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Abstract. The growth of a tumour in a rigid walled cylindrical duct is examined in order to
model the initial stages of tumour cell expansion in ductal carcinoma in situ (DCIS) of the
breast. A nutrient-limited growth model is formulated, in which cell movement is described
by a Stokes flow constitutive relation. The effects on the shape of the tumour boundary of the
material properties (i.e. the viscosity) and the extent to which the cells adhere to the duct wall
are studied using numerical and asymptotic methods. It is shown how stable, non-planar,
interface configurations result and that, during these initial stages, before the duct wall has
been breached, few cells die and a nutrient-rich model is usually sufficient to capture the
behaviour. Finally, we discuss the relevance of this approach to DCIS and suggest possible
avenues for further work.

1. Introduction

Breast cancer is the most common cancer in women, among whom it is the sec-
ond leading cause of cancer death. Ductal carcinoma in situ (DCIS) of the breast
represents the initial growth stage of breast cancer. At this stage, the tumour is
noninvasive, being confined by the basement membrane of the duct. However, if
left untreated, it is thought to then invade the breast stromal tissue surrounding
the ducts and become life threatening. The duct is made up of a central region
of lumen (extracellular fluid), lined by a thin layer of epithelial cells, a layer of
myo-epithelial cells and an outer basement membrane (the duct wall) comprising
a meshwork of proteins. Ducts in the healthy breast have an average diameter of
0.2mm and are surrounded by stroma (connective tissue). DCIS occurs when there
is a proliferation of epithelial cells that have undergone a malignant transformation
(usually originating from a single mutant cell).

DCIS is characterised according to the appearance of the tumour cells prolif-
erating within the duct and the broadest classification subdivides them into two
types: high (comedo) and low grade (cribriform) DCIS [15]. Low grade DCIS is
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well differentiated (where the degree of differentiation refers to the loss of normal
tissue organisation) and appears homogeneous. Necrosis is rarely present as the
duct typically only distends to an average diameter of about 0.4mm. Thus, even
though the stromal vessels are smaller and fewer in number than for high grade
DCIS, all cells receive an adequate supply of nutrient by diffusion from surround-
ing vessels. High grade DCIS is poorly differentiated, with cells proliferating and
dying at elevated rates. The duct tends to be very large and distended, with an av-
erage diameter of about 0.7mm and comprises an outer proliferating rim, a region
of viable, non-proliferating hypoxic cells and a central necrotic core. There is an
increase in the number of stromal vessels surrounding the duct and a higher risk of
progression to breast cancer than the low grade type [10].

If DCIS is to progress to breast cancer, cancer cells must penetrate the base-
ment membrane and force their way through the surrounding stroma [3]. Continued
tumour cell proliferation in the duct gradually increases the outward pressure on
the basement membrane which, together with the local production of proteolyt-
ic enzymes, causes it to yield and allows tumour cells to invade into the stroma
surrounding the duct [3].

DCIS tends to be avascular as stromal vessels do not enter the duct before
the tumour cells have breached the duct wall. While the growth of avascular tu-
mours has been studied by many authors including Greenspan, Byrne, Chaplain
and Please [13]–[14], [4]–[9], [21], in this paper we adopt the approach developed
in [22] and [12]. In [22], Ward and King assume that the tumour is radially sym-
metric and consists of a continuum of live and dead cells. Local volume changes,
due to cell growth and death, create cell movement which is described by a ve-
locity field. Ward and King were able to capture the early growth and developing
spatial composition of the tumour without making a priori assumptions about its
structure. Franks and King [12] extended Ward and King’s model by consider-
ing a two-dimensional tumour slab growing into surrounding tissue. A constitutive
law defining the material deformation was needed in order for the problem to be
completely specified. The dependence of the stability of a planar tumour surface
on the material properties of the tumour and surrounding tissue was examined.
Two alternative constitutive laws were used to describe the material deformation,
namely Darcy’s law and Stokes flow. Darcy’s law has been widely used in tumour
modelling ( [7], [12]–[14], [17] for example) and describes fluid flow in a porous
medium, relating the velocity to the pressure gradient resulting in part from the
birth of new cells. By contrast, Stokes flow [12] treats the tumour and surrounding
tissue as viscous, Newtonian fluids. Physically, tissue is typically modelled as a
viscoelastic fluid, but on the long time scales of interest here, elastic effects are
negligible so that Stokes flow provides an appropriate description. Alternative ap-
proaches to avascular tumour modelling involving multi-phase models, different
constitutive relations and inhibitor effects are described in the papers by Chaplain
and Sleeman [9], Byrne and Chaplain [2]–[8], Please et al. [21] and Landman and
Please [17].

In this paper we extend some of the approaches used in [22] and [12] to the
cylindrically-symmetric geometry of the breast duct. We assume that the duct is
a rigid walled cylinder (neglecting details of its structure) and that growth occurs
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only in the axial direction. We thereby seek to gain insight into the initial stages
of the carcinoma’s development in the duct, it being supposed that the tumour will
initially grow preferentially in the direction of least resistance i.e. down the duct,
rather than pushing out against the duct wall. We describe the tumour’s growth
using a nutrient-limited model in which the birth and death of cells is dependent
upon the concentration of a nutrient which is available by diffusion from the sur-
roundings (outside of the duct and from the fluid within the duct). We consider an
axisymmetric tumour which starts as a short cylinder of the same radius as the duct,
thereby avoiding the complications of treating a fully three dimensional problem.
The two-dimensional tumour growing in a cylinder constrained by a rigid wall is a
novel aspect of this paper.

In Section 2, we derive the mathematical model that governs the evolution of
the tumour in the duct and solve the resulting system of equations numerically. In
Section 3, we consider the limit where the tumour surface is defined by a sharp
interface and assume that the tumour is growing in nutrient-rich conditions. We
use this assumption in Sections 4 and 5 where we examine the slender approxima-
tion limit and determine the stability of the tumour surface. In the final section we
discuss our conclusions and suggest extensions to the model.

2. Tumour growth model

2.1. Model formulation

Following [22], we assume that the tumour’s growth is dependent upon a gener-
ic nutrient, the cells dividing and growing at a rate dependent upon the nutrient
concentration. The nutrient diffuses in through the basement membrane from the
vessels surrounding the duct. The birth and death of cells creates an internal veloc-
ity field and we use Stokes law to describe this deformation of the tumour region
and the surrounding fluid. We denote the concentrations of live tumour cells, dead
cells and surrounding material (lumen which is assumed to be like water in con-
sistency) by n(x, t), m(x, t) and ρ(x, t), respectively, the nutrient concentration by
c(x, t) and the internal velocity field (local velocity of the cells) by v(x, t), where
v = (u(x, t), v(x, t)) and x = (r, z), r and z being the distances in the radial and
axial directions, respectively, and t the time.Applying the principle of mass balance
to each cell type we obtain the following partial differential equations:

∂n

∂t
+ ∇ · (nv) = (km(c) − kd(c))n + Dn∇2n, (1)

∂m

∂t
+ ∇ · (mv) = kd(c)n + Dm∇2m, (2)

∂ρ

∂t
+ ∇ · (ρv) = Dρ∇2ρ. (3)

The tumour is viewed as a coherent mass whose behaviour is similar to that of a
viscous fluid. Whilst cells may exhibit some small amount of random motion, the
growth-driven velocity field is the dominant mechanism for their movement and
the diffusion terms are included primarily for numerical purposes (to smooth out
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the discontinuity at the surface by eliminating the moving boundary which would
otherwise require tracking). The constants Dn, Dm and Dρ are therefore, in effect,
the diffusion coefficients of live tumour cells, dead cells and surrounding materi-
al, respectively (they will be set small and equal in the remainder of this paper).
The rates of cell mitosis km(c) and cell death kd(c) are assumed to depend on the
nutrient concentration in the following manner

km(c) = Ac, kd(c) = B (1 − σc) ,

where A and B are positive constants and 0 ≤ σ < c−1
I (where cI is the external

nutrient concentration) so that kd > 0 for all values of c, to account for cell death
due to apoptosis.

