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Abstract. Experimental studies have shown that parasites can reduce host density and even
drive host population to extinction. Conventional mathematical models for parasite-host
interactions, while can address the host density reduction scenario, fail to explain such de-
terministic extinction phenomena. In order to understand the parasite induced host extinction,
Ebert et al. (2000) formulated a plausible but ad hoc epidemiological microparasite model
and its stochastic variation. The deterministic model, resembles a simple SI type model,
predicts the existence of a globally attractive positive steady state. Their simulation of the
stochastic model indicates that extinction of host is a likely outcome in some parameter
regions. A careful examination of their ad hoc model suggests an alternative and plausible
model assumption. With this modification, we show that the revised parasite-host model can
exhibit the observed parasite induced host extinction. This finding strengthens and comple-
ments that of Ebert et al. (2000), since all continuous models are likely break down when all
population densities are small. This extinction dynamics resembles that of ratio-dependent
predator-prey models. We report here a complete global study of the revised parasite-host
model. Biological implications and limitations of our findings are also presented.

1. Introduction

It is now widely believed that diseases and parasites were responsible for a number
of extinctions on islands and on large land masses. As a result, ecologists ac-
knowledge the importance of disease and parasites in the dynamics of population
(McCallum and Dobson (1995)). Theory on the effects of parasites on host pop-
ulation dynamics has received much attention and focused on issues such as how
the parasite induced reduction of host fecundity and survival rates change the host
population dynamics, and how such dynamics be applied to predict threats to biodi-
versity in general and endangered species in particular. It has apparent implications

T.-W. Hwang: Department of Mathematics, Kaohsiung Normal University, 802, Kaohsiung,
Taiwan, R.O.C.

Research supported by National Council of Science, Republic of China.

Y. Kuang: Department of Mathematics, Arizona state University, Tempe, AZ 85287-1804,
U.S.A. e-mail: kuang@asu.edu

Work is partially supported by NSF grant DMS-0077790

Mathematics Subject Classification (2000): 34C25, 34C35, 92D25.

Key words or phrases: Microparasite model – Ratio-dependent predator-prey model – Host
extinction – Global stability – Biological control

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL ----------------------------------------
File Options:
     Compatibility: PDF 1.2
     Optimize For Fast Web View: Yes
     Embed Thumbnails: Yes
     Auto-Rotate Pages: No
     Distill From Page: 1
     Distill To Page: All Pages
     Binding: Left
     Resolution: [ 600 600 ] dpi
     Paper Size: [ 439.4 666.1 ] Point

COMPRESSION ----------------------------------------
Color Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Grayscale Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 150 dpi
     Downsampling For Images Above: 225 dpi
     Compression: Yes
     Automatic Selection of Compression Type: Yes
     JPEG Quality: Medium
     Bits Per Pixel: As Original Bit
Monochrome Images:
     Downsampling: Yes
     Downsample Type: Bicubic Downsampling
     Downsample Resolution: 600 dpi
     Downsampling For Images Above: 900 dpi
     Compression: Yes
     Compression Type: CCITT
     CCITT Group: 4
     Anti-Alias To Gray: No

     Compress Text and Line Art: Yes

FONTS ----------------------------------------
     Embed All Fonts: Yes
     Subset Embedded Fonts: No
     When Embedding Fails: Warn and Continue
Embedding:
     Always Embed: [ ]
     Never Embed: [ ]

COLOR ----------------------------------------
Color Management Policies:
     Color Conversion Strategy: Convert All Colors to sRGB
     Intent: Default
Working Spaces:
     Grayscale ICC Profile: €ÏI
     RGB ICC Profile: sRGB IEC61966-2.1
     CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
     Preserve Overprint Settings: Yes
     Preserve Under Color Removal and Black Generation: Yes
     Transfer Functions: Apply
     Preserve Halftone Information: Yes

