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Abstract. We consider a model for a disease with a progressing and a quiescent exposed
class and variable susceptibility to super-infection. The model exhibits backward bifurca-
tions under certain conditions, which allow for both stable and unstable endemic states when
the basic reproduction number is smaller than one.

1. Introduction and discussion

Conceivably, an infected individual is subject to further contacts with infectious
individuals. It depends on the type of the disease whether, in a mathematical model,
these can be ignored or whether so-called super-infection should be included.

Super-infection in micro- and macro-parasitic diseases
Super-infection is the concurrent or subsequent multiple infection of a host with
the same parasite, may it be with identical or different strains. Super-infection does
not play a significant role in the class of micro-parasitic infectious diseases known
as childhood diseases like measles, chicken pox, rubella etc. where the primary
infection progresses very fast (in a time scale of days or weeks) and renders long-
lasting immunity so that subsequent infections are either unsuccessful or hardly
make a difference. The significance of multiple infections has long been recog-
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nized in another class of micro-parasitic, namely plasmodial, diseases, in particular
in malaria, among other things for sustaining immunity. (See [1], Section 14.4.3
et seq., and [16] for discussions and references.) Super-infection, typically by a
different strain, may play an important role in the recurrence of influenza outbreaks
[2]. Multiple infections are so common in macro-parasitic diseases that it may be
more appropriate to speak about a constant invasion of the host by the (often hel-
minthic) parasites, either directly or transmitted by vectors. It is in schistosomiasis
that super-infection has first been linked to the occurrence of multiple endemic
equilibria, and concepts like breakpoint density and transmission threshold have
been formulated. Here the multiplicity of endemic equilibria is due to the pairing
of male and female worms in the human host and is actually the variant of an Allee
effect observed in other ecological scenarios (See [1], Section 16.24, for further
information and references). An Allee type (or depensating [13]) relation between
parasite acquisition and average parasite load can also lead to multiple endemic
equilibria [24].

Super-infection conceivably is also important for slowly progressing micro-par-
asitic diseases like the viral diseases HIV and hepatitis A,B &C and the bacterial
diseases cholera, typhoid and tuberculosis. Super-infection manifests itself in Hep-
atitis A by shortening the latency period (dose-dependent latent period [36,37]).
Apart from having an initial phase in which the infectious agent develops rapidly
in the human host, the scenarios of progression seem to be somewhat different
in these diseases. In HIV the fast initial phase appears to be followed by a long
phase with low virus titers which is eventually followed in many or most cases by
AIDS ([1], Section 11.3). Hepatitis B &C, cholera and typhoid display a division
of the infected individuals into one part that develop symptoms and recover and
another that become asymptomatic active carriers of the disease, often for many
years ([1], Section 10.3). Something similar happens in tuberculosis except that
the asymptomatically infected individuals (approximately 90 % of the infected in-
dividuals) are passive carriers for a long time until, possibly, their infectivity is
activated. In HIV, super-infection can perhaps speed up the progression to AIDS,
while in tuberculosis it could play a part in activating passive carriers. While the
first is hypothetical at this point, it is subject to debate to what extent the second
happens; super-infection (in this context also called exogenous reinfection) seems
to be well-documented for immuno-suppressed individuals; in immuno-competent
people the primary infection appears to protect against secondary infections (see
[19] for references and discussion). Other factors in reactivation are malnutrition
or an otherwise caused weakening of the immune system.

While even today, tuberculosis remains a prominent killer among the infectious
diseases with an estimated 3 million deaths per year, there has only been a limited
use of mathematical models in its study. After some early modeling efforts (see
[4], Section 16.2, for some discussion and references, and [19] for further refer-
ences), the interest has been renewed by the interference of tuberculosis and AIDS
and the development of antibiotic resistance [5–10,19–21,39,40]. Only [19] ad-
dresses the possible role of super-infection, in particular in leading to multiple
endemic equilibria which occur when the basic replacement ratio (reproduction
number), R0, is still smaller than one.
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Multiple endemic equilibria
The phenomenon of multiple endemic equilibria, in particular in the subcritical
(or subthreshold) case where the basic replacement ratio is smaller than one, has
recently attracted a lot of attention in mathematical epidemiology. From a control
point of view, in order to eradicate a well-established infectious disease, it is then
not sufficient to lower R0 below one, but below another threshold value which is
called transmission threshold in [1], Section 16.2.4, and minimal transition value in
[42]. An alternative way of eradication, if one can only lower R0 below one but not
below the transmission threshold, consists in lowering the disease prevalence into
the domain of attraction of the disease-free equilibrium. If one orders the multiple
endemic equilibria according to the associated disease prevalence (the first having
the lowest) one can often show (and we do it in this paper) that the first endemic
equilibrium is unstable. Often the first endemic equilibrium is a saddle (we are
not able to show this for our model) and its stable manifold forms, or is part of,
the boundary of the domain of attraction of the disease-free equilibrium. Roughly
speaking, this second type of control then amounts to bringing the disease preva-
lence under the prevalence of the first endemic equilibrium, the breakpoint density
in schistosomiasis ([1], Fig. 16.3). If R0 is between the transmission threshold and
1 and the disease is eradicated, the population is safe against reintroduction of the
disease provided that new infectives enter only in small numbers. If the new infec-
tives come with a prevalence higher than the breakpoint density, the disease will
be reestablished. That is why the first unstable equilibrium is sometimes called the
watershed equilibrium.

Mathematically, if the models are sufficiently simple, the existence of multiple
equilibria can be shown directly, mostly by solving a quadratic equation; in complex
models, bifurcation techniques are used and the existence of multiple equilibria is
concluded from a backward (or subcritical) bifurcation of endemic equilibria from
the disease-free equilibrium.

Epidemiologically, several mechanisms have been identified to cause the occur-
rence of multiple endemic equilibria. The mating of male and female schistosomes
has already been mentioned, though we should add here that the breakpoint phe-
nomenon is not likely to be of much practical use in the control of schistosomiasis
([1], pp. 482, 483 and 487). In [18,22,23,31,26,33], backward bifurcation of en-
demic equilibria occurs as a result of the incorporation of several groups of suscep-
tible individuals with different susceptibilities to the disease. Replacing standard
or mass action incidence by a power law leads to backward bifurcation as well
[17,35] as can the incorporation of certain vaccination regimes [25,26,33,34] or
chronological age-structure [11] into the model.

It is one of the aims of this paper to strengthen the case (already made in [19])
for super-infection to cause multiple endemic equilibria, though through a different
model.

Modeling super-infection using progression age
In [36,37,19], super-infection is modeled to transfer latent individuals directly
into the infectious class. In this paper we propose a different mechanism, name-
ly that super-infection speeds up the progression of a latent individual to active
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infectiousness. This idea, though in a different way and without explicitly men-
tioning a concrete disease, has already been pursued in a series of papers stretching
from the late sixties to the early eighties [14,28,29,41] (see [47] for details and
more references). In these papers, it is assumed that an infected individual, during
the latency period, is subject to constant super-infection (our words) and becomes
infectious as soon as the accumulated super-infection reaches a certain threshold.
Multiple endemic equilibria are not observed because the models do not include
births and deaths. Differently from these papers, we think that super-infection, as
the primary infection itself, is a random event and should not be obligatory once the
primary infection has occurred. We formalize this concept by splitting the latency
stage into two substages, a progressive latent stage and a quiescent latent stage.
With a certain rate η1, the individual passes from the progressive latent stage to the
infectious stage or, with a rate ρ, drops to the quiescent stage. Super-infection lifts
the individual back into the progressive stage. Note the difference to [36,37] and
[19] where there is only one latent stage and super-infection directly transfers latent
individuals into the infectious class. In order to give the term disease-progression
a meaning, we assign a class age, a, to both progressing and quiescent exposed
individuals, namely the time after infection that has been spent in the progressive
stage. We model the progression by a linear transport equation, i.e., a first order
linear partial differential equation, with a nonlinear boundary condition. Since in
the progressive stage, the exposed individuals increase their class age, while it is on
hold in the quiescent stage, we call a the progression age. To incorporate an analog
of the threshold idea of [14,28,29,41], we let the transition rate to infectiousness,
η1(a) depend on the age of progression. In particular we allow η1(a) = 0 for small
a > 0 and introduce a+ as the largest a such that η1 = 0 on [0, a]. We call a+ the
critical progression age for activation.

The idea of a progression threshold that must be reached before an individual is
activated to be infectious, however it is formulated, forces the mathematical mod-
eler to leave the framework of ordinary differential equations in which the models
in [19] and [36,37] are cast. In our case, we have to incorporate a semilinear partial
differential equation into the model, in [14,28,29,41] it is a functional differen-
tial equation with state-dependent delay which can equivalently be recast using a
quasilinear PDE. The trade-off consists in capturing a new effect.

Progression age enhanced backward bifurcation
To explain this new effect, we need to consider the per capita rate of infection, k,
and the per capita rate of super-infection, k̃. Obviously these two parameters are
not independent because they are compound parameters which include common
contact rates while the probabilities that a contact actually leads to an infection
may be different. So we write k̃ = ψk. The factor ψ describes how an individual’s
susceptibility at a secondary infection relates to the susceptibility at the primary
infection. If ψ < 1, the primary infection protects against secondary infections,
while it facilitates super-infection if ψ > 1. In order to see how progression age
enhances backward bifurcation of endemic equilibria, let us look at the case that all
parameters are independent of progression age and the model collapses to an ODE
model. As it will turn out, ψ > 1 is required for multiple endemic equilibria to
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occur, i.e., it is necessary that super-infection is facilitated by the primary infection.
However, if η1, the transfer rate of progressive exposed individuals to infectivity,
depends on progression age,ψ can be arbitrarily small as long as it is compensated
by a sufficiently large critical progression age a+ or a sufficiently large transi-
tion rate ρ from the progressive to the quiescent latent stage. More precisely, if
ψρa+ > 1, multiple endemic equilibria exist via a backward bifurcation in k. This
means that super-infection can be important even if the protection provided by the
primary against secondary infections is high.

In order to better understand how the various mechanisms in our model cooper-
ate in making backward bifurcations possible, let the transition rateη1 be a step func-
tion,η1 = 0 on [0, a+) andη1 = η on (a+,∞)with a positive constantη.Then there

is a backward bifurcation of endemic equilibria in k ifψ
(

ρ
ρ+µ+η + ρa+

)
> 1.The

opposite strict inequality implies forward bifurcation. All parameters have been ex-
plained before exceptµwhich is the natural mortality rate. Notice that the left hand
side of this inequality is 0 ifψ orρ are zero. This shows that both super-infection and
the transition from the progressive to the quiescent latent stage (at rate ρ) are needed
for backward bifurcation to be possible. The two different latent stages are needed
because we assume that super-infection does not directly propel latent individuals
into the infectious stage, but rather accelerates the progression towards infectivity.

In [19] it is assumed that super-infection directly transfers latent individuals into
the infectious stage, and only one latent stage is needed to make backward bifurca-
tion of endemic equilibria possible. Similarly to our analysis, a positive minimum,
ψ0, is found for ψ such that subcritical multiple endemic equilibria exist if and
only if ψ ≥ ψ0. Depending on the other parameters, ψ0 < 1 can occur, though the
model does not include progression age or any other class age for individuals in the
latent stage. In our model, parameters that depend on progression age are needed
for ψ0 < 1, otherwise ψ0 = ρ+η1+µ

ρ
> 1.

The existence of multiple equilibria can be an indicator for complex dynamical
behavior of the disease. Liu [36] observes periodic solutions in his model with
dose-dependent latent period, but they are presumably caused by his choosing a
Hill function in the super-infection rate rather than taking a standard incidence like
term as we do. In our model, if the disease is assumed to be non-fatal as in [36], the
endemic equilibria are either stable or unstable with a leading positive eigenvalue
of the linearization. This does not rule out periodic solutions completely, but one of
the main mathematical tools of finding them. If disease fatalities are included, this
issue deserves further attention, though we do not touch it here. Instead we address
another issue of disease dynamics and establish the existence of global compact
attractor which, if R0 > 1, has a positive distance from the states in which the
disease is eradicated.

Organization of work
In the next section we introduce the model, explain the meaning of the parame-
ters and list the assumptions they satisfy. To keep the model simple, we have not
incorporated treatment (differently from [19]), but we do not expect our results to
be much different if we had.
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In section 3, we consider the equilibria of the model. First we investigate some
conditions for nonexistence of endemic equilibria.