We assume that the material forms an incompressible, continuous fluid, with
no voids present, so that

n + m + ρ = 1. (4)

The avascular tumour obtains the necessary nutrients from the surrounding lu-
men and stromal tissue. The distribution of nutrient is governed by diffusion into the
interior through the tumour surface and duct wall, and consumption by proliferating
malignant cells within the duct. We therefore adopt the following relation.

∂c

∂t
+ ∇ · (cv) = D∇2c − βkm(c)n, (5)

where βkm(c)n represents the rate of nutrient consumption during mitosis and the
diffusion coefficient D is taken to be constant.

Adding equations (1)-(3) and using (4) (and taking Dn = Dm = Dρ) we deduce
that the velocity field satisfies

∇ · v = km(c)n (6)

and hence that the tumour’s rate of expansion is determined by the rate at which
cells are being produced by mitosis.

Since the system is multi-dimensional we require a constitutive law for the
material deformation (i.e. (6) is not sufficient to determine the velocity field fully).
While Darcy’s law has been widely used in tumour modelling, we adopt Stokes
law (with a volumetric source due to cell division) which represents slow viscous
flow and relates the stress experienced by the cells to their rate of strain [12] and
appears more appropriate in the current context. The stress tensor σij is given by
the constitutive law

σij = −pδij + 2µ(eij − 1

3
�δij ),

in which the pressure p = − 1
3σkk , the rate of strain tensor eij and the dilation �

are defined by

eij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
, � = ekk,
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and µ is the viscosity. Since the tumour consists only of live and dead tumour cells
(n+m = 1, ρ = 0) and the exterior, only of surrounding fluid (n+m = 0, ρ = 1),
we assume that the viscosity depends solely on the type of material present, so
µ = µ(n + m) i.e. µ(1) is the viscosity of the tumour and µ(0) that of the sur-
rounding material. In this context the viscosity represents the resistance to motion
experienced by the cells, this being related to the strength of the bonds that hold
them together which is, in turn, likely to be determined by the degree of differen-
tiation of the tumour cells [12]. The momentum equations (with negligible inertia
and no body forces [1]) read

∂σij

∂xj

= 0.

Substituting σij into the momentum equations gives the Stokes equations:

∂p

∂r
= µ

(
∇2u − u

r2 + 1

3

∂

∂r
(∇ · v)

)
+ 4

3

∂µ

∂r

(
∂u

∂r
− 1

2

(
u

r
+ ∂v

∂z

))

+∂µ

∂z

(
∂u

∂z
+ ∂v

∂r

)
(7)

∂p

∂z
= µ

(
∇2v + 1

3

∂

∂z
(∇ · v)

)
+ 4

3

∂µ

∂z

(
∂v

∂z
− 1

2

(
u

r
+ ∂u

∂r

))

+∂µ

∂r

(
∂u

∂z
+ ∂v

∂r

)
. (8)

We have now formulated the mathematical model. There are seven dependent
variables (n, m, ρ, c, u, v and p) whose evolution is determined by equations (1)-
(3) and (5)-(8). By noting that equations (1), (5)-(8) are independent of m and ρ

we can decouple them from the other variables, with m + ρ given by (4). We are
essentially assuming that the tumour is a two-phase medium consisting of live and
dead tumour cells and that the surrounding fluid is a single phase medium.

To complete the system, appropriate initial and boundary conditions must be
specified. We assume that at t = 0, the tumour is a cylinder of some specified width
z = s(r, 0) and of radius r = h, so that

n(x, 0) =
{

1 0 < z < s(r, 0),

0 z > s(r, 0),
c(x, 0) = cI , (9)

where cI is the external nutrient concentration. Boundary conditions are given by

on z = 0
∂n

∂z
= 0,

∂p

∂z
= 0,

∂u

∂z
= 0, v = 0,

∂c

∂z
= 0,

as z → ∞ n = 0, u = 0,
∂v

∂z
= 0, c = cI ,

on r = 0
∂n

∂r
= 0,

∂p

∂r
= 0, u = 0,

∂v

∂r
= 0,

∂c

∂r
= 0,

on r = h
∂n

∂r
= 0, u = 0, µ

∂v

∂r
= −λv, c = cI .

(10)
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The tumour is symmetric about z = 0 and r = 0 so that zero flux conditions hold
and the cellular material has zero axial velocity and radial velocity, respectively.
As z → ∞ along the duct, the concentration of tumour cells tends to zero and
the nutrient concentration takes some constant value cI . On the rigid wall, r = h,
the nutrient concentration is also constant, the radial velocity is zero and the axial
velocity satisfies a slip condition so that the shear stress is equal to the product of
the coefficient of slip λ and the tangential velocity. The coefficient of slip provides
a measure of how much the cells adhere to the wall of the duct, so when λ = 0 the
tumour surface is flat and the movement of the cells one-dimensional in z (i.e. plug
flow).

2.2. Non-dimensionalisation

Denoting dimensionless variables by carets and using the rate of cell proliferation
to set the timescale, we introduce the following rescalings:

t = t̂

A
, c = cI ĉ, n = n̂, r = hr̂,

p = pI p̂, z = hẑ, u = hAû, v = hAv̂,

where h, pI and cI denote typical length, pressure and concentration scales (based
on the initial conditions). Substituting into our system gives the following dimen-
sionless equations

∂n̂

∂t̂
= −∇̂ · (n̂v̂) + (k̂m(ĉ) − k̂d (ĉ))n̂ + D̂n∇̂2n̂, (11)

∇̂ · v̂ = k̂m(ĉ)n̂, (12)
∂p̂

∂r̂
= µ̂

(
∇̂2û − û

r̂2 + 1

3

∂

∂r̂
(∇̂ · v̂)

)
+ 4

3

∂µ̂

∂r̂

(
∂û

∂r̂
− 1

2

(
û

r̂
+ ∂v̂

∂ẑ

))

+∂µ̂

∂ẑ

(
∂û

∂ẑ
+ ∂v̂

∂r̂

)
, (13)

∂p̂

∂ẑ
= µ̂

(
∇̂2v̂ + 1

3

∂

∂ẑ
(∇̂ · v̂)

)
+ 4

3

∂µ̂

∂ẑ

(
∂v̂

∂ẑ
− 1

2

(
û

r̂
+ ∂û

∂r̂

))

+∂µ̂

∂r̂

(
∂û

∂ẑ
+ ∂v̂

∂r̂

)
, (14)

∇̂2ĉ = β̂k̂m(ĉ)n̂. (15)

