
to cause reflux, the high-permeability stent gives, in all cases, less total reflux than
the small permeability stent. This result is quite marked for the similarity solutions,
the reduction in reflux being up to 30 percent for the cases we considered; but
is negligible for the separable solutions. Overall our results suggest that holes are
probably a good design feature as far as reflux is concerned; however, a wider range
of (more realistic) solutions must be studied before we can state conclusively that
holes reduce reflux.

As well as examining the effect of 
 on reflux, we are interested in how other
issues depend on the wall permeability. For example, there are sometimes problems
with stents fracturing in vivo, and it has been conjectured [4,7] that the stent holes
may be partly responsible for this. Thus it is important to quantify the differences
in the flow as 
 varies, in order to draw conclusions as to the usefulness of the
holes.

We assumed throughout that the stent is uniformly permeable, but there is no
reason why we cannot allow 
 also to vary with z. In particular, this will be the
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case after a stent has been in position for some time, as holes will become blocked
by encrustation (see Introduction). Allowing 
 to vary with z will also allow us to
investigate different ‘hole patterns’, to see whether there is an optimal design as
regards minimising reflux. In future we intend to carry out a comprehensive study
of flow behaviour for arbitrary permeability (rather than the two extreme cases
considered here), and for a variable 
 to mimic the encrustation.

Finally, as derived in §2.4, the ureter stiffness K is assumed to be a function of
distance z along the ureter, allowing us to model an external blockage in the ureter
as a section along which K is large. However, our analysis has concentrated on
the case of constant ureter stiffness K , thus strictly speaking, our results are really
valid only for healthy stented ureters, or uniformly blocked ureters. This is clearly
a shortcoming of our analysis, and in a forthcoming publication we investigate the
effect of variable ureter stiffness.
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