Then we identify the basic replacement ratio, R0, in terms of the model pa-
rameters. We show that, if R0 > 1, there always exist endemic equilibria and that
their number is odd. We also give a lower bound for the transmission threshold
[1], or minimal transition value in [42]. Finally, we discuss the case R0 < 1 and
conditions for occurrence of backward bifurcation. Backwards bifurcation leads to
multiple endemic equilibria the number of which is even.

Section 4 is devoted to the analysis of the stability/instability of equilibria. As
usual, the disease-free equilibrium is stable if R0 < 1 and unstable as R0 > 1. If
there are multiple equilibria and if they are numbered according to the associated
disease prevalence (from low to high with the first having the lowest prevalence),
then every other endemic equilibrium is unstable. If R0 < 1, the first endemic equi-
librium is unstable, while the second endemic equilibrium is unstable if R0 > 1.
If the disease is non-fatal, we can also show that every other equilibrium is stable,
i.e., the stability of the multiple equilibria alternates.

In Appendix A, we discuss an abstract formulation of the problem, and we es-
tablish the well-posedness of the model, i.e, existence and uniqueness of solutions
and their continuous dependence on initial data.

Since our model is an infinite-dimensional system, to use the results in
section 4 to establish stability/instability, we actually need to prove the familiar
relation between the roots of the characteristic equation and the stability of the
equilibrium. This is done in Appendix B using the abstract framework from Ap-
pendix A which we also employ to prove uniform strong endemicity (persistence)
of the disease if R0 > 1 (Appendix C). In Appendix C we also show that the
semiflow (dynamical system) induced by the solutions of the model has a global
compact attractor.

2. The model

We consider a disease spreading in a population with the total population size at
time t given by N(t). The presence of the disease divides the population into sub-
classes. We consider the susceptible individuals who are healthy but can be infected
through a contact with an infective individual. We denote the classes of the sus-
ceptible and infective individuals by S(t) and I (t). The population in each of these
two classes is otherwise considered homogeneous. Upon a contact with an infec-
tive individual, the susceptible individual either becomes infectious right away and
enters the infective class (with probability p) or becomes exposed and enters an
exposed class (with probability q = 1 − p) where it is infected but not infectious,
i.e. the disease is latent. To model the effect of super-infection we subdivide the
latent stage, and accordingly the exposed class, into a latent stage where the disease
progresses and a latent stage where the disease development is on hold; we call
the first substage the progressive latent stage and the second the quiescent latent
stage. A freshly exposed individual first enters the progressive exposed class from
which, at a certain rate ρ, it can drop to the quiescent stage. In the quiescent stage
individuals can be re-infected (super-infection) and reenter the progressive exposed
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class. Individuals that have stayed in the exposed class long enough become in-
fectious themselves and enter the infective class, I , at a rate η1. We keep track
of the class age of progressing exposed individuals and let a denote the time after
infection that an exposed individual has spent in the progressive stage. We call a the
progression age. We let the transition rates ρ and η1 as well as the super-infection
rate depend on class age a. E1(a, t), as a function of a, is the class-age density
of exposed individuals in the progressive latent stage at time t , while E2(a, t) is
the density of individuals in the quiescent exposed class again stratified over pro-
gression age. Since we want to include the effect of disease-related deaths on the
disease dynamics, infective individuals die from the disease at a per capita rate γ .
In this paper we do not consider the demographic consequences of the disease and
therefore choose the simplest demographics consistent with an endemic model,
namely a constant influx of susceptible individuals into the population, at rate �,
and a constant per capita natural death rate, µ. Other, more realistic, demographic
structures are reviewed in [27], though in the context of different epidemic models.

Our model takes the form:

S′(t) = �− k
SI

N
− µS

I ′(t) = pk
SI

N
+
∫ ∞

0
η1(a)E1 da − (µ+ γ )I

(∂t + ∂a)E1(a, t) = −ρ(a)E1 + k̃(a)
E2I

N
− η1(a)E1 − µE1 (2.1)

E1(0, t) = qk
SI

N

∂tE2(a, t) = ρ(a)E1 − k̃(a)
E2I

N
− µE2

where we have used the following parameters:

� recruitment rate into the population,
µ per capita natural death rate,
γ disease-induced mortality rate,
p probability of a susceptible individual transferring to the infective class after

a contact with an infective,
q probability of an susceptible individual transferring to the progressing

exposed class after a contact with an infective,
k effective per capita infection rate for susceptible individuals,

k̃(a) per capita super-infection rate for individuals in the quiescent exposed class
with progression age a,

ρ(a) per capita rate of transition from the progressive exposed to the quiescent
exposed stage,

η1(a) per capita rate of transition from the progressive exposed to the infective
stage.
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We make the following assumptions for the parameters of the model that will
be valid throughout this article:

η1(·), ρ(·), k̃(·) ∈ L∞(0,∞),

ρ(·), k̃(·) are uniformly continuous,
p + q = 1.

(2.2)

In addition we assume that all parameters of the model are nonnegative and µ > 0.
The equations in the system (2.1) are supplemented with initial conditions: S(0) =
S0, I (0) = I0,E1(a, 0) = E0

1(a),E2(a, 0) = E0
2(a). Integrating the third and fifth

equation with respect to a and adding the resulting system of ODEs, we obtain the
equation for the total population size.

N ′(t) = �− µN − γ I

with initial condition N(0) = N0. In a disease-free population, the equation of the
total population size takes the formN ′(t) = �−µN . Thus, in a disease-free popula-
tion the total population size can be explicitly foundN(t) = N0e

−µt+ �
µ
(1−e−µt )

and it follows that limt→∞N(t) = �
µ

.
We introduce also the following quantities which will be used throughout this

article:

π(a) = e−
∫ a

0 ρ(σ) dσ

π1(a) = e−
∫ a

0 η1(σ ) dσ . (2.3)

The expression π(a)π1(a) gives the probability of remaining in the progressive
exposed stage till stage age a, provided the individual has survived to that age.

The model (2.1) is a well-posed system of differential equations. Rigorous
justification of this fact in the framework of semigroup theory can be found in
Appendix A.

3. Equilibria

To compute the steady states of the system (2.1), we set the derivatives with respect
to time in (2.1) equal to zero. This way we obtain a system of three algebraic equa-
tions and an ODE. The time-independent steady state for the total population size
satisfies the equation 0 = �− µN∗ − γ I ∗. Next, we normalize with the equilib-
rium total population size thus obtaining the following system for the proportions
s∗ = S∗/N∗, i∗ = I ∗/N∗, e∗1(a) = E∗

1 (a)/N
∗, e∗2(a) = E∗

2 (a)/N
∗:

0 = µ− ks∗i∗ − µs∗ + γ i∗

0 = pks∗i∗ +
∫ ∞

0
η1(a)e

∗
1(a)da − (µ+ γ )i∗

d
da
e∗1 = −ρ(a)e∗1 + k̃(a)e∗2i

∗ − η1(a)e
∗
1 − µe∗1

e∗1(0) = qks∗i∗
0 = ρ(a)e∗1 − k̃(a)e∗2i

∗ − µe∗2 .

(3.1)
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The following algebraic condition is also satisfied:

s∗ + i∗ +
∫ ∞

0
e∗1(a) da +

∫ ∞

0
e∗2(a) da = 1. (3.2)

Each solution E∗ = (s∗, i∗, e∗1, e
∗
2) of the system (3.1) gives an equilibrium of

the system (2.1).

3.1. Nonexistence of endemic equilibria

The system (3.1) always has the solution E0 = (1, 0, 0, 0) to which corresponds
the disease-free equilibrium of the system (2.1), S∗ = �

µ
, I ∗ = E∗

1 = E∗
2 = 0. We

note that equilibrium states with only some of the infected classes being zero do
not exist. To find endemic equilibria, that is equilibria where I ∗ �= 0, we use the
last equation to express e∗2 in terms of e∗1 and i∗:

e∗2(a) = ρ(a)e∗1(a)
k̃(a)i∗ + µ

. (3.3)

Next, using the first equation, we express s∗ in terms of i∗:

s∗ = µ+ γ i∗

ki∗ + µ
. (3.4)

We note that s∗ ≤ 1 if and only if γ ≤ k. Thus, if γ > k, the model (2.1) has only
the disease-free equilibrium. In fact, this condition for nonexistence can be made
more precise.

We use the expressions above to eliminate s∗ and e∗2 from the third equation
and its initial condition thus obtaining an ODE for e∗1 in terms of i∗:

d
da
e∗1(a) = −ρ(a)e∗1 + k̃(a)i∗

ρ(a)e∗1(a)
k̃(a)i∗ + µ

− η1(a)e
∗
1 − µe∗1

e∗1(0) = qks∗i∗.
(3.5)

Solving this equation we obtain an expression of e∗1 in terms of i∗:

e∗1(a) = qks∗i∗e−µaπ(a)π1(a)e

∫ a
0
ρ(σ)k̃(σ )i∗
k̃(σ )i∗+µ dσ (3.6)

where π(a) and π1(a) are defined in (2.3).
Equation (3.6) implies an estimate from below on e∗1(a):

e∗1(a) > qks∗i∗e−µaπ(a)π1(a).

Integrating with respect to a we get:
∫ ∞

0
e∗1(a) da > ks∗i∗α
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where α is given by

α = q

∫ ∞

0
e−µaπ(a)π1(a) da. (3.7)

We observe that µα < q ≤ 1. The expression µα can be interpreted as the prob-
ability of dying from natural courses while being in the progressive latent stage
provided that there is no super-infection ([46], Section 2.6). The inequality above,
(3.2), and (3.4) lead to the following inequality for i∗:

i∗ <
k(1 − µα)− (γ + µ)

k(1 + γα)
.

Thus, we have a more accurate result on nonexistence of endemic equilibria:

Theorem 3.1. If k ≤ γ+µ
1−µα then the system (2.1) does not have endemic equilibria.

Consequently, we will assume that k > γ+µ
1−µα when we discuss the existence of

equilibria. We note that this implies that k > γ + µ and, in particular, guarantees
that s∗ < 1.

3.2. Existence and number of equilibria

Equation (3.6) can be rewritten in the form

e∗1(a) = qks∗i∗e−µaπ1(a)e
− ∫ a0 ρ(σ)µ

k̃(σ )i∗+µ dσ (3.8)

We note that e∗1 is an increasing function of i∗ and, therefore, the equilibrium pro-
portion of progressing exposed individuals increases as the proportion of infective
individuals increases. Substituting in the second equation of (3.1) and dividing by
i∗, we obtain the following equation for i∗:

pks∗

µ+ γ
+ qks∗

µ+ γ

∫ ∞

0
η1(a)e

−µaπ1(a)e
− ∫ a0 ρ(σ)µ

k̃(σ )i∗+µ dσ da = 1. (3.9)

Denote the integral in equation (3.9) by ϕ(i∗):

ϕ(i∗) =
∫ ∞

0
η1(a)e

−µaπ1(a)e
− ∫ a0 ρ(σ)µ

k̃(σ )i∗+µ dσ da. (3.10)

Integrating by parts one can obtain a different representation which will also be
useful:

ϕ(i∗) = 1 − µ

∫ ∞

0

(
1 + ρ(a)

k̃(a)i∗ + µ

)
e−µaπ1(a)e

− ∫ a0 ρ(σ)µ

k̃(σ )i∗+µ dσ da. (3.11)

Regarding the properties of this integral from (3.10) and (3.11) we see that:

Proposition 3.1. For all 0 ≤ i∗ ≤ 1 we have

ϕ(i∗) < 1.