In (15) we have adopted the simpler (quasi-steady) form for the nutrient concentra-
tion as we find from the non-dimensionalisation that the left hand side of equation
(5) is negligible in comparison to the right hand side. This implies that diffusion,
rather than convection is the dominant mechanism for the redistribution of nutrient
within the tumour (see [13] for details). The dimensionless parameters are

k̂m(ĉ) = c, k̂d(ĉ) = B̂ (1 − σc) , B̂ = B

A
, D̂n = Dn

Ah2 ,

β̂ = βAh2

D
, µ̂ = µA

pI

, λ̂ = λAh

pI

.
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The boundary conditions for this dimensionless system are given by

on ẑ = 0
∂n̂

∂ẑ
= 0,

∂p̂

∂ẑ
= 0,

∂û

∂ẑ
= 0, v̂ = 0,

∂ĉ

∂ẑ
= 0,

as ẑ → ∞ n̂ = 0, û = 0,
∂v̂

∂ẑ
= 0, ĉ = 1,

on r̂ = 0
∂n̂

∂r̂
= 0,

∂p̂

∂r̂
= 0, û = 0,

∂v̂

∂r̂
= 0,

∂ĉ

∂r̂
= 0,

on r̂ = 1
∂n̂

∂r̂
= 0, û = 0, µ̂

∂v̂

∂r̂
= −λ̂v̂, ĉ = 1,

(16)

and initial conditions by (9).
In general, when the viscosity is non-constant our model comprises a system

of five coupled equations (11)–(15) which is non-trivial to solve. However, if we
assume that the viscosity has the same value inside and outside of the tumour, the
pressure, velocity and nutrient concentration can be found in terms of the tumour
cell concentration only (see the following section) and hence the system simplifies
significantly. We therefore focus on this case in the following section where numer-
ical solutions are presented. We then adopt a thin film approximation to construct
asymptotic solutions to the full system.

2.3. Numerical method and results for uniform viscosity (µ̂(1) = µ̂(0) = 1)

2.3.1. Numerical method
We take the viscosity in and outside the tumour to be uniform (µ̂ = 1 for all n̂), so
the tumour and surrounding fluid have similar material properties. Henceforth we
drop the carets for brevity. Taking the divergence of (13), (14) and the Laplacian
of (12) we deduce that the pressure satisfies

∇2p = 4

3
∇2 (km(c)n) . (17)

Moreover, using (13) and (14) we find that the velocity satisfies

∇2v = ∇p − 1

3
∇ (km(c)n) . (18)

As the order of the system (equations (11), (15)-(18)) has been increased by one,
we need additional boundary conditions for the pressure. On the truncated domain
z = L the pressure p = 0; an additional condition on the duct wall can be deduced
in the following manner. With µ = 1, equation (13) states

∂p

∂r
= ∇2u − u

r2 + 1

3

∂

∂r
(km(c)n) . (19)

Differentiating (12) with respect to r , substituting into (19) and imposing the con-
ditions for v and n on the rigid boundary (where ∂v/∂r = −λv, ∂n/∂r = 0) we
deduce that

∂p

∂r
= λ

∂v

∂z
+ 4

3
n

∂

∂r
(km(c)) on r = 1. (20)
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We may therefore solve equations (11), (15)-(18) in turn, using a predictor-corrector
method [19] with NAG routing D03EBF (which calculates the solution to a system
of simultaneous equations derived from approximating the Laplacian using a central
difference scheme), with boundary conditions on z = 0, r = 0 and r = 1 given by
(16), (20) and those on z = L by

on z = L n = 0, p = 0. (21)

The truncated domain L = 200 and suitably smoothed initial conditions (cf. (9))
read

n = 1

2
(1 − tanh (100(z − 1))),

so that initially, the tumour front is taken to be a relatively sharp interface.

2.3.2. Numerical results
Using parameter estimates based on experimental values summarised in [22], we
employ the following values for the dimensionless quantities β, σ and B (unless
otherwise stated)

B = 1, σ = 0.9, β = 0.1, λ = 5, Dn = Dm = Dρ = 10−5.

Figure 1(a) shows a surface plot of the live cell concentration, in which the region
where n ≈ 0.9 defines the tumour (the dead cell concentration m ≈ 0.1 in this
region). The nutrient is diffusing in from the duct wall r = 1 (see Figure 4(a) for
concentration profile) and from the tumour surface (n is greatest in these places).
As the duct wall is rigid and of fixed radius, and the rate at which cells consume
nutrient is low (β = 0.1), all cells receive adequate levels of nutrient and cell
death within the tumour is limited. Consequently, the live cell concentration falls
to about 0.9 in the centre of the duct and remains at this level. If we increase the
nutrient consumption rate (Figure 4(b)) the proportion of live tumour cells in the
centre decreases (Figure 1(b)). Increasing β corresponds to an increase in either the
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Fig. 1. Surface and contour plots of the tumour cell concentration at t = 4 with (a) β = 0.1
and (b) β = 0.5.
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consumption rate or the diameter of the duct (the non-dimensionalisation in Section
2.1 gives β ∝ h2). It follows that the larger the duct radius, the more nutrient will
be consumed and the more cells will die in the centre of the duct (compare Figures
1(a) and (b)). This explains, in part, why a necrotic core is seen in high grade DCIS
(where the duct is large and distended) and why it is absent in low grade DCIS. It
should be noted that as the diffusion terms are very small, the only effect of their
inclusion is to smear out the front over the range z = O(

√
Dn/km(c)) (the relevant

asymptotics are studied in detail in [16]), and the values of the diffusivities do
not therefore affect the quantitative behaviour except by smearing out the moving
boundary. Hence, the system is not in fact sensitive to the values of the diffusion
coefficients.

Figure 2(a) shows the surface plot of the pressure that corresponds to Figure
1(a). The pressure is greatest on the duct wall at the centre of the tumour, i.e. at
z = 0, r = 1, and we observe in Figure 2(b) that the pressure there increases
rapidly with time. These factors are due to cellular proliferation creating a net force
on the cells which increases with distance from the surface. Over time and as more
cells are produced, cells near the centre have to push against an increasing amount
of cellular material in order to create space for the new cells. We remark that the
pressure on the duct wall is greater than that at the centre. This is because the wall
acts as a source of nutrient and hence there is greater net cell proliferation there.
Figure 2(b) shows how the pressure at the centre evolves for different choices of
the nutrient consumption rate β. As one might expect, the pressure is greatest when
no nutrient is consumed (β = 0) and most cells are proliferating with minimal cell
death.
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Fig. 2. (a) Surface and contour plot of the pressure at t = 4 when β = 0.1. (b) Series of
plots showing how the evolution of the pressure at the centre of the duct changes when β
varies (β = 0.5 (solid line), β = 0.1 (dashed line), β = 0 (dotted line)).

Figures 3(a) and (b) show the radial and axial velocities that correspond to
Figure 1(a). The tumour cells are moving slowly in the radial direction towards
the centre as the new cells find it preferable to push against other cells, rather than
the rigid wall. On the tumour surface, proliferating cells migrate slowly outwards
in the radial direction as they encounter no resistance. At the centre, z = 0, cells
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are stationary but as we approach the surface, increasing numbers of new cells are
pushing out those outside them, resulting in the axial velocity increasing approx-
imately linearly with respect to z. The velocity is approximately constant in the
surrounding region as there are no cells there to divide. As expected, cells near
the duct wall move more slowly than those in the centre of the duct because they
adhere to the wall. It should be noted that the magnitude of the axial velocity is
much greater than the radial velocity as cells move preferentially along the duct,
following the path of least resistance.
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Fig. 3. Surface and contour plots of (a) the radial velocity, u and (b) the axial velocity, v at
t = 4.
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Fig. 4. Surface and contour plot of the nutrient concentration at t = 4 with (a) β = 0.1 and
(b) β = 0.5.