ADVANCED ----------------------------------------
Options:
     Use Prologue.ps and Epilogue.ps: No
     Allow PostScript File To Override Job Options: Yes
     Preserve Level 2 copypage Semantics: Yes
     Save Portable Job Ticket Inside PDF File: No
     Illustrator Overprint Mode: Yes
     Convert Gradients To Smooth Shades: No
     ASCII Format: No
Document Structuring Conventions (DSC):
     Process DSC Comments: No

OTHERS ----------------------------------------
     Distiller Core Version: 5000
     Use ZIP Compression: Yes
     Deactivate Optimization: No
     Image Memory: 524288 Byte
     Anti-Alias Color Images: No
     Anti-Alias Grayscale Images: No
     Convert Images (< 257 Colors) To Indexed Color Space: Yes
     sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments false
     /DoThumbnails true
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize true
     /ParseDSCCommentsForDocInfo false
     /EmitDSCWarnings false
     /CalGrayProfile (€ÏI)
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue false
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.2
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends false
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo false
     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /sRGB
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 150
     /EndPage -1
     /AutoPositionEPSFiles false
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 600
     /AutoFilterGrayImages true
     /AlwaysEmbed [ ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 150
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 576.0 792.0 ]
     /HWResolution [ 600 600 ]
>> setpagedevice



18 T.-W. Hwang, Y. Kuang

for the use of parasites in biological control programs and for the role parasites
play in driving small populations to extinction (Anderson (1982), McCallum and
Dobson (1995)). A natural vehicle to study such issues is carefully formulated
parasite-host interaction models. Most effort along this direction is based on the
adaptations of various of classical models of epidemiology (see Ebert et al. (2000)
and the extensive references cited). However, existing mathematical models for
parasite-host interactions, while can address the host density reduction scenario,
fail to explain host deterministic extinction phenomena.

In an effort to understand the parasite induced host extinction, Ebert et al. (2000)
formulated the following plausible but ad hoc epidemiological microparasite model
with horizontal transmission.






x′(t) = a(x + θy)[1 − c(x + y)] − dx − bxy,

y′(t) = −(d + α)y + bxy,

x(0) = x0 > 0, y(0) = y0 > 0,
(1.1)

where x(t), y(t) represent the densities of uninfected (susceptible) and infected
(infective) hosts at time t respectively; a is the maximum per capita birth rate of
uninfected hosts; θ is the relative fecundity of an infected host; c measures the per
capita density-dependent reduction in birth rate; d is the parasite-independent host
background mortality; b is the infection rate constant and α is the parasite-induced
excess death rate. Notice that the disease transmission is assumed to be horizontal.
Unfortunately, this SI type deterministic model predicts the existence of a globally
attractive positive steady state (a rigorous proof is not given but can be easily ob-
tained by the application of Dulac criterion with the auxiliary function 1/xy and the
subtle observation that c(x(t) + y(t)) < 1 for large time). Such simple dynamics
clearly fails to explain the observed rich outcomes dependent on parameter values
and initial population levels. In fact, a more sophisticated three dimensional nonlin-
ear model (including elements of horizontal and vertical transmission), formulated
and carefully studied earlier by Anderson (1982), also shared this failure. To see if
stochastic events can lead to the extinctions of hosts, carefully designed stochas-
tic simulation of model (1.1) was conducted be Ebert et al. (2000). The outcome
indicates that extinction of host is possible in some parameter regions.

A careful examination of the above ad hoc deterministic model reveals an often
misinterpreted and misunderstood model assumption. Namely, b, if understood as
infection rate, it is the maximum number of infections an infective host can cause
in a unit of time. This shows that the infection term bxy should be replaced by

b
x

x + y
y. When the total population is constant, a fact if the disease is not fatal and

the model does not address vital dynamics (the normal birth and death dynamics),
then the infection term bxymay be justified (since b/(x+y) is now a constant) but the
meaning of b becomes the encounter infection rate. For large populations, individ-
ual’s finite and often slow movement prevents it to make contact to a large number

of individuals in a unit time. Such a mechanism is better described by b
x

x + y
y

than bxy. Conceivably, encounter infection rate makes sense only when the total
population is small and steady. With this simple but important modification, model
(1.1) becomes
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




x′(t) = a(x + θy)[1 − c(x + y)] − dx − b
xy

x + y
,

y′(t) = −(d + α)y + b
xy

x + y
,

x(0) = x0 > 0, y(0) = y0 > 0

(1.2)