In addition, ϕ(i∗) is an increasing function of i∗.
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By (3.4), the i∗ component of each equilibrium E∗ = (s∗, i∗, e∗1, e
∗
2) is a solu-

tion to the following equation in i obtained from (3.9):

pk

µ+ γ
+ qk

µ+ γ
ϕ(i) = ki + µ

µ+ γ i
. (3.12)

The remaining components of E∗ are computed correspondingly from (3.4), (3.8),
(3.3). Thus, the existence and number of equilibria depends on the number of times
the graphs of the functions

g(i) = pk

γ + µ
+ qk

γ + µ
ϕ(i)

f (i) = ki + µ

γ i + µ
(3.13)

have a common point.
The existence and the number of equilibria depends also on a threshold condi-

tion related to the basic reproductive number for the disease:

R0 = pk

µ+ γ
+ qk

µ+ γ

∫ ∞

0
η1(a)e

−µaπ1(a)π(a)da. (3.14)

In interpreting this expression notice that 1
µ+γ is the average time spent in the in-

fectious stage, so k
µ+γ is the average number of individuals an infectious individual

can infect while being infectious, if all the rest of the population is susceptible. Re-
call that p is the probability of entering the infectious class immediately after being
infected, while q is the probability of going through the exposed period first. The
integral in (3.14) gives the probability of making it through the exposed period alive
and becoming infectious (cf. [46], Section 2.6). So R0 gives the average number of
secondary cases that are produced by an infective individual while everybody else
is susceptible. Notice that R0 does not depend on the super-infection rate k̃ which
is a reflection of the fact that super-infection does not lead to additional infections.
Typically in simpler models, if R0 < 1, then the disease-free equilibrium is the
only equilibrium which is globally asymptotically stable and the disease will die
out from the population. On the other hand if R0 > 1 there are one or more endem-
ic equilibria which are at least locally stable. In this case it can be shown that the
disease persists in the population (see the last section). Let us make a connection to
the condition for non-existence of endemic equilibria which we found in Theorem
3.1. Integrating by parts, we can rewrite R0 as

R0 = k

µ+ γ
(1 − µα − β),

where α is given by (3.7) and

β = q

∫ ∞

0
ρ(a)e−µaπ1(a)π(a)da. (3.15)
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Note that β can be interpreted as the probability of dropping to the quiescent latent
stage ([46], Section 2.6). The condition for non-existence of endemic equilibria in
Theorem 3.1 can be reformulated as

R1 := k

µ+ γ
(1 − µα) ≤ 1. (3.16)

Recalling that µα is the probability of dying during the progressive latent stage,
R1 is the average number of individuals infected by an infectious individual in an
otherwise susceptible population that do not die during the progressive latent stage.
Notice that R0 < R1.

In order to get a handle on the number of endemic equilibria we introduce the
following terminology. Let E∗ = (s∗, i∗, e∗1, e

∗
2) and E∗∗ = (s∗∗, i∗∗, e∗∗

1 , e
∗∗
2 ) be

two equilibria of the system (2.1). We say that E∗ ≤ E∗∗ if i∗ ≤ i∗∗. Thus, the
equilibria are ordered according to the value of the proportions of the infective
individuals in them. We call E∗ a simple equilibrium if

qk

γ + µ
ϕ′(i∗) �= (k − γ )µ

(γ i∗ + µ)2
. (3.17)

Geometrically that means that the slopes of the functions g(i) and f (i) are different
at the equilibrium point E∗ and, therefore, their graphs intersect at E∗. Hence, the
difference g(i) − f (i) changes sign. We note that if E∗ and E∗∗ are simple then
E∗ �= E∗∗. We call E∗ a high multiplicity equilibrium if

qk

γ + µ
ϕ′(i∗) = (k − γ )µ

(γ i∗ + µ)2
. (3.18)

Geometrically this means that the functions f (i) and g(i) have a common tangent
at the equilibrium point E∗ and their graphs either intersect or just touch at E∗.

Theorem 3.2. (a) If R1 ≤ 1, with R1 from (3.16), then there are no endemic equi-
libria.

(b) If R0 < 1 and the system (2.1) has endemic equilibria which are all simple,
then there is an even number of endemic equilibria.

(c) If R0 > 1, the system (2.1) always has at least one equilibrium. If there are
several endemic equilibria which are all simple, then their number is odd.

Proof. Part (a) has been proved above. The function f (i) is increasing and concave
down. We have f (0) = 1 and f (1) = k+µ

γ+µ . The function g(i) is also increasing

but its concavity may be changing. We have g(0) = R0 and g(1) < k
γ+µ . Thus,

g(1) < f (1). Consequently, if R0 < 1 then g(0) < f (0) and there are either
zero intersections of the two graphs, or an even number of them. If R0 > 1 then
g(0) > f (0) and there is at least one intersection of the graphs. If there are others,
their total number is odd (see Figure 1). 	
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Fig. 1 . To each intersection of the functions f (i) and g(i) corresponds i∗ which gives an
equilibrium E∗ of the system. In the case when R0 > 1 the first one and the third one are
stable (at least when γ = 0) while the second one is unstable. In the case R0 < 1 the
first one is unstable and the second one is stable (at least when γ = 0). Notice that the
stability/instability of E∗ is in direct connection to the relation between the slopes of f (i)
and g(i) at i∗.

We derive a uniqueness condition for endemic equilibria. To this end we need
the derivative of ϕ in (3.10),

ϕ′(i∗) =
∫ ∞

0
η1(a)e

−µaπ1(a)e
− ∫ a0 ρ(σ)µ

k̃(σ )i∗+µ dσ
(∫ a

0

ρ(σ)k̃(σ )µ

(k̃(σ )i∗ + µ)2
dσ

)
da.

(3.19)

Assume that there are two endemic equilibria. By Rolle’s theorem, there exists
some i ∈ (0, 1) such that

g′(i) = f ′(i).
Then

g′(i) <
qk

(µ+ γ )µ

∫ ∞

0
η1(a)e

−µaπ1(a)e
− ∫ a0 ρ(σ)µ

k̃(σ )+µ dσ
(∫ a

0
ρ(σ)k̃(σ )dσ

)
da

and, recalling that k > γ is necessary for existence of equilibria,

f ′(i) >
(k − γ )µ

(γ + µ)2
.

So we get the following condition for uniqueness.

Theorem 3.3. There exists at most one endemic endemic equilibrium if

qk

∫ ∞

0
η1(a)e

−µaπ1(a)e
− ∫ a0 ρ(σ)µ

k̃(σ )+µ dσ
(∫ a

0
ρ(σ)k̃(σ )dσ

)
da ≤ (k − γ )µ2

γ + µ
.
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Less precise but perhaps more insightful conditions are the following.

Corollary 3.1. There exists at most one endemic equilibrium if at least one of the
following conditions are satisfied

q

∫ ∞

0
π1(a)ρ(a)k̃(a)da ≤ (k − γ )µ2

k(γ + µ)
,

or

(sup η1)
q

µ

∫ ∞

0
e−µaρ(a)k̃(a)da ≤ (k − γ )µ2

k(γ + µ)
.

Notice that the right hand sides of these inequalities become very simple if the
disease is non-fatal; they equal µ, if γ = 0. The two conditions show that, within
the framework of our model, both super-infection and the possibility of dropping
from the progressive to a quiescent stage are needed to have more than one endemic
equilibrium.

3.3. Existence of endemic equilibria when R0 < 1. Backward bifurcation

Now we turn our attention to the existence of endemic equilibria when R0 < 1. We
choose the infection rate k as a bifurcation parameter in (3.12). In a first step, we
assume that there is no coupling between the infection rate and the super-infection
rate k̃. We solve (3.12) with respect to k:

k = µ(µ+ γ )

p(µ+ γ i∗)+ q(µ+ γ i∗)ϕ(i∗)− (µ+ γ )i∗
(3.20)

We compute the derivative of k(i∗) with respect to i∗:

k′(i∗) = −µ(µ+ γ )
pγ + qγ ϕ(i∗)+ q(µ+ γ i∗)ϕ′(i∗)− (µ+ γ )

(p(µ+ γ i∗)+ q(µ+ γ i∗)ϕ(i∗)− (µ+ γ )i∗)2
. (3.21)

The bifurcation at the point i∗ = 0 is subcritical if and only if k′(0) < 0. Thus, the
bifurcation at the point i∗ = 0 is subcritical if and only if

qγ ϕ(0)+ qµϕ′(0) > µ+ qγ. (3.22)

(3.11) leads to the following criterion for subcritical bifurcation:

Proposition 3.2. The system exhibits backward bifurcation if and only if

qϕ′(0)− qγ

∫ ∞

0

(
1 + ρ(a)

µ

)
e−µaπ1(a)π(a) da > 1. (3.23)

The following two forms of ϕ′(0) corresponding to the two forms of ϕ(i∗) in
(3.10) and (3.11) will be useful:

ϕ′(0) = 1

µ

∫ ∞

0
η1(a)e

−µaπ1(a)π(a)

∫ a

0
ρ(σ)k̃(σ ) dσ da, (3.24)

ϕ′(0) = 1

µ

∫ ∞

0

[
ρ(a)k̃(a)−

(
µ2 + ρ(a)

) ∫ a

0
ρ(σ)k̃(σ ) dσ

]

×e−µaπ1(a)π(a) da. (3.25)



Backward bifurcation in a model with super-infection 399

The model (2.1) exhibits backward bifurcation if there is a set of parameters such
that inequality (3.23) is satisfied. To give an example we assume that all parameters
of the model are constant except possibly η1(a). It is sufficient to show that it is
possible to choose the remaining parameters so that µqϕ′(0) > µ + qγ . Indeed,
using representation (3.24) we get

qµϕ′(0) = qk̃ρ

∫ ∞

0
a η1(a)e

−µaπ1(a)π(a) da.

Clearly, since the integral is positive we can choose k̃ large enough so that the
inequality holds. Furthermore, the reproductive number R0 does not depend on k̃
and therefore its value will remain below one.

We note that the backward bifurcation inequality holds true even if all coeffi-
cients are constant. This, in particular, implies that the ODE model obtained from
(2.1) through assuming all coefficients constant also exhibits backward bifurcation.
It follows from Proposition 3.2 that there is no backward bifurcation if q = 0 or
k̃(a)ρ(a) = 0 for all a ≥ 0, but Corollary 3.1 actually gives us a more general
condition because backward bifurcation leads to multiple equilibria in our situation.

As we already pointed out in the introduction, k and k̃ are related, while we
have used k as an independent bifurcation parameter. We show that this does not
make any difference. Assume that k̃ depends on k in a continuously differentiable
way. Then ϕ in (3.20) is not only a function of i∗, but also of k, ϕ = ϕ(i∗, k).
So (3.20) becomes a fixed point equation in k parameterized over i∗. However,
ϕ(0, k) is independent of k and ∂

∂k
ϕ(i∗, k) → 0 as i∗ → 0 uniformly for k in

compact subintervals of [0,∞). See (3.10). This shows that the right hand side of
(3.20) is a uniform strict contraction in k and solutions k(i∗) of (3.20) exist for small
i∗ > 0 with k being differentiable at 0 ([12], Theorem 2.2). Since ∂

∂k
ϕ(0, k) = 0,

the chain rule implies that k(0) and k′(0) are the same as given by (3.20) and (3.21).

3.4. Progression age enhanced backward bifurcation

In particular let us assume that k̃(a) = kψ(a) as we did in the introduction. We
restrict our consideration to a non-fatal disease, γ = 0, and also assume that all
infected individuals enter the latent stage, q = 1 and p = 0. The condition for
backward bifurcation is ϕ′(0) > 1. By (3.24), this condition becomes

1

µ

∫ ∞

0
η1(a)e

−µaπ1(a)π(a)

(∫ a

0
ρ(σ)kψ(σ)dσ

)
da > 1,

where k is given by (3.20) evaluated at i∗ = 0, that is, k = µ
ϕ(0) . This leads to the

following criterion for backwards bifurcation in k.
∫ ∞

0
η1(a)e

−µaπ1(a)π(a)

(∫ a

0
ρ(σ)ψ(σ) dσ − 1

)
da > 0. (3.26)

It is reasonable to expect that individuals in the latent stage do not become
infectious immediately after infection, i.e., η1(a) = 0 for small a > 0. Let a+
be the largest a such that η1 = 0 a.e. on [0, a). The value of a+ is finite unless
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η1 = 0 a.e. on [0,∞), i.e., exposed individuals remain in the latent stage until they
die. We call a+ the threshold progression age for activation at which progressing
exposed individuals start entering the infectious class. If a+ ∈ (0,∞), η1 depends
on class-age in a crucial way. We have the following result from (3.26).

Theorem 3.4. The endemic equilibria exhibit backward bifurcation in k if p = 0,
γ = 0, a+ ∈ (0,∞) and

∫ a+

0
ρ(σ)ψ(σ)dσ > 1.

In order to obtain additional insight we assume that ψ and all other parameters
of the model are constant with exception of the rate η1 at which individuals in the
progressive latent stage become infective. For the transition rate η1 we assume an
extreme threshold behavior, namely that η1 = 0 on [0, a+) and η1 = η on (a+,∞)

with a positive constant η. For this special case, the criterion (3.26) for backwards
bifurcation in k takes the form

ψ

(
ρ

ρ + µ+ η
+ ρa+

)
> 1.