Figures 5 and 6 show how the shape and evolution of the tumour surface (spec-
ified for definiteness as the contour n = 0.5) change when the parameters β and
λ are varied. Referring to Figure 5, we note that as β increases and hence more
nutrient is consumed, cells furthest from nutrient sources die more rapidly. Fewer
cells then proliferate and the tumour is smaller.
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Fig. 5. Comparison of the tumour surface location for the nutrient-limited model (β = 0.5
(solid line), β = 0.1 (dashed line)) and the nutrient rich case (β = 0 (dotted line)) at t = 4,
(the contours have n = 0.5).

Figures 6(a) and (b) show the effect on the tumour surface of varying the extent
to which cells adhere to the duct wall (note the difference in domain sizes in (a)
and (b)). For moderate values of λ (λ = 1) the cells can slip fairly readily along
the duct wall and the tumour surface is reasonably flat, whereas for larger values
of λ (λ = 5), the cells have a greater tendency to stick to the wall and the surface
becomes more elongated.
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Fig. 6. Tumour boundary at (a) t = 1 and (b) t = 4. The contours are n = 0.5 with λ = 1
(solid line) and λ = 5 (dashed line).

To summarise, in this section we have used numerical methods to show how the
tumour grows inside a rigid walled cylinder when the viscosity is uniform across
the tumour and the surrounding fluid. If the doubling time of the tumour cells is of
O(14hours) (cf. [22]), it follows that A ≈ 10−5s−1. The dimensional time is then
approximately the dimensionless time in days. Of course, the model only considers
the case when the cells are at a fixed distance from the nutrient source (as the wall
is rigid). The effect of nutrient limitations will become more pronounced when the
wall is compliant. In the following section we use analytical methods to examine
cases for which the viscosity is not uniform and the aspect ratio of the tumour is
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small. We also assume that the cells are growing in a nutrient-rich environment,
justifying this approximation by making reference to Figures 4(a) and (b) which
show that c ≈ 1 throughout the tumour. Since cells typically become hypoxic when
they are further than 0.2mm from a nutrient source [20], this approximation will
be valid for normal ducts which are assumed rigid and are 0.2-0.4mm in diameter.

3. Sharp interface limit Dn = 0

When Dn = 0, the tumour surface is a sharp interface which we denote by z =
s(r, t). We assume nutrient-rich conditions with no cell death (kd = 0) and no con-
sumption of nutrient (β = 0). Under these assumptions, our dimensionless system
(with c = 1 and µ taken to be piecewise constant) becomes

∂n

∂t
+ ∇ · (nv) = km(1)n, (22)

∇ · v = km(1)n, (23)

∇p = µ

(
∇2v + 1

3
∇(∇ · v)

)
. (24)

The boundary conditions for n, u, v and p are given by (16) and the initial conditions
by (9), so that the tumour initially consists of live cells only (n = 1, ρ = m = 0)
and the exterior consists solely of extracellular fluid (ρ = 1, n = m = 0).

Since the tumour surface is now a sharp interface, we must also impose con-
tinuity of the stress and velocity components there. The superscript notation is
introduced to distinguish between the two sides of the tumour boundary, with, for
example, u+ and u− representing respectively the radial velocity to the right and
left of the interface and [u]+− = u+ − u−. Using this notation we deduce that
the normal and tangential components of the stress tensor and the radial and axial
components of the velocity will be continuous if

[u]+− = [v]+− = 0, (25)

[p − 2µ(eij ninj − eii/3)]+− = 0, (26)

[µeij tinj ]+− = 0. (27)

In (26)-(27) the normal and tangential unit vectors are given by

n = (−∂s/∂r, 1)

(1 + (∂s/∂r)2)1/2 , t = (1, ∂s/∂r)

(1 + (∂s/∂r)2)1/2 . (28)

The evolution of the tumour surface is determined from the kinematic condition
on the interface which states that the fluid particles on the surface of the tumour
remain there, so

∂s

∂t
= v − u

∂s

∂r
. (29)

We focus on this limit for the analysis in the remainder of this paper.
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4. The slender approximation

4.1. Asymptotic analysis

Recent 3D histo-pathology of DCIS [11] shows that the tumour is typically much
longer in the axial direction than in the radial direction. Indeed, on the basis of
our clinical experience (J.C.E. Underwood), DCIS commonly extends a distance
of 20mm or more along a duct compared with an average diameter of 0.7mm. This
is consistent with the numerical simulations in Section 2.3.2 which show that for
large times, the tumour front becomes much longer in the axial direction than in
the radial direction. The model can therefore be simplified by adopting a thin-film
approximation to construct asymptotic solutions to examine cases for which the
aspect ratio of the tumour is small. Defining ε 	 1 as the ratio of the radial to the
axial distance, the variables can be scaled as follows:

z = ε−1z∗, u = u∗, v = ε−1v∗, r = r∗,
p = ε−2p∗, n = n∗, t = km(1)−1 ln (ε−1) + t∗.

Substituting these new variables into equations (22)–(24) and equating to zero co-
efficients of O(εn) we obtain the following equations:

O(ε−2) :
∂p∗

∂r∗ = 0, (30)

O(ε−1) :
∂p∗

∂z∗ = µ

r∗
∂

∂r∗

(
r∗ ∂v∗

∂r∗

)
, (31)

O(1) :
1

r∗
∂

∂r∗ (r∗u∗) + ∂v∗

∂z∗ = km(1)n∗. (32)

In (32) n∗ is taken to be a step function (n∗ = 1 in the tumour and n∗ = 0 outside)
and km(1) is the constant proliferation rate.

We divide the tumour into three regions (see Figure 7): (1) a region in which
the duct is fully occupied by the tumour, (2) a region containing tumour cells and
the surrounding material, in which the tumour loses contact with the duct wall, (3)
a tumour-free region containing surrounding material only. We decompose region
(2) into subregions containing either tumour cells or surrounding material. These
subregions are separated by the interface z∗ = s(r∗, t∗) which marks the tumour
boundary. The position at which the tumour leaves the wall and the position of the
tip move as the tumour grows and are denoted by z∗ = ST (t∗) and z∗ = SS(t∗)
respectively.

We solve equations (30)-(32) in regions (1)-(3) using the following conditions
for u∗, v∗, and p∗ on r∗ = 0, r∗ = 1, z∗ = 0 and z∗ → ∞ in the appropriate
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Fig. 7. A schematic showing how the duct is decomposed into three separate regions.

regions.

on r∗ = 0 u∗ = 0,
∂v∗

∂r∗ = 0,
∂p∗

∂r∗ = 0,

on r∗ = 1 u∗ = 0, µ
∂v∗

∂r∗ = −λv∗,

on z∗ = 0
∂u∗

∂z∗ = 0, v∗ = 0,
∂p∗

∂z∗ = 0,

as z∗ → ∞ u∗ = 0,
∂v∗

∂z∗ = 0.

(33)

In region (2) we impose the continuity conditions (25)-(27) on the surface r∗ =
R(z∗, t∗) (or z∗ = s(r∗, t∗)). On rescaling these conditions reduce to give:

[u∗]+− = 0,
[
v∗]+

− = 0,
[
p∗]+

− = 0,
[
µ∂v∗/∂r∗]+

− = 0. (34)

By solving (30)-(32) we obtain expressions for p∗, u∗ and v∗ in each of the
three regions; these are stated in turn below.