We show that this modified model can indeed exhibit the observed parasite in-
duced host extinction. This extinction dynamics resembles that of ratio-dependent
predator-prey models (Arditi and Ginzburg (1989), Abrams and Ginzburg (2000),
Arditi and Berryman (1991), Cosner et al. (1999)). Mathematically, the extinction
mechanism of this and ratio-dependent population models both resulted from the
degeneracy at the origin (Jost et al. (1999), Kuang and Beretta (1998), Berezovs-
kaya, Karev and Arditi (2001), Xiao and Ruan(2001)).

Although model (1.2) exhibits the desirable deterministic extinction dynamics,
we must bear in mind that to reach extinction via a continuous-time model, a popu-
lation must eventually become small. In a small population, the rate of contacts with
other individuals is likely to depend on the size of the population unless there is
some special behavior such as an increased tendency to search for other individuals
when the population density gets too low, or the population is concentrated in a
small spatial region (for example, the number of contacts per unit time for each in-
dividual would remain roughly constant even if the population became quite small
for populations confined to small areas such as zoos or nature reserves). In other
words, when the total population becomes too small, stochastic effects become
noticeable and important. In which case, the mechanism proposed and studied by
Ebert et al. (2000), namely that demographic stochasticity can lead to extinction
is valid. Combining the deterministic and stochastic effects, we see the plausible
scenario that the deterministic dynamics brings the total population to the brink of
extinction and the demographic stochasticity drives the population to extinction.
From this perspective, our finding complements the work of Ebert et al. (2000).

For simplicity, we nondimensionalizes the system (1.2) with the following scal-
ing

t = at, x = cx, y = cy.

Dropping the overlines on the variables, then the system (1.2) takes the form





x′(t) = (x + θy)[1 − (x + y)] − δx − s
xy

x + y
≡ F(x, y),

y′(t) = −(δ + r)y + s
xy

x + y
≡ G(x, y),

x(0) = x0 > 0, y(0) = y0 > 0,

(1.3)

where

s = b

a
, δ = d

a
, r = α

a
. (1.4)

Observe that lim(x,y)→(0,0) F (x, y) = lim(x,y)→(0,0) G(x, y) = 0.We thus define
that F(0, 0) = G(0, 0) = 0. Clearly, with this assumption, both F and G are
continuous on the closure of R2+ and C1 smooth in R2+ where R2+ = {(x, y)| x >
0, y > 0}. So, by applying standard arguments, we see that the solutions of system
(1.3) are positive, bounded and defined on [0,∞).
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Notice that ecologically meaningful initial data for (1.3) requires that 0 <

x0+y0 < 1. It is straightforward to see that for such initial data, 0 < x(t)+y(t) < 1
for all t > 0. Regardless of the initial population level, mathematically we show
below that all positive solutions of (1.3) eventually enter and stay in the triangular
positive invariant region � = {(x, y) : x > 0, y > 0, x + y < 1}.
Proposition 1.1. Let (x(t), y(t)) be the solution of (1.3), starting at (x0, y0) and
(x0, y0) ∈ R2+. Then there is a t0 > 0 such that for t > t0, we have (x(t), y(t)) ∈ �.
Proof. It is straightforward to see that if 0 < x0 +y0 < 1, then 0 < x(t)+y(t) < 1
for all t > 0. Moreover, it is easy to see that if there is a t0 > 0, such that
0 < x(t0) + y(t0) < 1, then 0 < x(t) + y(t) < 1 for all t > t0. Hence, we
assume below that x0 + y0 > 1. If the conclusion of the proposition is false,
then x(t) + y(t) ≥ 1 for all t > 0. This implies that x′(t) < −δx(t) and hence
limt→∞ x(t) = 0.We see that for any ε > 0, there is a t1 > 0 such that for t > t1,

we have 0 < x(t) < ε. Then we have y′(t) < sε − (δ + r)y. This shows that
lim supt→∞ y(t) ≤ sε/(δ+ r). Letting ε→0,we obtain that limt→∞ y(t) = 0 and
therefore limt→∞(x(t)+y(t)) = 0 < 1. This is a contradiction to x(t)+ y(t) ≥ 1
for all t > 0, proving the proposition. �	

For convenience, in the rest of this paper, we assume that

(A1): x0 > 0, y0 > 0, and x0 + y0 < 1.