The boundary value a+ = 0 corresponds to the special case that all param-
eters are constant, η1 = η. In this special case, there is a backward bifurcation
if ψ >

ρ+η1+µ
ρ

. Moreover, this condition is necessary for backward bifurcation
in k requiring that ψ is larger than 1, perhaps substantially so. If, however, this
condition is violated, that does not rule out the presence of backward bifurcation
with respect to another parameter. In order to show that this condition is necessary
for the existence of multiple endemic equilibria we return to equation (3.12) with
(3.10) which takes the following form in this special case,

η1k = (ki∗ + µ)

(
µ+ η1 + ρµ

ψki∗ + µ

)
.

There is at most one endemic equilibrium if the derivative of the right hand side
has no positive zeros. The derivative is

k(µ+ η1)+ ρ
kµ2(1 − ψ)

(kψi∗ + µ)2
.

This is positive if ψ ≤ 1. If ψ > 1, the derivative can be strictly estimated from
below by

k(µ+ η1)+ ρk(1 − ψ).

So there is at most one endemic equilibrium if this expression is non-negative.
We summarize our findings emphasizing how the stage age structure facili-

tates backward bifurcation and the occurrence of multiple endemic equilibria for
R0 < 1.



Backward bifurcation in a model with super-infection 401

Corollary 3.2. Let k̃ = kψ with constant ψ and ρ(a) = ρ be constant as well,
p = 0, γ = 0. Then the endemic equilibria exhibit a backward bifurcation in k
for any choice of ρ and ψ provided the threshold stage age for activation, a+, is
chosen large enough, ρψa+ > 1.

In the corresponding ODE model where η1 is also constant, there is a backward
bifurcation in k if and only if ψ >

µ+η1+ρ
ρ

> 1. In fact this condition is neces-
sary for the existence of multiple endemic equilibria, if all parameter functions are
constant.

If η1 is a step function, η1 = 0 on [0, a+) and η1 = η on (a+,∞), then the
endemic equilibria exhibit a backward bifurcation in k if

ψ

(
ρ

ρ + µ+ η
+ ρa+

)
> 1.

4. Local stability of equilibria

Linearizing (2.1) around an equilibrium we obtain a linear system for the pertur-
bations x, y, z(·), w(·) of S, I , E1, E2 respectively. We consider the eigenvalue
problem for the linear system. For simplicity, we denote the time-independent per-
turbations corresponding to an eigenvalue λ again with the same letters. Thus, we
have to solve the following linear eigenvalue problem

λx = −ks∗y − ki∗x + ks∗i∗n− µx

λy = pks∗y + pki∗x − pks∗i∗n+
∫ ∞

0
η1(a)z(a) da − (µ+ γ )y

za = −(λ+ ρ + η1 + µ)z+ k̃e∗2y + k̃i∗w − k̃e∗2i
∗n (4.1)

z(0) = qks∗y + qki∗x − qks∗i∗n
λw = ρ(a)z− k̃e∗2y − k̃i∗w + k̃e∗2i

∗n− µw

λn = −µn− γy

where

n = x + y +
∫ ∞

0
z(a) da +

∫ ∞

0
w(a) da.

Actually we can omit this equation because it follows from the others, at least if
λ �= 0.

In the next subsection we derive the characteristic equation for the disease-free
equilibrium and discuss its solutions.

4.1. The characteristic equation of the disease-free equilibrium and its roots

First we consider conditions for local stability of the disease-free equilibrium. In
the case of the disease-free equilibrium we have i∗ = e∗1 = e∗2 = 0.
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The equations for the eigenvalues of the linear operator simplify significantly
and take the form:

λx = −ky − µx

λy = pky +
∫ ∞

0
η1(a)z(a) da − (µ+ γ )y

za = −(λ+ ρ + η1 + µ)z (4.2)

z(0) = qky

λw = ρ(a)z− µw.

Solving the differential equation with the corresponding initial condition we
obtain:

z(a) = qkye−λae−µaπ1(a)π(a).

Solving the last equation for w in terms of z

w = ρz

λ+ µ
.

Substituting in the second equation and canceling y we obtain the following equa-
tion for the eigenvalues λ of the linear operator. This equation is often referred to
as the characteristic equation:

pk

λ+ µ+ γ
+ qk

λ+ µ+ γ

∫ ∞

0
η1(a)e

−λae−µaπ1(a)π(a) da = 1. (4.3)

The left hand side of that equality can be viewed as a function of λ. We denote
that function by G(λ). If λ ≥ −(µ+γ ) is real, then G(λ) is a decreasing function of
λ which approaches zero as λ approaches infinity. From formula (3.14) it follows
that G(0) = R0. In addition, for any λ with �λ ≥ 0 we have |G(λ)| ≤ G(�λ).
Consider the case R0 < 1 and assume λ is a solution to the equation G(λ) = 1
with �λ ≥ 0. Then we have:

1 = |G(λ)| ≤ G(�λ) ≤ G(0) = R0 < 1

which is a contradiction stemming from the assumption that equation (4.3) has a
solution with nonnegative real part. Thus, all solutions to the equation (4.3) have
negative real part and, therefore, the disease-free equilibrium is stable (see Appen-
dix B for rigorous justification of this conclusion). In the case R0 > 1 we have that
G(0) > 1 and, since G(λ) → 0 as λ → ∞, the equation (4.3) has a real solution
which is positive. This implies that the disease-free equilibrium is unstable (see
Appendix B). We summarize these results in the following theorem.

Theorem 4.1. If R0 < 1 then the disease-free equilibrium is locally asymptotically
stable. If R0 > 1 the disease-free equilibrium is unstable.
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4.2. The characteristic equation of an endemic equilibrium

Now we turn to the general system (4.1) and we compose the characteristic equa-
tion corresponding to an arbitrary endemic equilibrium. Expressing n from the last
equation in terms of y and successively eliminating x andwwe obtain a differential
equation for z. In particular,

n = − γ

λ+ µ
y

we can eliminate n from the remaining equations. Next, from the first equation
above we can express x in terms of y:

x = −ks∗y λ+ µ+ γ i∗

(λ+ µ)(λ+ ki∗ + µ)
.

From the second to last equation we express w in terms of z and y:

w = ρ(a)z

λ+ k̃i∗ + µ
− k̃e∗2y

λ+ µ+ γ i∗

(λ+ µ)(λ+ k̃i∗ + µ)
.

We use the expressions for n, x and w to eliminate them from the equations for z.
We obtain:

za = −
(
λ+ η1 + µ+ ρ

λ+ µ

λ+ k̃i∗ + µ

)
z+ k̃e∗2y

λ+ µ+ γ i∗

λ+ k̃i∗ + µ
,

z(0) = qks∗y
λ+ µ+ γ i∗

λ+ ki∗ + µ
. (4.4)

This equation can be solved to express z in terms of y. Integrating we obtain:

z(a) = qks∗y
λ+ µ+ γ i∗

λ+ ki∗ + µ
e−(λ+µ)aπ1(a)e

− ∫ a0 ρ(σ) λ+µ
λ+k̃(σ )i∗+µ dσ

+y
∫ a

0
k̃(σ )e∗2(σ )

(λ+ µ+ γ i∗)π1(a)

(λ+ k̃(σ )i∗ + µ)π1(σ )

e−(λ+µ)(a−σ)e−
∫ a
σ ρ(τ)

λ+µ
λ+k̃(τ )i∗+µ dτ dσ.

Using the expressions for e∗2 and e∗1 in (3.3) and (3.8) we have:

z(a) = qks∗y
λ+ µ+ γ i∗

λ+ ki∗ + µ
e−(λ+µ)aπ1(a)�(0, a; λ)

+qks∗i∗ye−µaπ1(a)

∫ a

0

k̃(σ )ρ(σ )(λ+ µ+ γ i∗)
(k̃(σ )i∗ + µ)(λ+ k̃(σ )i∗ + µ)

×e−λ(a−σ)�(0, σ ; 0)�(σ, a; λ)dσ.
where we have used the following notation:

�(σ, a; λ) = e
− ∫ aσ ρ(λ+µ)

λ+k̃(τ )i∗+µ dτ
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Substituting these expressions for x, z and w in the equation for y, and canceling
y we obtain the characteristic equation for the λ:

s∗H(λ; i∗)+ s∗i∗D(λ; i∗) = 1 (4.5)

where we have used the notation:

H(λ; i∗) = (λ+ µ+ γ i∗)
(λ+ µ+ γ )(λ+ ki∗ + µ)

×
(
pk + qk

∫ ∞

0
η1(a)e

−λae−µaπ1(a)�(0, a; λ) da
)

D(λ; i∗) = qk
λ+ µ+ γ i∗

λ+ µ+ γ

∫ ∞

0
η1(a)e

−µaπ1(a)I(a; λ, i∗) da (4.6)

I(a; λ, i∗) =
∫ a

0

k̃(σ )ρ(σ )

(k̃(σ )i∗ + µ)(λ+ k̃(σ )i∗ + µ)
e−λ(a−σ)�(0, σ ; 0)�(σ, a; λ)dσ

Let Q(λ; i∗) denote the left-hand side of the characteristic equation. Thus,

Q(λ; i∗) = s∗H(λ; i∗)+ s∗i∗D(λ; i∗).
Let E∗ = (s∗, i∗, e∗1, e

∗
2) be an equilibrium. The functions H(λ; i∗), D(λ; i∗),

Q(λ; i∗) have the following properties:

1. The function H(λ; i∗) is an eventually decreasing function of λ > 0 and
limλ→∞H(λ; i∗) = 0. We also have H(0; i∗) = 1.
See (3.9) and (3.4).

2. The function D(λ; i∗) satisfies the equality

D(0; i∗) = qk
µ+ γ i∗

µ(µ+ γ )
ϕ′(i∗).

Recall (3.19).
3. The function Q(λ; i∗) satisfies:

Q(0; i∗) = s∗ + qks∗i∗
µ+ γ i∗

µ(µ+ γ )
ϕ′(i∗). (4.7)

4. It is not hard to see that for λ real we have Q(λ; i∗) → 0 as λ → ∞ for each
i∗ fixed.

The following theorem characterizes the value of Q(0; i∗) with respect to
whether the equilibrium is obtained from g(i) crossing f (i) and becoming from
larger to smaller or from g(i) crossing f (i) and becoming from smaller to larger.
The functions f and g have been introduced in (3.13).

Theorem 4.2. Let E∗ = (s∗, i∗, e∗1, e
∗
2) be an equilibrium. The following are

valid:

1. Q(0; i∗) < 1 if and only if g′(i∗) < f ′(i∗).
2. Q(0; i∗) = 1 if and only if g′(i∗) = f ′(i∗).
3. Q(0; i∗) > 1 if and only if g′(i∗) > f ′(i∗).
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Proof. We prove only the first point. The rest can be shown similarly. The following
is a sequence of equivalent transformations.

Q(0; i∗) < 1

s∗ + qks∗i∗
µ+ γ i∗

(µ+ γ )µ
ϕ′(i∗) < 1

qks∗i∗
µ+ γ i∗

(µ+ γ )µ
ϕ′(i∗) <

(k − γ )i∗

ki∗ + µ
(4.8)

qk

γ + µ
ϕ′(i∗) <

(k − γ )µ

(γ i∗ + µ)2

g′(i∗) < f ′(i∗)

This completes the proof. 	


4.3. Examining the signs of the roots of the characteristic equation

Theorem 4.2 through the results in Appendix B is the main tool in showing stability
or instability of the equilibria. Its condition 3. leads directly to instability as Propo-
sition 4.3 below asserts. Again we will assume that all possible endemic equilibria
are simple. If E∗ is an equilibrium that is not simple, then we have g′(i∗) = f ′(i∗)
and Theorem 4.2 implies that Q(0; i∗) = 1. Therefore, the characteristic equation
Q(λ; i∗) = 1 has λ = 0 as a solution, and the stability of the endemic equilibrium
cannot be determined by a linear stability analysis. Fortunately, endemic equilibria
almost always are simple in the following sense.

Remark. Let either k be independent of k̃ or k̃(a) = kψ(a). Then, for a.a. k > 0,
all endemic equilibria are simple.

Proof. We use the terminology and the results in [12], Section 2.10. Define

ξ(k, i∗) = ks∗

µ+ γ
[p + qϕ(i∗)],

where s∗ = µ+γ i∗
ki∗+µ is also a function of i∗ and ϕ(i∗), given by (3.10), possibly a

function of k via k̃. We have an endemic equilibrium if and only if i∗ > 0 and
ξ(k, i∗) = 1. Notice that ∂kξ(k, i∗) > 0 for the partial derivatives of ξ with respect
to k. So 1 is a regular value of ξ . By Theorem 10.3 in [12], 1 is a regular value of
ξ(k, ·) for a.a. k. It is easy to see that this is equivalent to every endemic equilibrium
being simple for a.a. k.