– Region (1): Tumour only (µ = µ(1), 0 < z∗ < ST (t∗))
In this region the tumour occupies the entire duct (i.e. n∗ = 1 and R(z∗, t∗) = 1).
Imposing conditions for u∗, v∗ and p∗ on r∗ = 0, r∗ = 1 and z∗ = 0 given by
(33) gives

∂2p∗

∂z∗2 = −8km(1)λµ(1)

λ + 4µ(1)
, (35)

v∗ = 1

4µ(1)

∂p∗

∂z∗

(
r∗2 − 2µ(1)

λ
− 1

)
, (36)

u∗ = km(1)r∗

2
− r∗

16µ(1)

∂2p∗

∂z∗2

(
r∗2 − 4µ(1)

λ
− 2

)
. (37)

– Region (2): Tumour and surrounding material subregions (ST (t∗) < z∗ <

SS(t∗))
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In this region the tumour leaves the duct wall. We impose conditions for u∗ and
v∗ on r∗ = 0 in subregion (i) (r∗ < R(z∗, t∗)) and conditions on r∗ = 1 in
subregion (ii) (r∗ > R(z∗, t∗)) given by (33). We then impose the continuity
conditions given by (34) on the tumour boundary r∗ = R(z∗, t∗). In this way
we obtain the following expressions for p∗, v∗ and u∗:
– Subregion (i): Tumour (µ = µ(1))

p∗ = p∗(z∗, t∗), (38)

v∗ = 1

4µ(1)

∂p∗

∂z∗

(
r∗2 − 2µ(1)

λ
− R2 − µ(1)

µ(0)
(1 − R2)

)
, (39)

u∗ = km(1)r∗

2
− Rr∗

4µ(1)

∂p∗

∂z∗
∂R

∂z∗

(
µ(1)

µ(0)
− 1

)

− r∗

16µ(1)

∂2p∗

∂z∗2

(
r∗2 − 4µ(1)

λ
− 2R2 − 2

µ(1)

µ(0)

(
1 − R2

))
. (40)

– Subregion (ii): Surroundings (µ = µ(0))

p∗ = p∗(z∗, t∗), (41)

v∗ = 1

4µ(0)

∂p∗

∂z∗

(
r∗2 − 2µ(0)

λ
− 1

)
, (42)

u∗ = − r∗

16µ(0)

∂2p∗

∂z∗2

(
r∗2 − 4µ(0)

λ
− 2 + 1

r∗2

(
1 + 4µ(0)

λ

))
. (43)

Continuity of u∗ on r∗ = R(z∗, t∗) leads to the following partial differential
equation for p∗(z∗, t∗):

∂

∂z∗

[
∂p∗

∂z∗

{
R4
(

1

µ(1)
− 1

µ(0)

)
+
(

1

µ(0)
+ 4

λ

)}]
= −8km(1)R2. (44)

To determine the evolution of the tumour surface r∗ = R(z∗, t∗), we impose the
kinematic condition on the interface (∂R/∂t∗ = u∗ − v∗∂R/∂z∗). We then get

∂

∂t∗
(R2) = km(1)R2−

1

4

∂

∂z∗

[
R2 ∂p∗

∂z∗

{
R2
(

1

µ(0)
− 1

2µ(1)

)
−
(

1

µ(0)
+ 2

λ

)}]
. (45)

Equations (44) and (45) for R(z∗, t∗) and p∗(z∗, t∗) in region (2) are solved
subject to initial and boundary conditions detailed below. We note that p∗ and
R are continuous across z∗ = ST (t∗) and z∗ = SS(t∗).

– Region (3): Surrounding material only (µ = µ(0), SS(t∗) < z∗ < ∞)
In this region, the surrounding material occupies the duct so R(z∗, t∗) = 0. As
in region (1), we impose boundary conditions (33) for u∗, v∗ and p∗ on r∗ = 0,
r∗ = 1 and as z∗ → ∞.
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∂2p∗

∂z∗2 = 0, (46)

v∗ = 1

4µ(0)

∂p∗

∂z∗

(
r∗2 − 2µ(0)

λ
− 1

)
, (47)

u∗ = 0. (48)

We remark that the position of the tumour surface in regions (1) and (3) is
known. It remains to determine p∗ in each of the three regions (i.e. equations (35),
(44) and (46)) and R in region (2) (equation (45)). Boundary conditions on ST (t∗)
and SS(t∗) are determined below and u∗, v∗, p∗ and R are all continuous across
these points.

We notice that p∗ only appears as its derivative with respect to z∗ so defining
P = ∂p∗/∂z∗ and letting A = R2 we obtain the following expressions for P and
A is each region.

P = −8km(1)λµ(1)

λ + 4µ(1)
z∗, A = 1, (49)

in region (1). In region (2) we have

8km(1)A = ∂

∂z∗

[
P

{
A2
(

1

µ(0)
− 1

µ(1)

)
−
(

1

µ(0)
+ 4

λ

)}]
, (50)

∂A

∂t∗
= km(1)A − 1

4

∂

∂z∗

[
AP

{(
1

µ(0)
− 1

2µ(1)

)
A −

(
1

µ(0)
+ 2

λ

)}]
, (51)

and in region (3) we get

∂P

∂z∗ = 0, A = 0, (52)

with P = 0 on z∗ = 0 and A → 0 as z∗ → +∞. Using equations (49), (51) and
(52) and integrating over the length of the duct we deduce

d

dt∗

∫ ∞

0
Adz∗ = km(1)

∫ ∞

0
Adz∗ ⇒

∫ ∞

0
Adz∗ = A0 exp (km(1)t∗) (53)

where A0 = ∫∞
0 A(z∗, 0)dz∗ represents the initial volume of the tumour. Using

(53) we find that the tumour volume is increasing exponentially with time and that
its growth rate depends on the proliferation rate km(1) alone. This is to be expected
as growth occurs through cell division only and there is no degradation of dead
cells.

The position at which the tumour leaves the duct wall and the locus of the tu-
mour tip are determined as follows. Substituting for u∗ and v∗ from (35)-(37) into
the kinematic condition (29), we deduce that on z∗ = ST (t∗), where r∗ = 1 and
u∗ = 0,

dST

dt∗
= 4km(1)µ(1)

λ + 4µ(1)
ST . (54)
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Integrating equation (54) we deduce that the point z∗ = ST (t∗) at which the tumour
loses contact with the rigid duct wall satisfies

ST (t∗) = ST (0) exp

(
km(1)t∗

λ
4µ(1)

+ 1

)
, (55)

where ST (0) is the initial position at which the tumour leaves the wall. Comparing
(53) and (55) and noting that λ and µ(1) are positive parameters, we deduce that
the contact point moves at a slower rate than that at which the tumour volume is
increasing. This is because the cells adhere to the duct wall.

We proceed in a similar manner as above to determine the position of the tumour
tip. Substituting for u∗ and v∗ from (47) and (48), we deduce that on z∗ = SS(t∗),
where r∗ = 0 and A = 0,

dSS

dt∗
= −1

4

(
1

µ(0)
+ 2

λ

)
Pz∗=SS(t∗), (56)

Integrating equation (50) over the region ST (t∗) < z∗ < SS(t∗), we deduce that

(
1

µ(0)
+ 4

λ

)
Pz∗=SS

=
(

1

µ(1)
+ 4

λ

)
Pz∗=ST

− 8km(1)

∫ SS

ST

Adz∗.

Using equation (49) to evaluate Pz∗=ST
, noting that A = 1 for 0 < z∗ < ST (t∗)

and A = 0 for SS(t∗) < z∗, and using equation (53), we deduce that

Pz∗=SS
= −8km(1)λµ(0)

λ + 4µ(0)

∫ ∞

0
Adz∗ = −8km(1)λµ(0)

λ + 4µ(0)
A0 exp (km(1)t∗),

and hence that

SS(t) = SS(0) + 2A0
λ + 2µ(0)

λ + 4µ(0)

(
exp (km(1)t∗) − 1

)
, (57)

where SS(0) is the initial tip position of the tumour. Thus the tip moves out at
the same rate as the tumour increases in volume. This is to be expected since for
the nutrient-rich model we are considering cells which have no growth constraints
placed upon them.

4.2. Numerical method and results

The position at which the tumour leaves the wall and the position of the tip of the
tumour are known explicitly (see (55) and (57)) and P and A are known in regions
(1) and (3). We solve (50) and (51) numerically to determine P and A in region (2)
using the following boundary conditions on z∗ = ST (t∗) and z∗ = SS(t∗).

on z∗ = ST (t∗) : P = −8km(1)µ(1)λ

(λ + 4µ(1)))
ST , (58)

on z∗ = SS(t∗) : A = 0, (59)
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To solve numerically we first fix the positions of the two moving boundaries z∗ =
ST (t∗) and z∗ = SS(t∗) by mapping the domain ST ≤ z∗ ≤ SS onto a unit interval
using the translation z∗ = (SS(t∗) − ST (t∗))ẑ + ST (t∗). The initial conditions are
then taken to be A = 1 − ẑ10 so that the tumour almost completely occupies the
diameter of the duct, just leaving the duct wall at the tumour front. The evolution
of the two moving boundaries is determined from

dST

dt∗
= − 1

2λ
Pẑ=0,

dSS

dt∗
= −1

4

(
1

µ(0)
+ 2

λ

)
Pẑ=1,

where ST (0) = 1 and SS(0) = 2. The results are shown for uniform and variable
viscosity in the following sections.

4.2.1. Uniform viscosity (µ(1) = µ(0) = 1)
In practice we would expect the surrounding material to be less viscous than the
tumour as it consists of extracellular fluid. However, we first consider the case when
the viscosities of the tumour and surrounding material are equal so that comparisons
can be made with the numerical simulations.
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Fig. 8. Series of plots showing how, when km(1) = 1, the shape of the tumour surface
r∗ = R(z∗, t∗) evolves for different choices of λ (λ = 1 (solid line), λ = 5 (dashed line)
and λ = 20 (dotted line)). The surface is plotted at (a) t∗ = 1, (b) t∗ = 5 and (c) t∗ = 9.
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Fig. 9. Plots showing how when km(1) = 1, changes in λ (λ = 1 (solid line), λ = 5 (dashed
line), λ = 20 (dotted line)) affect the evolution of (a) the tip of the tumour (z∗ = SS(t

∗) and
(b) the point at which the tumour comes away from the duct wall (z∗ = ST (t∗)).
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Figure 8 shows the effect on the tumour surface of varying λ, the degree to
which the cells adhere to the duct wall. As λ decreases, the front becomes less
elongated; when λ = 0 it is independent of z since the cells do not adhere to the
wall and hence have no growth constraints. Figures 9(a) and (b) show how the loci
z∗ = SS(t∗) and z∗ = ST (T ∗) evolve for the values of λ used in Figure 8. As
expected from equations (55) and (57), ST (t∗) decreases and SS(t∗) increases as λ

increases.
A simple check of the numerical results is provided by equation (53). Calcu-

lating the volume of the tumour numerically we observe that it is conserved to
within ±10%. The discrepancy during the initial stages of growth is due to our
approximation only being valid when the tumour is slender.

By definition, the slender approximation only holds when the tumour is much
longer in the axial direction than it is in the radial direction. Comparison with the
full problem will therefore only be applicable for large times. In Figure 10 we show
that for late times, there is a good agreement between our asymptotic solution and
the solution for the full problem.
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Fig. 10. Plots of the tumour surface r∗ = R(z∗, t∗) at t∗ = 4 obtained by solving the full
problem (solid line) and the slender approximation (dashed line).

4.2.2. Variable viscosity (µ(1) �= µ(0))
We now consider cases for which the tumour and surrounding fluid viscosities are
no longer equal. We assume that the viscosity is piecewise constant (dependent up-
on the composition of the local material) and solve equations (50) and (51) subject
to (58) and (59). For completeness, we consider cases for which the tumour is more
and less viscous than the surrounding fluid, the more physical case arising when
µ(1) > µ(0) i.e. the tumour is more viscous than the extracellular fluid.

Figure 11 shows how the shape of the tumour boundary alters when µ(1) �=
µ(0).When the surrounding medium is less viscous than the tumour (µ(1) > µ(0)),
there is less resistance to the tumour’s growth and the surface becomes elongated.
Conversely, when µ(1) < µ(0), there is more resistance to the tumour’s growth
and the surface is less elongated. The tumour grows at a constant rate, regardless
of the viscosity ratio, its volume satisfying equation (53).
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Fig. 11. Plots showing how, when km(1) = 1, the shape of the tumour surface at times (a)
t∗ = 1 and (b) t∗ = 7 depends on the viscosities of the tumour and surrounding materi-
al (µ(1) = 0.75, µ(0) = 1 (solid line), µ(1) = 1, µ(0) = 1 (dashed line), µ(1) = 1,
µ(0) = 0.75 (dotted line), µ(1) = 1, µ(0) = 0.5 (small dotted line)).
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Fig. 12. Plots showing how the evolution of (a) the position of the tip of the tumour
z∗ = SS(t

∗) and (b) the point at which the tumour leaves the duct wall z∗ = ST (t∗) vary
when the viscosities of the tumour and surrounding material change (µ(1) = 0.75, µ(0) = 1
(solid line), µ(1) = µ(0) = 1 (dashed line), µ(1) = 1, µ(0) = 0.75 (dotted line) and
µ(1) = 1, µ(0) = 0.5 (small dotted line)). The results are for the simulations shown in
Figure 11.

The positions of the tip of the tumour SS(t∗) and where the tumour leaves the
duct wall ST (t∗) are shown in Figure 12. We know from equation (55) that the ex-
ponent of ST (t∗) is dependent upon the tumour viscosity and this is clearly shown
in Figure 12(b). Figure 12(a) shows the position of the tip and we observe that,
as given by equation (57), the exponent is the same for all viscosities, with the
multiplying coefficient depending upon the surrounding viscosity.

4.3. Large time behaviour t∗ → ∞
The analysis and numerical simulations in Sections 4.1 and 4.2 show the tumour
growing at an exponential rate. Redefining the axial co-ordinate z∗ in the numer-
ical simulations so that η = z∗ exp (−km(1)t∗) and plotting the tumour surface
r∗ = R(z∗, t∗) against η for large time, we observe self similar behaviour (see
Figure 13(a)). Similarly, plotting the pressure gradient P(z∗, t∗) against η shows
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P growing exponentially with time, but plotting exp (−km(1)t∗)P (z∗, t∗) against
η for large times gives a modified pressure gradient profile which is invariant with
time (see Figure 13(b)). The example shown in Figure 13 is for when the viscosity is
uniform. The self-similar behaviour is also seen when the viscosity is not uniform.
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Fig. 13. (a) Tumour surface R(z∗, t∗) and (b) pressure gradient exp (−km(1)t∗)P (z∗, t∗)
profiles against η at t∗ = 20 (solid line), t∗ = 24 (dashed line) and t∗ = 28 (dotted line)
with λ = 5, km(1) = 1 and µ(1) = µ(0) = 1.