Proposition 4.3 Let R0 < 1 and assume the system (2.1) has endemic equilibria
Em for m = 1, . . . ,M and all of them are simple. Assume they are numbered in
increasing order, that is, E1 < E2 < · · · < EM . Then, every other one is unstable,
with E1 unstable.
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Proof. Let f , g be the functions defined in (3.13). At an odd numbered equilibrium
E∗ the function g(i) increases to become from smaller than the function f (i) to
larger than the function f (i) (this is, in particular, the case with E1 since g(0) = R0,
f (0) = 1 and R0 < 1, (see Figure 1)) and we have

g′(i∗) > f ′(i∗).

Therefore,
qk

γ + µ
ϕ′(i∗) >

(k − γ )µ

(γ i∗ + µ)2
.

Consequently, from Theorem 4.2 it follows

Q(0; i∗) = s∗ + qks∗i∗
µ+ γ i∗

(µ+ γ )µ
ϕ′(i∗) > 1.

Thus, the equation Q(λ; i∗) = 1 has a positive real solution and therefore E∗ is
unstable. 	


A similar line of reasoning leads to the following proposition. Again, the insta-
bility of the endemic equilibria which we detect is associated with a positive real
root of the characteristic equation (or eigenvalue of (4.1)), i.e., it is not associated
with a Hopf bifurcation of periodic solutions.

Proposition 4.4 Let R0 > 1 and assume the system (2.1) has endemic equilibria
Em for m = 1, . . . , L and all of them are simple. Assume they are numbered in
increasing order, that is, E1 < E2 < · · · < EL. Then, every other one is unstable,
with E2 unstable.

Proof. In this case we have g(0) = R0, f (0) = 1 and R0 > 1. Thus, g(0) > f (0).
Furthermore, at E1 the function g(i) becomes from larger than f (i) smaller than
f (i) (see Figure 1). Therefore, at E2 g(i) increases to become larger than f (i) and
g′(i∗) > f ′(i∗) where i∗ is the proportion of infective individuals in E2. Thus,
Theorem 4.2 implies that E2 is unstable as well as every even numbered equilib-
rium. 	


Concerning the remaining simple equilibria we have that g′(i∗) < f ′(i∗) and,
by Theorem 4.2, Q(λ; i∗) < 1. Unfortunately, Q(λ; i∗) < 1 does not automati-
cally imply local stability of an equilibrium, unless γ = 0. We have the following
general criterion:

Proposition 4.5 An endemic equilibrium E∗ = (s∗, i∗, e∗1, e
∗
2) is stable if k̃ ·ρ ≡ 0

or if

γ + qki∗
µ+ γ i∗

µ
ϕ′(i∗) < ki∗. (4.9)
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Proof. Let λ be a nonnegative real number or a complex number with nonnegative
real part. By (3.9),

s∗|H(λ, i∗)| ≤ |λ+ µ+ γ i∗|
|λ+ µ+ γ ||λ+ µ+ ki∗| (µ+ γ ).

So

s∗|H(λ, i∗)| < 1, s∗|H(λ, i∗)| ≤ µ+ γ

µ+ ki∗
.

From the derivative of equation (3.10) we see that

|D(λ, i∗)| ≤ qk
|λ+ µ+ γ i∗|
µ|λ+ µ+ γ | ϕ

′(i∗) ≤ qk

µ
ϕ′(i∗).

If k̃ · ρ ≡ 0, then ϕ′(i∗) = 0 and |Q(λ, i∗)| < 1, and the characteristic equation is
not satisfied. By (3.4),

|Q(λ, i∗)| ≤ µ+ γ

µ+ ki∗
+ qk

µ

µ+ γ i∗

µ+ ki∗
i∗ϕ′(i∗). (4.10)

So |Q(λ, i∗)| < 1 as well if the second condition holds. 	

We notice that if γ = 0 inequality (4.10) becomes

|Q(λ, i∗)| ≤ s∗ + qk

µ
s∗i∗ϕ′(i∗) = Q(0, i∗).

Thus an endemic equilibrium with Q(0; i∗) < 1 is locally asymptotically stable.
In particular we have the following result.

Corollary 4.1 If γ = 0 and all endemic equilibria are simple, the endemic equi-
libria alternate in stability such that the first one is unstable if R0 < 1 and locally
asymptotically stable if R0 > 1, respectively.

Without super-infection, there is at most one endemic equilibrium and it is
locally asymptotically stable if it exists.

4.4. Stability of the bifurcating solution for small values of i∗.

In this subsection we show that the bifurcating backward solution is unstable for
small i∗ and the bifurcating forward solution is stable for small i∗. While the re-
sult for the bifurcating backward solution follows from Proposition 4.3, the result
on the stability of the bifurcating forward solution adds to our knowledge on the
dynamical behavior of the system.

Proposition 4.6 Let k be either independent of k̃ or k̃(a) = kψ(a). As long as
i∗ > 0 is sufficiently small, the corresponding endemic equilibrium is locally as-
ymptotically stable in case of a forward bifurcation in k from the disease-free
equilibrium, and unstable in case of a backward bifurcation.
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Proof. We rewrite the characteristic equation Q(λ; i∗) = 1 as F(λ; i∗) = 0 where
F(λ; i∗) = Q(λ; i∗)− 1. This equation defines locally λ as a function of i∗, pro-
vided ∂F

∂λ
�= 0 near the point (λ(i∗); i∗). First we compute λ(0), that is the value

of λ when i∗ = 0 from the equation F(λ(0); 0) = 0. This equation is exactly
equation (4.3) which has one real solution and all complex solutions have real part
smaller than the real solution. We consider the branch corresponding to the real
solution. Since at the bifurcation point R0 = 1 we have that λ(0) = 0. We note
that all complex solutions of the equation F(λ(0); 0) = 0 can be bounded away
from the imaginary axis so that there is some positive interval of values of i∗ for
which none of the other solutions crosses the imaginary axis. Indeed, consider the
strip −ε < �λ < ε where 0 < ε < µ+ γ . The function F(λ; 0) is analytic there.
We have that |Q(λ; 0)| → 0 as |λ| → ∞ and therefore all the solutions in the strip
lie in a bounded set. The uniqueness theorem for analytic functions then implies
that F(λ; 0) can have only finitely many zeroes in that strip (or else be identically
zero). Thus, there is a strip neighborhood of λ = 0 in which zero is the only solu-
tion of (4.3). We note that our model shares this property with the McKendrick-von
Foerster chronological age-structured model [32].

The Implicit Function Theorem gives us

dλ

di∗

∣∣∣∣
i∗=0,λ=0

= −
∂F
∂i∗
∂F
∂λ

∣∣∣∣∣
i∗=0,λ=0

.

We have

∂F
∂λ
(0, 0) = − pk

(µ+ γ )2
− qk

(µ+ γ )2

∫ ∞

0
η1(a)e

−µaπ1(a)π(a)da

− qk

µ+ γ

∫ ∞

0
η1(a)ae

−µaπ1(a)π(a)da < 0.

(4.11)

At the bifurcation point we have also k as a function of i∗ given by equation
(3.20) and therefore

k0 = k(0) = µ+ γ

p + qϕ(0)
.

Differentiating the function

F(0, i∗) = s∗ + qks∗i∗
µ+ γ i∗

µ(µ+ γ )
ϕ′(i∗)− 1

we obtain

∂F
∂i∗

∣∣∣∣
i∗=0,λ=0

= γ − k0

µ
+ qk0

µ+ γ
ϕ′(0)

= 1

µ(p + qϕ(0))
[γ (p + qϕ(0))− (µ+ γ )+ qµϕ′(0)]. (4.12)

The bifurcation is subcritical if and only if

∂F
∂i∗

∣∣∣∣
i∗=0,λ=0

> 0.
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Thus, if the bifurcation is subcritical, we have that

∂λ

∂i∗
> 0

and the leading eigenvalue becomes positive. Therefore, for small i∗, E∗-unstable.
If the bifurcation is supercritical, then

∂F
∂i∗

∣∣∣∣
i∗=0,λ=0

< 0

and therefore,
∂λ

∂i∗
< 0.

Thus, for small i∗, the bifurcating forward equilibrium solution is stable.

5. Disease persistence

When a disease is present in a population we would like to know under what circum-
stances the disease will remain endemic for large time. Consequently, we identify
conditions which lead to the persistence of the prevalence (endemicity), that is,
conditions that result in the prevalence being bounded away from zero.

We call the disease uniformly weakly endemic if there exists some ε > 0 inde-
pendent of the initial conditions such that

lim sup
t→∞

I (t) > ε whenever I (0) > 0, (5.1)

for all solutions of model (2.1).
One of the important implications of uniform weak endemicity of the disease

is that the disease-free equilibrium is unstable.
We call the disease uniformly strongly endemic if there exists some ε > 0

independent of the initial conditions such that

lim inf
t→∞ I (t) > ε whenever I (0) > 0, (5.2)

for all solutions of model (2.1).
It is evident from the definitions that, if the disease is uniformly strongly

endemic, it is also uniformly weakly endemic.
Before we show endemicity of the disease, let us demonstrate that uniform weak

or strong persistence of the prevalence imply uniform weak or strong persistence
of the other disease classes, respectively. We note that from the equation for the
susceptibles in (2.1) we have

S′(t) > �− kS − µS

and, therefore, lim supt→∞ S(t) ≥ lim inf t→∞ S(t) ≥ �
k+µ . We also have

from the equation for the total population size N ′ < � − µN and, therefore,
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lim inf t→∞N(t) ≤ lim supt→∞N(t) < �
µ

. Given persistence of the prevalence,
these inequalities imply persistence of the incidence. Assume (5.1). Then

lim sup
t→∞

S(t)I (t)

N(t)
>

µε

k + µ
. (5.3)

Analogously, assuming (5.2) we have

lim inf
t→∞

S(t)I (t)

N(t)
>

µε

k + µ
. (5.4)

Inequalities (5.3) and (5.4) lead to the persistence of the remaining epidemiological
classes. Integrating along characteristic lines (see Remark A.4), we have

E1(a, t) ≥ qk
S(t − a)I (t − a)

N(t − a)
π(a)π1(a)e

−µa, t > a.

Then, for any fixed a, we respectively have

lim sup
t→∞

E1(a, t) > qk
µε

k + µ
π(a)π1(a)e

−µa,

lim inf
t→∞ E1(a, t) > qk

µε

k + µ
π(a)π1(a)e

−µa.

We establish uniform weak endemicity first.

Proposition 5.1 If R0 > 1, the disease is uniformly weakly endemic.

Proof. We argue by contradiction. Assume that

lim sup
t→∞

I (t) ≤ ε0

with 0 < ε0 ≤ �
2γ . The total population size satisfies the inequality N ′ >

�− µN − ε0γ ≥ �
2 − µN. Hence,

lim inf
t→∞ N(t) ≥ �

2µ
.

Consequently,

lim sup
t→∞

I (t)

N(t)
≤ 2ε0µ

�
=:

ε

2
.

The above inequality implies that for t > t1 we have

I (t)

N(t)
≤ ε.

For these values of the proportion of infectives we have S′ ≥ � − kεS − µS.

Reasoning as before, we obtain

lim sup
t→∞

S(t)

N(t)
≥ µ

kε + µ
.
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Thus, for t > t2 we have
S(t)

N(t)
≥ µ

2kε + µ
.

Since I (s) > 0 leads to I (t) > 0 for all t ≥ s we may assume that I (0) �= 0.
Consequently, the semiflow properties of the solution (Theorem A.3) imply that
without loss of generality we have the above inequalities valid for all t ≥ 0. Inte-
grating along characteristics (see Remark A.4), the density of the active exposed
class can be estimated from below as

E1(a, t) ≥
{
E0

1(a − t)
π(a)
π(a−t)

π1(a)
π1(a−t) e

−µt , a ≥ t,

qk
µ

2kε+µI (t − a)π(a)π1(a)e
−µa, a < t.