Guided by the results presented in Figure 13, we now investigate the large
time behaviour of the tumour surface and pressure gradient by seeking similarity
solutions to equations (50) and (51) of the form

P(z∗, t∗) ∼ exp (km(1)t∗)P̂ (η), A(z∗, t∗) ∼ Â(η) (60)

where η = z∗/ exp (km(1)t∗). Substituting from (60) into equations (50) and (51)
gives

d

dη
P̂ = λ

µ(1)

(
µ(1) − µ(0)

λ + 4µ(0)

)
d

dη
(Â2P̂ ) − 8km(1)λµ(0)

λ + 4µ(0)
Â, (61)

−km(1)η
d

dη
Â = km(1)Â

−1

4

d

dη

[
ÂP̂

{
Â

(
1

µ(0)
− 1

2µ(1)

)
−
(

1

µ(0)
+ 2

λ

)}]
.

(62)

Rearranging equation (62) and integrating once with respect to η, noting that P̂ = 0
on η = 0 (as P(z∗, t) = 0 on z∗ = 0), we have

P̂ = 4km(1)η

Â
(

1
µ(0)

− 1
2µ(1)

)
−
(

1
µ(0)

+ 2
λ

) , (63)
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Substituting with equation (63) in (61) we obtain the following differential equation
for Â:

8Â = d

dη


 4η

Â
(

1
µ(0)

− 1
2µ(1)

)
−
(

1
µ(0)

+ 2
λ

) Â2
(

1

µ(0)
− 1

µ(1)

)


− d

dη


 4η

Â
(

1
µ(0)

− 1
2µ(1)

)
−
(

1
µ(0)

+ 2
λ

)
(

1

µ(0)
+ 4

λ

)
 , (64)

which can be integrated to give an implicit solution for Â of the form

η

η0
= (1 − Â)

λ
4µ(1) {2µ(1)[λ + 2µ(0)] + λÂ[µ(0) − 2µ(1)]}

{4µ(0) + λ[1 − Â]} (λ+4µ(0))
4µ(1)

, (65)

where η0 is an integration constant and 0 ≤ Â ≤ 1.

In Figure 14 we use equation (65) to plot R(η) =
√

Â(η) for different choices
of µ(0) and µ(1). The results, which are consistent with the t∗ = O(1) numerical
simulations presented in Figure 11, show that the tumour surface becomes more
elongated as µ(0) decreases and the resistance the surrounding fluid has on the
tumour’s expansion declines.
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Fig. 14. Diagram showing how the large time behaviour of R(η) varies with µ(1) and µ(0)
when λ = 5, η0 = 1: µ(1) = 0.75 µ(0) = 1 (solid line), µ(1) = 1 µ(0) = 1 (dashed line),
µ(1) = 1 µ(0) = 0.75 (dotted line), µ(1) = 1 µ(0) = 0.5 (small dotted line).

Further analytical insight into the shape of the tumour boundary can be gained
by considering asymptotic limits of equation (65). For example, in the limit as
µ(0) → 0, equation (65) reduces to give
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Â = 1 − η

η1
, where η1 = 2µ(1)λ

(4µ(1)−λ)
4µ(1) .

Hence we deduce that when the surrounding fluid is inviscid and offers no resistance
to tumour expansion, the profile of the surface R(η) ∼ (1 − η/η1)

1/2, with the po-
sition of the tip (where Â = 0) given by η = η1 (hence, SS(t∗) = η1 exp (km(1)t∗)
in agreement with (57)).

In this section we have used analytical methods to determine the large time
behaviour of the tumour surface when the viscosity of the tumour and surrounding
fluid differ. In the following section we consider the full model problem given by
(11)-(14) and examine the stability of the interface.

5. Planar growth (λ = 0) and linear stability

5.1. One-dimensional solution

We define the one-dimensional variables for v(r, z, t), u(r, z, t), p(r, z, t), n(r, z, t)

and s(r, t) to be v0(z, t), u0(z, t), p0(z, t), n0(z, t) and s0(t) respectively. When
λ = 0 the tumour grows parallel to the duct wall axis so that u0 = 0 and our
nutrient-rich model (11)-(14) reduces to give

∂n0

∂t
+ ∂

∂z
(n0v0) = km(1)n0, (66)

∂v0

∂z
= km(1)n0, (67)

∂p0

∂z
= 4

3
µ

∂2v0

∂z2 . (68)

Solving equations (66)-(68) and the one-dimensional form of (29) (i.e. ds0(t)/dt =
v0) with boundary conditions (16), and velocity and stress continuity conditions
(25)-(26), gives

n0 =
{

1

0
v0 =

{
km(1)z

km(1)s0(t)
p0 =

{
4µ(1)km(1)/3 0 < z < s0(t),

0 z > s0(t).

with s0(t) = exp (km(1)t). The cell velocity along the duct is continuous across
the interface, increasing linearly with distance from the tumour centre (z = 0)
inside the tumour, as the new cells migrate outwards. The velocity is constant in
the surrounding fluid as no cells are dividing there. The right hand side of (68) is
zero on either side of z = s0(t) but leads to a discontinuity in the pressure at the
interface (see (26)). This is due to the volumetric source term (from cell division)
in the stress condition, illustrating how cell proliferation (occurring only within the
tumour) is responsible for producing the pressure field.
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5.2. Linear stability analysis

5.2.1. Moving boundary formulation and linearisation
Following [14], [4] and [12], we can analyse the stability properties of the tumour
growing inside the duct by applying small perturbations to the tumour surface.
Adopting the discontinuous initial data (9), so that n is represented by a step func-
tion, we have equation (24) and from (23)

∇ · v =
{

km(1) 0 < z < s(r, t),

0 z > s(r, t).

We also have the kinematic condition (29) with the conditions for the radial and
axial fluid velocities and stresses given by (10).

We perturb u, v, p and s by a small amount (0 < ε 	 1) such that

u ∼ εu1(r, z, t), s ∼ s0(t) + εs1(r, t),

v ∼ v0(z, t) + εv1(r, z, t), p ∼ p0(z, t) + εp1(r, z, t).
(69)

where v0, s0 and p0 are the one-dimensional solutions and u1, v1, s1 and p1 are
the two-dimensional perturbations. The perturbations then satisfy (assuming µ is
piecewise constant)

∇p1 = µ∇2v1, (70)

∇ · v1 = 0, (71)

for 0 < z < ∞, 0 < r < 1 with boundary conditions (referring to (16))

on z = 0
∂p1

∂z
= 0,

∂u1

∂z
= 0, v1 = 0,

as z → ∞ p1 = 0, u1 = 0,
∂v1

∂z
= 0,

on r = 0
∂p1

∂r
= 0, u1 = 0,

∂v1

∂r
= 0,

on r = 1
∂v1

∂r
= 0, u1 = 0.

(72)

It remains to specify continuity conditions at the interface z = s(r, t); these are
derived as follows. Expanding (25)-(27) and (29) about s0 to O(ε) we obtain the
following conditions at z = s0:

[
p1 + 2

3
µ

(
∂u1

∂r
+ u1

r

)
− 4

3
µ

∂v1

∂z

]+

−
= 0, (73)

[
µ(0)

(
∂u1

∂z
+ ∂v1

∂r

)]+
=
[
µ(1)

(
2km(1)

∂s1

∂r
+ ∂u1

∂z
+ ∂v1

∂r

)]−
, (74)

∂s1

∂t
= v+

1 , (75)

[v1]+− = km(1)s1, (76)

[u1]+− = 0. (77)
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To summarise, the corrections terms u1, v1, p1 and s1 are determined by equations
(70), (71) and (75) subject to boundary conditions (72)-(74) and (76)-(77).