Consequently, the number of infected individuals satisfies the following integro-
differential inequality:

I ′ ≥ pk
µ

2kε + µ
I + qk µ

2kε + µ

∫ t

0
η1(a)π(a)π1(a)e

−µaI (t − a)da− (µ+ γ )I

where we have omitted the term which corresponds to the initial condition in the
right-hand side of the inequality for E1. Applying Laplace transform to both sides
of the above inequality we obtain:

λÎ − I (0) ≥ pk
µ

2kε + µ
Î + qk

µ

2kε + µ
Î

×
∫ ∞

0
e−λaη1(a)π(a)π1(a)e

−µada − (µ+ γ )Î .

We can rewrite the above expression as

−I (0) ≥
[
pk

µ

(2kε + µ)(µ+ γ )
(5.5)

+ qk
µ

(2kε + µ)(µ+ γ )

∫ ∞

0
e−λaη1(a)π(a)π1(a)e

−µada (5.6)

− λ

µ+ γ
− 1

]
(µ+ γ )Î .

Since R0 > 1 the expression in the bracket is positive for λ > 0 and ε > 0 but
both sufficiently small. Therefore the right-hand side of this inequality is positive,
while the left-hand side is negative which is a contradiction. This completes the
proof. 	


The proof of uniform strong endemicity is post-poned, because we first need to
establish the existence of a global compact attractor for the semiflow that is induced
by the solutions of system (2.1) (see Appendix C), but we give a preview of the
result.

Theorem 5.1 If R0 > 1, the disease is uniformly strongly endemic.

Acknowledgements. The authors thank the reviewers and Professor Diekmann for their valu-
able comments.
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Appendix

A. Abstract formulation and well-posedness

The system (2.1) cannot be directly written as an abstract Cauchy problem since
the boundary term of E1 is nonlinear. To cope with the problem we remove the
nonlinearity from the boundary condition and incorporate it into the nonlinear
operator. As a consequence we obtain a semilinear abstract Cauchy problem of the
form

v′(t) = Av + F(v),

v(0) = v0 (A.1)

in which the operator A is a linear closed operator but is not densely defined. In
general, the differential equation may not have a strong solution. Thus, we solve it
in integrated form:

v(t) = v0 + A
∫ t

0
v(s) ds +

∫ t

0
F(v(s)) ds. (A.2)

A continuous solution to (A.2) is called an integral solution to (A.1).
Letu = (S, I, E1, E2)

T with superscript T denoting the transpose of the vector.
Throughout this work, X denotes the space X = R × R × L1(0,∞)× L1(0,∞)

with the following norm:

‖u‖ = |S| + |I | +
∫ ∞

0
|E1(a)|da +

∫ ∞

0
|E2(a)|da.

To incorporate the boundary condition, we enlarge the state space by setting X =
X × R. We also set X◦ = X × {0}. The positive cone in the corresponding space
is denoted by subscript +. For any vector u = (u1, u2, u3, u4)

T ∈ X , let v =
(u, 0)T ∈ X◦. We introduce a linear functional N (v) : X◦ → R as follows
N (v) = u1 + u2 + ∫∞

0 u3(a) da + ∫∞
0 u4(a) da. Now we are prepared to define

the linear operator A : D(A) → X:

Av =




−µu1
−(µ+ γ )u2

−( ∂
∂a

+ ρ(a)+ η1(a)+ µ)u3
−µu4
−u3(0)




with domain

D(A) = {v ∈ X◦
+ : u3(·) ∈ W 1

1 [0,∞)}.
It can be seen that D(A) = X◦, but the operator A is not densely defined in X
and therefore it cannot be the generator of a C0-semigroup. We also introduce a
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nonlinear operator F : X◦ → X:

F(v)(a) =




�− k
u1u2

N (v)

pk
u1u2

N (v)
+
∫ ∞

0
η1(a)u3(a) da

k̃(a)
u4u2

N (v)

ρ(a)u3(a)− k̃(a)
u4u2

N (v)

qk
u1u2

N (v)




(A.3)

The operator F above is not defined when v = 0. We assign values to the
fractions u1u2N (v)

and u4u2N (v)
as follows: u1u2N (v)

= 0 and u4u2N (v)
= 0 when v = 0. This

extends the domain of F to include v = 0.
The following proposition asserts that F is Lipschitz continuous.

Proposition A.1 There exists a constant L such that

‖F(v)− F(v̄)‖ ≤ L‖v − v̄‖
for every two elements v, v̄ ∈ X◦.

The resolvents of the operator A satisfy the estimates of the Hille-Yosida
theorem:

Proposition A.2 The operator A is a closed linear operator such that λ− A has
a bounded inverse for λ > −µ and

‖(λ− A)−n‖ ≤ 1

(λ+ µ)n
(A.4)

for all positive integers n.

Proof. For an element f ∈ X with coordinates f = (f1, f2, f3, f4, ξ) consider
the equation (λ− A)v = f . Solving the system we obtain:

v = (λ− A)−1f

=




f1

(λ+ µ)

f2

(λ+ µ+ γ )

ξπ(a)π1(a)e
−(λ+µ)a +

∫ a

0

π(a)

π(s)

π1(a)

π1(s)
e−(µ+λ)(a−s)f3(s) ds

f4

(λ+ µ)
0




(A.5)

Integrating the third and fourth terms with respect to a (assuming that λ > −µ)
and adding the absolute values of the remaining terms leads to estimate (A.4). 	
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Now, we are ready to show the main result of this section – the well-posedness
of the system (2.1). Notice that the state space X◦+ can be identified with X+.

Theorem A.3 The system of equations (2.1) represented by the integral equation
(A.2) has a unique continuous solution with values in X◦+. Moreover the map
� : [0,∞)×X+ → X+ defined by�(t, v0) = v(t) is a continuous semiflow, i.e.,
the map� is continuous and�(t,�(s, ·)) = �(t + s, ·) and�(0, ·) is the identity
map. Finally� satisfies an exponential Lipschitz condition: There existM ≥ 1 and
ω ∈ R such that

‖�(t, v0)−�(t,w0)‖ ≤ Meωt‖v0 − w0‖ ∀t ≥ 0, v0, w0 ∈ X+.

Proof. This result is a direct consequence of Theorem 2.3 and Theorem 3.2 in
[43]. Propositions A.1 and A.2 guarantee that the Assumptions 2.1 and 3.1 in [43]
are satisfied. To use Theorem 2.3 in [43] we have to establish the following two
conditions

(a) λ(λ− A)−1 maps X+ into itself for sufficiently large λ.
(b) 1

h
dist(v + hF(v),X+) → 0 as h ↘ 0, t ≥ 0, v ∈ X◦+.

For any f ∈ X+, with f = (f1, f2, f3, f4, ξ) and λ > −µ we have that
(λ − A)−1f is given by the expression (A.5). Therefore, (λ − A)−1 maps X+ in
itself and condition (a) is satisfied for any λ > 0. To see condition (b) consider the
nonlinear operator

F̂ (v) = F(v)+ αv

where the real positive number α is chosen so that α > max{k, supa∈[0,∞) k̃(a)}.
We note that the operator F̂ maps the positive cone of X◦ into the positive cone of
X, that is, F̂ : X◦+ → X+. Thus, for any positive and sufficiently small h and any
v ∈ X◦+, we have

1

h
dist(v + hF(v);X+) = 1

h
dist(v − αhv + hF̂ (v);X+) = 0.

The last equality is valid since for h sufficiently small v−αhv ∈ X+ and hF̂ (v) ∈
X+. 	


Though (2.1) is not satisfied in a strict sense, but only in the integral sense of
(A.2), we would like to use integration along characteristics for the PDE and also
be able to integrate the PDE in time. We show that this is still possible.

Remark A.4. The equation for the active exposed class, E1, in (2.1) is of the form

(∂t + ∂a)E1 = − ν(a)E1 + F(a, t),

E1(0, t) =B(t),
E1(a, 0) =f (a),

(A.6)

where f and F(·, t) are in L1[0,∞). The result that the vector-valued function v
is a solution of (A.2) means forE1 that it solves this equation after integrating over
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both t and a,
∫ a

0
(E1(r, t)− f (r))dr +

∫ t

0
(E1(a, s)− B(s))ds

= −
∫ t

0

∫ a

0
ν(r)E1(r, s)drds +

∫ t

0

∫ a

0
F(r, s)drds, t, a ≥ 0.

(A.7)

(A.7) has at most one solution. Set π2(a) = e−
∫ a

0 ν(r)dr . Integrating along charac-
teristics, the partial differential equation (A.6) has the formal solution

E1(a, t) =
{
f (a − t)

π2(a)
π2(a−t) + ∫ t

0 F(a − s, t − s)
π2(a)
π2(a−s) ds, a > t,

B(t − a)π2(a)+ ∫ a
0 F(a − s, t − s)

π2(a)
π2(a−s) ds, a < t.

(A.8)

This solution only satisfies the partial differential equation (A.6) under smooth-
ness and compatibility assumptions; however, it always solves the integral equation
(A.2) as one can see by an elementary, though lengthy computation.

We take the limit in (A.7) for a → ∞. As
∫ t

0 E1(·, s)ds ∈ W 1
1 [0,∞), it tends

to 0 as a → ∞ and we obtain
∫ ∞

0
(E1(r, t)− f (r))dr −

∫ t

0
B(s)ds

= −
∫ t

0

∫ ∞

0
ν(r)E1(r, s)drds +

∫ t

0

∫ ∞

0
F(r, s)drds, t ≥ 0.

Hence we can differentiate in time and obtain

d

dt

∫ ∞

0
E1(a, t)da = B(t)+

∫ ∞

0
F(a, t)da −

∫ ∞

0
ν(a)E1(a, t)da. (A.9)

B. Connection between the roots of the characteristic equation and the
stability of equilibria

For models in ODEs establishing that the characteristic equation has only roots
with negative real part directly leads to the conclusion that the the corresponding
equilibrium point is locally stable. This is not the case with PDEs where the roots
of the characteristic equation only give information about the eigenvalues of the
generator of the solution semigroup connected to the linear system of perturbations
but not about the spectrum of the semigroup itself. Semigroups for which there is
a relation between the eigenvalues of the generator and the long-time behavior of
the semigroup include compact, eventually compact, quasi-compact and eventually
uniformly continuous semigroups.

Let v∗ = (u∗, 0)T be an equilibrium of (A.1). To establish the local stability we
use the following theorem which is a special case of Theorem 2.10 in [3], Chapter
B-IV.

Theorem B.1 Let T (t) be a quasi-compact C0-semigroup and A its infinitesimal
generator. Then eεt‖T (t)‖ → 0 as t → ∞ for some ε > 0 if and only if all
eigenvalues of A have strictly negative real part.
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We note that T (t) is called quasi-compact if T (t) = T1(t)+T2(t)with operator
families T1(t) and T2(t) such that ‖T1(t)‖ → 0 as t → ∞, and T2(t) is eventually
compact, that is, there exists t0 > 0 such that T2(t) is a compact operator for all
t > t0.

We write the solution of (A.1) in the form v(t) = v∗ + χ(t) where the vector
of the perturbations χ(t) ∈ X◦ for every t and has components (x, y, z, w, 0).
Furthermore, we note that the operator F given by (A.3) is Frèchet differentiable
for every v∗ (except v∗ = 0). Thus, the linearized problem for the perturbations
reads

χ ′(t) = Aχ(t)+ F ′(v∗)χ(t),
χ(0) = χ0 (B.1)

We rewrite the linearized problem (B.1) in the following form:

χ ′(t) = Bχ(t)+ Kχ(t),
χ(0) = χ0 (B.2)

where B : X◦ → X is defined as follows

Bχ =




−µx
−(µ+ γ )y

−( ∂
∂a

+ ρ(a)+ η1(a)+ µ)z+ k̃(a)i∗w
ρ(a)z− (k̃(a)i∗ + µ)w

−z(0)




with D(B) = D(A). The operator K : X◦ → X is defined as follows

Kχ =




−ks∗y − ki∗x + ks∗i∗N (χ)

pks∗y + pki∗x − pks∗i∗N (χ)+
∫ ∞

0
η1(a)z(a) da

k̃(a)e∗2(a)y − k̃(a)e∗2(a)i
∗N (χ)

−k̃(a)e∗2(a)y + k̃(a)e∗2(a)i
∗N (χ)

qks∗y + qki∗x − qks∗i∗N (χ)



. (B.3)

Clearly, K is a bounded perturbation B. Moreover, K is compact. We note that
A + F ′(v∗) = B + K.

Next, we observe that the powers of the resolvents of B satisfy the Hille-Yosida
estimate.

Theorem B.2 The operator B is a closed linear operator such that λ − B has a
bounded inverse for λ > −µ and

‖(λ− B)−n‖ ≤ 1

(λ+ µ)n
(B.4)

for all positive integers n.
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Proof. For an element f ∈ X+ with coordinates f = (f1, f2, f3, f4, ξ) consider
the equation (λ− B)v = f with λ > −µ. This results in the system:

(λ+ µ)x = f1
(λ+ γ + µ)y = f2

z′ = −(λ+ ρ(a)+ η1(a)+ µ)z+ k̃(a)i∗w + f3
z(0) = ξ

(λ+ k̃(a)i∗ + µ)w = ρ(a)z+ f4.

(B.5)

Clearly, x ≥ 0 and y ≥ 0. The system for z(a) and w(a) can be explicitly
solved. We have

z(a) = ξπ1(a)e
−(λ+µ)ae−

∫ a
0

ρ(σ)(λ+µ)
(λ+k̃(σ )i∗+µ) dσ

+
∫ a

0

π1(a)

π1(s)
e−(µ+λ)(a−s)e−

∫ a
s

ρ(σ )(λ+µ)
(λ+k̃(σ )i∗+µ) dσ f̆ (s) ds,

where

f̆ (a) = f4

(λ+ k̃(a)i∗ + µ)
+ f3(a).

We have z(a) ≥ 0, and therefore, w(a) ≥ 0. In addition, z(a), w(a) ∈ L1[0,∞).
Thus, the solution of the system (B.5) is nonnegative. Next, we note that z(a) → 0
as a → ∞. Indeed, this is certainly true for the first term. The second term is
dominated by ∫ ∞

0
e−(µ+λ)(a−s)f̆ (s) ds.

Thus the functions e−(µ+λ)(a−s)f̆ (s) → 0 pointwise for every s. These functions
are also dominated by f̆ (s) which is integrable. Consequently, the Lebesgue dom-
inated convergence theorem implies the result.

Integrating the equations for z andw in the age variable and adding all equations
we obtain for λ > −µ:

|x| + |y| + ‖z‖ + ‖w‖ ≤ 1

λ+ µ
(|ξ | + |f1| + |f2| + ‖f3‖ + ‖f4‖).

Hence, for f ∈ X+ we have

‖(λ− B)−1f ‖ ≤ 1

(λ+ µ)
‖f ‖.

To conclude the proof it remains to notice that if f ∈ X we have ‖(λ− B)−1f ‖ ≤
‖(λ− B)−1|f |‖. Consequently, the claim follows. 	


The part of B in X◦ is a densely defined operator whose resolvents satisfy the
Hille-Yosida estimates and is, therefore ([38]), the generator of a C0-semigroup on
X◦, S(t). The Hille-Yosida estimate in addition implies that

‖S(t)‖ ≤ e−µt .
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Moreover, since K is a bounded perturbation, the part of B+K inX◦ also generates
a C0-semigroup on X◦, T (t). Furthermore, KS(t) : X◦ → X is compact for every
t > 0. Consequently, all conditions of part (b), Theorem 3 in [45] are satisfied
and T (t) is quasi-compact. By Theorem B.1 we have eεt‖T (t)‖ → 0 as t → ∞
whenever the eigenvalues of B + K have negative real part. This, in particular,
implies that the growth bound of T (t) does not exceed −ε and is clearly negative.
In addition, since the essential type of T (t) is smaller or equal to the growth bound
of T (t) then it is also negative.

Proposition A.1, Proposition A.2 and the proof of Theorem A.3 imply that
Assumptions 3.1 in [43] are satisfied. The operator F is continuously Frèchet dif-
ferentiable in X◦+ \ {0}. Thus, the nonlinear semiflow �(t, v0) of the solutions of
(2.1) satisfies the following properties which follow from Corollary 4.3 in [43]:

i) If all eigenvalues of A + F ′(v∗) have strictly negative real part, then there
exists ω < 0 and constants c > 0 and δ > 0 such that

‖�(t, v0)− v∗‖ ≤ ceωt‖v0 − v∗‖ (B.6)

for all v0 ∈ X◦+ \ {0} with ‖v0 − v∗‖ ≤ δ.
Inequality (B.6) implies that if v∗ is an equilibrium such that all eigenvalues

of A + F ′(v∗) have negative real part then v∗ is locally asymptotically stable, that
is, trajectories which start sufficiently close to the steady state v∗ remain close and
return to the steady state when time tends to infinity.

ii) If at least one eigenvalue of A + F ′(v∗) has strictly positive part, then v∗ is
unstable steady state, that is, there exists a constant ε > 0 and a sequence of initial
conditions v0

j → v∗ in X◦+ \ {0} and tj → ∞ such that

‖�(tj , v0
j )− v∗‖ ≥ ε

for all integer j .
We note that Corollary 4.3 in [43] remains valid with this relaxed condition on

the differentiability of F since its proof is along the lines of [15] where the results
are established with weaker assumptions.

C. Uniform strong persistence

The semiflow � defined by the solution of (2.1) as follows

�(t, S0, I 0, E0
1 , E

0
2) = (S(t), I (t), E1(·, t), E2(·, t))

is a mapping � : [0,∞) × X+ → X+ with �(t,�(s, ·)) = �(t + s, ·) for all
t, s ≥ 0 and �(0, ·) being the identity map. A set K in X+ is called a global com-
pact attractor for �, if K is a maximal compact invariant set and if for all open
sets U containing K and all bounded sets B of X+ there exists some r > 0 such
that �(t, B) ⊆ U for all t ≥ r . See [30], Section 3.4.

Proposition C.1 The semiflow � has a global compact attractor.
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Proof. We show that� satisfies the assumptions of Lemma 3.2.3 and Theorem 3.4.6
in [30]. To this end we additively split the solution semiflow � into two compo-
nents�(t, u0) = �̂(t, u0)+ �̃(t, u0) such that �̂(t, u0) → 0 as t → ∞ for every
u0 ∈ X , and for a fixed t and any bounded set B in X+, the set {�̃(t, u0) : u0 ∈ B}
is precompact. The two summands are defined as follows:

�̂(t, S0, I 0, E0
1 , E

0
2) = (0, 0, Ê1(·, t), Ê2(·, t));

�̃(t, S0, I 0, E0
1 , E

0
2) = (S(t), I (t), Ẽ1(·, t), Ẽ2(·, t)).

We note that S(t) and I (t) satisfy the system (2.1) with E1 = Ê1 + Ẽ1 and
E2 = Ê2 + Ẽ2. The functions Ê1(·, t), Ê2(·, t) satisfy the system:

(∂t + ∂a)Ê1 = −ρ(a)Ê1 + k̃(a)
Ê2I

N
− η1(a)Ê1 − µÊ1

Ê1(0, t) = 0
Ê1(a, 0) = E0

1(a)

∂t Ê2 = ρ(a)Ê1 − k̃(a)
Ê2I

N
− µÊ2

Ê2(a, 0) = E0
2(a).

(C.1)

The system for Ê1 and Ê2 together with the first two equations of the system (2.1)
forms a system which is a special case of (2.1) obtained for q = 0. This, in partic-
ular implies that the functions Ê1 and Ê2 are nonnegative. The functions Ẽ1 and
Ẽ2 are solutions to the system

(∂t + ∂a)Ẽ1 = −ρ(a)Ẽ1 + k̃(a)
Ẽ2I

N
− η1(a)Ẽ1 − µẼ1

Ẽ1(0, t) = qk
SI

N
Ẽ1(a, 0) = 0

∂t Ẽ2 = ρ(a)Ẽ1 − k̃(a)
Ẽ2I

N
− µẼ2

Ẽ2(a, 0) = 0.

(C.2)

The partial differential equations are not satisfied in a strict, but an integral sense.
See Remark A.4. Moreover, the functions Ẽ1 and Ẽ2 are nonnegative. First we
show that �̂ → 0 as t → ∞. Denote by ν(t) = ∫∞

0 Ê1(a, t) da+∫∞
0 Ê2(a, t) da.

Integrating the equations for Ê1 and Ê2 over a ∈ [0,∞) (see Remark A.4 for
justification) and adding them, we obtain the inequality ν′(t) ≤ −µν(t). Thus,
ν(t) ≤ ν(0)e−µt . Consequently, ‖�̂(t, u)‖ ≤ e−µt‖u‖, i.e., the function k(t, r) in
Lemma 3.2.3 [30] can be chosen as k(t, r) = e−µt r .

Since Êj and Ẽj are non-negative, �̂ ≤ � and �̃ ≤ �.
Notice that ‖�(t, u0)‖ = N(t) where

N ′ ≤ �− µN,

and

N(t) ≤
(

‖u0‖ + �

µ

)
e−µt + �

µ
.
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Several things can be learned from these two inequalities. First, every ball with
radius r > �/µ is invariant and attracts all bounded sets. In other words, � is
bounded dissipative ([30], Section 3.4). Secondly the orbits of all bounded sets are
bounded, i.e., for every c1 > 0 there exists some c2 > 0 such that ‖�(t, u0)‖ ≤ c2
for all t ≥ 0 whenever ‖u0‖ ≤ c1. �̂ and �̃ also have this property.

Next, suppose the initial data are in a bounded set, e.g. a ball, that is

‖u0‖ = |S0| + |I 0| + ‖E0
1‖ + ‖E0

2‖ ≤ K (C.3)

where K is some constant. We show that for a fixed time t the family of functions

(S(t), I (t), Ẽ1(·, t), Ẽ2(·, t)) = �̃(t, u0)

obtained from taking different initial conditions in the set (C.3) is a compact family
of functions. Then � will be asymptotically smooth by Lemma 3.2.3 and have a
global compact attractor by Theorem 3.4.6 in [30].

By our previous observations, the set {�(t, u0); t ≥ 0, ‖u0‖ ≤ K} is bounded.
Furthermore, we observe that Ẽ1(a, t) = 0 for a > t . Indeed, integrating (C.2)
along the characteristic lines (see Remark A.4 for justification), we obtain

Ẽ1(a, t) ≤ k̃max

∫ t

0
Ẽ2(a − t + σ, σ ) dσ.

Integrating the equation for Ẽ2(a, t)we obtain the following estimate for Ẽ2(a, t):

Ẽ2(a, t) ≤ ρ̄

∫ t

0
Ẽ1(a, s) ds.

Substituting in the inequality for Ẽ1 we obtain

Ẽ1(a, t) ≤ ρ̄k̃max

∫ t

0

∫ σ

0
Ẽ1(a − t + σ, s) ds dσ.

Choose a positive number ξ such that ρ̄k̃max
ξ2 < 1. Consequently,

sup
0≤t≤a≤A

e−ξ t Ẽ1(a, t) ≤
∫ t

0

∫ σ

0
e−ξ(t−s) sup

0≤s≤a−t+σ≤A
Ẽ1(a−t+σ, s)e−ξs ds dσ

for any positive constant A. Denote by z the left hand side of this inequality. Then
we have

z ≤ ρ̄k̃maxz

∫ t

0

∫ σ

0
e−ξ(t−s) ds dσ.

Therefore, z ≤ ρ̄k̃max
ξ2 z which can only be satisfied if z = 0.

To show compactness we use the Frèchet-Kolmogorov theorem for compact-
ness in L1 (see e.g. [48]). We have already established the boundedness of the set.
The third condition is trivially satisfied since Ẽ1(a, t) = 0 for a > t . To see the
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second condition of that criterion we integrate Ẽ1 along the characteristic lines.
See Remark A.4. For a ≤ t we have:

Ẽ1(a, t) = qk
SI

N
(t)π(a)π1(a)e

−µa

+
∫ a

0

π(a)

π(σ )

π1(a)

π1(σ )
e−µ(a−σ)k̃(σ )Ẽ2(σ, t − a + σ)

I

N
(t − a + σ) dσ

(C.4)

Next, we integrate Ẽ2:

Ẽ2(a, t) = ρ(a)

∫ t

0
e−µ(t−s)e−k̃(a)

∫ t
s
I
N
(σ ) dσ Ẽ1(a, s) ds (C.5)

Differentiating Ẽ1(a, t) with respect to a and using the expressions for I ′, N ′
from (2.1) and ∂t Ẽ2 from (C.2) we obtain the follow estimate for the L1-norm of
that derivative:

‖∂aẼ1(t)‖ ≤ K1 +K2t

where K1 and K2 are constants which depend on the parameters of the model and
the constant K from (C.3) but do not depend on t . Next, we consider Ẽ2. We use
directly the second condition in the Frèchet-Kolmogorov theorem. Given ε, let h
be small and consider
∫ ∞

0
|Ẽ2(a + h, t)− Ẽ2(a, t)| da

≤
∫ ∞

0
ρ(a + h)

×
(∫ t

0
e−µ(t−s)e−k̃(a+h)

∫ t
s
I
N
(σ ) dσ |Ẽ1(a + h, s)− Ẽ1(a, s)| ds

)
da

(C.6)

+
∫ ∞

0
ρ(a + h)

×
(∫ t

0
e−µ(t−s)|e−k̃(a+h)

∫ t
s
I
N
(σ ) dσ − e−k̃(a)

∫ t
s
I
N
(σ ) dσ |Ẽ1(a, s) ds

)
da

+
∫ ∞

0
|ρ(a + h)− ρ(a)|

(∫ t

0
e−µ(t−s)e−k̃(a+h)

∫ t
s
I
N
(σ ) dσ Ẽ1(a, s) ds

)
da

To estimate the first integral uniformly in the family of functions we observe that

∫ ∞

0
|Ẽ1(a + h, s)− Ẽ1(a, s)| da ≤ ‖∂aẼ1‖|h|

Thus, the first integral can be made arbitrary small uniformly in the family of func-
tions S, I, Ẽ1, Ẽ2 since the L1-norms of the age-derivative of Ẽ1 are uniformly
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bounded. Next, to estimate the second integral we use the following inequality for
the exponent: let 0 ≤ x, y ≤ M , then

|e−x − e−y | ≤ e2M

2M
|x − y|.