If we seek separable solutions of the form u1 = f (z, t)g(r), then after some
algebra it is possible to show that u1, v1 and p1 can be written as:

u−
1 = −

{
	0(t) cosh (αz) + 	1(t)

(
1

α
cosh (αz) + z sinh (αz)

)}
J1(αr),

u+
1 =

{
	2(t) + 	3(t)

(
z − 1

α

)}
exp (−αz)J1(αr),

v−
1 = {	0(t) sinh (αz) + 	1(t)z cosh (αz)} J0(αr),

v+
1 = {	2(t) + 	3(t)z} exp (−αz)J0(αr),

and

p−
1 = 2µ(1)	1(t) cosh (αz)J0(αr),

p+
1 = 2µ(0)	3(t) exp (−αz)J0(αr),

where 	i(t) (i = 0, 1, 2, 3) are arbitrary functions of t which along with the per-
turbation to the surface s1(r, t) are determined by (73)-(77), J0(αr) and J1(αr)

are Bessel functions of the first kind of zeroth and first order respectively, and the
constant α solves J1(α) = 0 (this condition ensures that u1 = ∂v1/∂r = 0 on
r = 1). The large time behaviour of s1(r, t) is found to be

s1 = s10 exp

(
km(1)t

1 + µ(0)
µ(1)

)
J0(αr), (78)

where the constant s10 is proportional to the initial amplitude. Hence, when λ = 0
and provided that µ(0)/µ(1) > 0, the perturbation to the planar surface grows, but
at a slower rate than the leading order behaviour i.e. s0 ∼ exp (km(1)t) (note that
we are perturbing a moving boundary rather than a fixed equilibrium solution). We
observe that the perturbation to the surface grows most rapidly when µ(1) > µ(0),
that is when the tumour is more viscous than the surrounding fluid: this is also the
case that is most physically relevant when considering DCIS because in general
even though the bonds between malignant cells are fairly weak (compared to those
of normal cells) it is reasonable to assume that they will be stronger than those
holding the molecules together in the extracellular fluid.

5.3. Numerical solutions

To verify the long time predictions of the stability analysis when λ = 0, we exam-
ine the stability of the surface numerically. As described in Section 2.2, we solve
equations (11), (15)-(18) with boundary conditions given by (16) and (20), but with
the following initial condition for the tumour cell concentration

n(x, 0) = 1

2
[1 − tanh {100 (z − s(r, 0))}] ,
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so that the tumour surface (i.e. where n falls rapidly from n = 1 to n = 0) has been
perturbed. It should be noted that we have adopted a smooth function for n to en-
able us to solve the problem numerically, rather than a discontinuous step function
as for the analysis. s(r, 0) is defined by (69) where s1 is given in (78). Earlier we
determined that J1(α) = 0. We are interested in the fastest growing mode, hence α

is taken to be the first zero i.e. α = 3.83171. Figure 15 shows how the contours of
the tumour cell concentration progress with time, while Figure 16 shows a direct
comparison between the linear stability analysis and the numerical simulations.
We observe from Figure 15 that the surface is unstable, with the perturbation to
the interface growing at a rate consistent with the linear stability analysis (Figure
16) and more slowly than the advancing tumour. The differences in fingering at
varying contours of n and the spreading of the front are accounted for by numerical
diffusion and smoothed initial conditions. This is discussed in detail in [12] where
a sensitivity study of the contours to initial conditions has been carried out.
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Fig. 15. Contours n = 0.1 (solid line), n = 0.5 (dashed line) and n = 0.9 (dotted line) at
times (a) t = 0, (b) t = 2, (c) t = 4. λ = 0.
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Fig. 17. (a) The amplitude of the perturbation for contour n = 0.5 for planar front initial
conditions (solid line) and perturbed initial conditions (dashed line). (b) The log plot of (a).
λ = 0.1, α = 3.83171.

We now consider the case when λ �= 0 and hence the surface is no longer planar
(it is difficult to make analytical progress in this case). Figure 17 shows a compari-
son between two simulations; the first is that when the tumour surface is flat initially
and the second is when a perturbation has been applied to the surface. Figure 17(b)
clearly shows that although the amplitudes of the perturbation or finger differ for
small times, they grow at the same rate at later times. This implies that the surface
is stable to small perturbations when λ �= 0 and suggests that the finger-like shape
of the tumour front is the stable configuration.

6. Conclusions

In this paper, the growth of a tumour in an two-dimensional axisymmetric cylin-
drical rigid duct has been examined in order to describe the initial stages of ductal
carcinoma in situ. We have introduced a nutrient-limited growth model and have
used Stokes flow to describe the movement of the cells. This modelling results in
a system of nonlinear partial differential equations involving the surrounding fluid
and the live and dead tumour cell concentrations, the nutrient concentration, the
local velocity and the pressure. These were solved using numerical, asymptotic and
linear stability techniques.

The numerical simulations in Section 2.3.2 suggest that because the cells are
always a fixed distance away from the nutrient source (the duct is rigid), only a
small number of cells die in the centre (mainly due to apoptosis). This suggests
that growth in a nutrient rich environment may be sufficient to model these initial
stages of DCIS with the nutrient-limited model becoming more relevant in the later
stages where the duct wall is compliant and starts to deform. Since changing the
consumption rate is equivalent to changing the diameter of the duct, it follows that
for a duct with a larger radius, more nutrient is consumed and therefore more cells
die in the centre of the duct. This goes some way to explaining why in high grade
DCIS, where the duct is large and distended, a necrotic core is seen and why one
is not observed in low grade DCIS.
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The tumour cells adhere to the duct wall (although it is not known to what
extent) and numerical simulations and asymptotic analysis for large time show that
the more the cells are able to slip against the wall, the flatter is the surface of the
tumour. The viscosity of the tumour and surrounding material also affects the shape
of the tumour surface. By considering the case when the tumour is much longer in
the axial direction than the radial direction in Section 4, we find that the tumour
expands faster when the viscosity of the tumour is greater than the fluid because the
surroundings are providing less resistance to growth. The tumour leaves the duct
wall further along the duct as the tumour viscosity increases because the strength
of the bonds between the cells is greater, meaning that the tumour is held together
and to the wall more strongly. The tip of the tumour grows at a rate dependent
upon the viscosity of the surrounding fluid so that as this increases, the position of
the tip extends further along the duct. The shape of the tumour boundary therefore
alters depending upon the relative viscosities but the tumour is growing at a con-
stant rate regardless of the viscosity ratio so that the volume of the tumour remains
constant.

In Section 5.2, the stability of the tumour surface was found to be dependent
upon how the cells stick to the duct wall. If the front is planar (the cells slip against
the wall) the surface is unstable to small perturbations. If however the cells stick to
the wall (the front is more finger like), the perturbations decay so that the surface
is stable. The linear stability analysis also suggests that the rate of growth of the
perturbation to the surface does not depend upon the viscosity of the tumour and
surrounding fluid.

In conclusion, we have developed a mathematical model describing the growth
of an avascular tumour in a rigid cylindrical duct that incorporates the interaction
between the tumour cells and the duct wall. We have observed that for all viscosities
and nutrient concentrations, the pressure increases rapidly in the centre of the tu-
mour suggesting that this may be the mechanism that causes the duct wall to deform
i.e. it may eventually become easier for cells at the tumour centre to push against
the compliant duct wall rather than push against other cells to spread further down
the duct. Future work will examine the case when the wall is compliant, including
a mechanism for degradation of the membrane due to the production of proteolytic
enzymes. This may then lead on to an investigation of the invasion of the tumour
into the surrounding breast tissue.
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