Furthermore, the uniform continuity of k̃ implies that the second integral can be
made arbitrary small independently of the family of functions. The last integral can
be made arbitrary small uniformly in the family since ρ is uniformly continuous.
This completes the proof of the compactness of �̃. 	


We use this result to show uniform strong endemicity.

Proof of Theorem 5.1. We apply Theorem 2.6 in [44]. We consider the solution
semiflow � on X with X as defined in Appendix A. We define a functional φ :
X → R+ as follows

φ(�(t, S0, I 0, E0
1 , E

0
2)) = I (t).

By Proposition 5.1, the semiflow is uniformly weakly φ-persistent. By Proposition
C.1, the solution semiflow has a compact attracting set. Total orbits are solutions to
the system (2.1) defined for all times both positive and negative. Since the solution
semiflow is nonnegative we have that for any s and any t > s

I (t) ≥ I (s)e−(µ+γ )(t−s).

Therefore, I (t) > 0 for all t > s, provided I (s) > 0. Thus Theorem 2.6 in [44]
implies that the semiflow is uniformly strongly φ-persistent. Consequently, there
exists ε so that lim inf t→∞ I (t) > ε. 	


References

[1] Anderson, R.M., May, R.M.: Infectious Diseases of Humans, Oxford University Press,
1991

[2] Andreasen, V., Lin, J., Levin, S.A.: The dynamics of cocirculating influenza strains
conferring partial cross-immunity. J. Math. Biol. 35, 825–842 (1997)

[3] Arendt, W., Grabosch, A., Greiner, G., Groh, U., Lotz, H.P., Moustakas, U., Nagel, R.,
Neubrander, F., Schlotterbeck, U.: One-parameter Semigroups of Positive Operators,
Lect. Notes Math. 1184, Berlin, New York, Tokyo, Springer-Verlag, 1986

[4] Bailey, N.T.J.: The Mathematical Theory of Infectious Diseases and its Applications.
Sec. Ed., Griffin, London, 1975

[5] Blower, S.M., Porco, T., Lietman, T.: Tuberculosis: the evolution of antibiotic resis-
tence and the design of epidemic control strategies, in Mathematical Models in Medical
and Health Sciences, Eds. M. A. Horn, G. Simonett, G. Webb, 51–72, Vanderbilt Univ.
Press, Nashville, TN, 1998

[6] Blower, S.M., McLean, A.R., Porco, T., Sanches, M., Small, P., Hopewell, P., Moss,
A.: The intrinsic transmission dynamics of tuberculosis epidemics. Nature Medicine
1, 815–821 (1995)

[7] Blower, S.M., Small, P., Hopewell, P.: Control strategies for tuberculosis epidemics:
new models for old problems. Science 273, 497–500 (1996)



Backward bifurcation in a model with super-infection 423

[8] Castillo-Chavez, C., Feng, Z.: Mathematical models for the disease dynamics of
tuberculosis, in Advances in Mathematical Population Dynamics - Molecules, Cells
and Man, Eds. O. Arino, D. Axelrod, M. Kimmel, Ser. Math. Biol. Med., Vol.6: 629–
656, World Scientific Publishing, Singapore, New Jersey, London, Hong Kong, 1997

[9] Castillo-Chavez, C., Feng, Z.: To treat or not to treat: the case of tuberculosis. J. Math.
Biol. 35, 629–659 (1997)

[10] Castillo-Chavez, C., Feng, Z.: Global stability of an age-structure model for TB and
its application to optimal vaccination strategies. Math. Biosci. 151, 135–154 (1998)

[11] Castillo-Chavez, C., Huang, W.: Age-structured core group model and its impact on
STD dynamics. In: Mathematical Approaches for Emerging and Reemerging Infec-
tious Diseases: Models, Methods and Theory, Eds. C. Castillo-Chavez with S. Blower,
P. van den Driessche, D. Kirschner, and A.-A.Yakubu: 261–273, Springer-Verlag, New
York, 2002

[12] Chow, S.-N., Hale, J.K.: Methods of Bifurcation Theory, Berlin-Heidelberg NewYork:
Springer Verlag, 1982

[13] Clark, C.W.: Mathematical Bioeconomics: The Optimal Management of Renewable
Resourses, John Wiley &Sons, New York, London, Sydney, Toronto, 1976

[14] Cooke, K.: Functional-differential equations: some models and perturbation problems,
Differential Equations and Dynamical Systems, Eds. J. Hale, J. LaSalle, eds, 167–183,
New York: Academic Press, 1967

[15] Desch, W., Schappacher, W.: Linearized stability for nonlinear semigroups, in Differ-
ential Equations in Banach Spaces, Eds. A. Favini, E. Obrecht, Lec. Notes Math. 1223,
61–73, Springer-Verlag, Berlin, Heidelberg, 1986

[16] Dietz, K.: Mathematical models for transmission and control of malaria, In: Malaria:
Principles and Practice of Malariology. Eds. W. Wernsdorfer, I. McGregor, 1091–1133
Churchill Livingstone, Edinburgh, 1988

[17] van den Driessche, P., Watmough, J.: A Simple SIS epidemic model with a backward
bifurcation. J. Math.Biol. 40(6), 525–540 (2000)

[18] Dushoff, J., Huang, W., Castillo-Chavez, C.: Backwards bifurcations and catastrophe
in simple models of fatal diseases. J. Math. Biol. 36(3), 227–248 (1998)

[19] Feng, Z., Castillo-Chavez, C., Capurro, A.: A model for tuberculosis with exogeneous
reinfection. Theor. Pop. Biol. 57, 235–247 (2000)

[20] Z. Feng, W. Huang & C. Castillo-Chavez, On the role of variable latent periods in
mathmatical models for tuberculosis. J. Dynam. Diff. Eq. 13(2), 425–452 (2001)

[21] Feng, Z., Iannelli, M., Milner, F.A.: A two-strain TB model with age of infection.
SIAM J. App. Math. 62(5), 1634–1656 (2002)

[22] Greenhalgh, D., Diekmann, O., de Jong, M.C.M.: Subcritical endemic steady states in
mathematical models for animal infections with incomplete immunity. Math. Biosci.
165(1), 1–25 (2000)

[23] Greenhalgh, D., Doyle, M., Lewis, F.: A mathematical treatment of AIDS and condom
use. IMA J. Math. Applied in Medecine and Biology 18, 225–262 (2001)

[24] Hadeler, K.P.: Hysteresis in a model for parasitic infection, Numerical methods for
bifurcation problems (Dortmund, 1983). Internat. Schriftenreihe Numer. Math., 70,
171–180, Birkhäuser, Basel, 1984

[25] Hadeler, K.P., Castillo-Chavez, C.: A core group model for disease transmission. Math.
Biosci. 128, 41–55 (1995)

[26] Hadeler, K.P., van den Driessche, P.: Backward bifurcation in epidemic control. Math.
Biosci. 146, 15–35 (1997)

[27] Hethcote, H.W.: A thousand and one epidemic model. in Frontiers in Mathemati-
cal Biology, Ed. S.A. Levin, Lecture Notes in Biomathematics, Vol. 100: 504–515,
Springer-Verlag, Berlin, Heidelberg, 1994



424 M. Martcheva, H.R. Thieme

[28] Hoppensteadt, F., Waltman, P.: A problem in theory of epidemics. Math.Biosci. 9,
71–91 (1970)

[29] Hoppensteadt, F., Waltman, P.: A problem in theory of epidemics II. Math.Biosci. 12,
133–145 (1971)

[30] Hale, J.K.: Asymptotic Behavior of Dissipative Systems, AMS, Providence, 1988
[31] Huang, W., Cooke, K., Castilo-Chavez, C.: Stability and bifurcation for a multiple-

group model for the dynamics of HIV transmission, SIAM J. Appl. Math. 52(3), 835–
854 (1992)

[32] Iannelli, M.: Mathematical Theory of Age-structured Population Dynamics, Applied
Mathematics Monographs 7, Giardini Editori, Pisa, 1995

[33] Kribs-Zaleta, C.M., Velasco-Hernández, J.X.: A simple vaccination model with mul-
tiple endemic states. Math. Biosci. 164, 183–201 (2000)

[34] Kribs-Zaleta, C.M., Martcheva, M.: Vaccination strategies and backward bifurcation
in age-since-infection structured model. Math. Biosci. 177/178, 317–332 (2002)

[35] Liu, W.-m., Hethcote, H.W., Levin, S.A.: Dynamical behavior of epidemiological
models with nonlinear incidence rates. J. Math Biol. 25, 359–380 (1987)

[36] Liu, W.-m.: Dose-dependent latent period and periodicity of infectious diseases.
J. Math. Biol. 31, 487–494 (1993)

[37] Liu, W.-m., van den Driessche, P.: Epidemiological models with varying population
size and dose-dependent latent period. Math. Biosci. 128, 57–69 (1995)

[38] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential
Equations, Applied Mathematical Sciences, 44. New York: Springer-Verlag, 1983

[39] Porco, T., Blower, S.M.: Quantifying the intrinsic transmission dynamics of tubercu-
losis epidemics. Theor. Pop. Biol. 54(2), 117–132 (1998)

[40] Sanches, M., Blower, S.M.: Uncertainty and sensitivity analysis of the basic repro-
duction number: Tuberculosis as an example. Amer. J. Epidem. 145(12), 1127–1138
(1997)

[41] Smith, H.L.: Hopf bifurcation in a system of functional equations modeling the spread
of an infectious disease. SIAM J. Appl. Math. 43, 370–385 (1983)

[42] Tu, S., Ross, E.: Minimum transition values and the dynamics of subcritical bifurcation.
SIAM J. Appl. Math. 46(2), 189–198 (1986)

[43] Thieme, H.R.: Semiflows generated by Lipschitz perturbations of non-densely defined
operators, Differential Integral Equations 3(6): 1035–1066 (1990)

[44] Thieme, H.R.: Uniform persistence and permanence for non-autonomous semiflows
in population biology, Math. Biosci. 166, 173–201 (2000)

[45] Thieme, H.R.: Quasi-compact semigroups via bounded perturbation, in Advances
in Mathematical Population Dynamics - Molecules, Cells and Man, Eds. O. Arino,
D. Axelrod, M. Kimmel, Ser. Math. Biol. Med., Vol.6: 691–711, World Scientific Pub-
lishing, Singapore, New Jersey, London, Hong Kong, 1997

[46] Thieme, H.R.: The transition through stages with arbitrary length distributions, and
applications in epidemics, in Mathematical Approaches for Emerging and Reemerg-
ing Infectious Diseases: Models, Methods and Theory, Eds. C. Castillo-Chavez with
S. Blower, P. van den Driessche, D. Kirschner, and A.-A. Yakubu: 45–84, New York:
Springer-Verlag, 2002

[47] Waltman, P.: Deterministic Threshold Models in the Theory of Epidemics, Lecture
Notes in Biomathematics 1, Berlin-Heidelberg, New York: Springer-Verlag, 1974

[48] Yosida, K.: Functional Analysis, second edition, Berlin-Heidelberg, New York:
Springer-Verlag, 1968