Observe also that if the death rate d is larger than the birth rate a, then δ > 1.We
have (x+y)′ < −(δ−1)(x+y).Which implies that limt→∞(x(t), y(t)) = (0, 0).
This is the intuitive outcome of the extinction of the host. In the rest of this paper,
we shall assume that

(A2): δ ≤ 1.

In this paper we shall give a complete analysis for the asymptotic behavior
of the solutions of system (1.3). The rest of this paper is organized as follows. In
section 2, by a simple but crucial change of variables, we transform the system
(1.3) into a model resembles a Gause-type predator-prey system, to which a wealth
of existing methods and results are applicable (Freedman (1980), Hsu et al. (2001,
2001a)). Taking advantage of this, we obtain a thorough understanding of the rich
asymptotic behavior of the solutions of the system (1.3). Section 3 presents direct
biological implications and limitations of our mathematical results in terms of the
original parameters in system (1.2).

2. Mathematical analysis and results

Our objective is to gain a thorough understanding of the global dynamics of model
(1.3). To this end, we need to obtain conditions that ensure the local and global
stabilities of all possible steady states. Since model (1.3) is not differentiable at the
origin, stability of origin can not be studied by standard linearization approach. To
overcome this difficulty, we make the change of variable (x, y) → (u, y) where
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u = x/y in system (1.3). This transforms it to the following system that resembles
the form of a Gause-type predator-prey system.

u′(t) = g(u)− ϕ(u)y,

y′(t) = ψ(u)y,

u(0) = u0 > 0, y(0) = y0 > 0
(2.1)

where
g(u) = (1 + r − s)u+ θ

ϕ(u) = (u+ θ)(u+ 1),

ψ(u) = su

u+ 1
− (r + δ).

(2.2)

Since (2.1) can also be rewritten as

u′(t) = ϕ(u)(h(u)− y),

y′(t) = ψ(u)y,
(2.3)

we see that the prey isocline of the system (2.1) is given by

y = g(u)

ϕ(u)
= h(u) = (1 + r − s)u+ θ

(u+ θ)(u+ 1)
. (2.4)

Clearly, limu→+∞ h(u) = 0 and

h′(u) = [−(1 + r − s)u2 − 2θu+ (r − s − θ)θ ]/(u+ θ)2(u+ 1)2. (2.5)

From (2.4), (2.5) and some routine calculations, we have the following simple lem-
ma which describes the qualitative behavior of the function y = h(u). The proofs
are omitted.

Lemma 2.1. The qualitative behaviors of h(u) can be classified into the following
three categories.
(a) : If −θ ≤ s − r ≤ 1 then h(u) > 0 > h′(u) for all u > 0.
(b) : If s − r < −θ then h(u) > 0 for all u > 0 and h′(u) has exactly one positive

zero µ1 where µ1 = θ +
√
θ2 + (1 + r − s)(r − s − θ)θ

1 + r − s
.

(c) : If s− r > 1 then h(u) has exactly one positive zeroµ0 whereµ0 = θ

s − r − 1
and h′(u) < 0 for all u ∈ [0, µ0].

We now exam the conditions for the existences and local stabilities of boundary
and positive equilibria.

System (2.1) has the boundary equilibriumE1 = (µ0, 0) provided that s− r >
1. Clearly, if s ≤ δ+ r thenψ(u) < 0 for all u > 0. On the other hand, if s > δ+ r
then ψ(u∗) = 0 where u∗ = (δ + r)/(s − δ − r) > 0 and

ψ(u) = (s − δ − r)(u− u∗)/(1 + u).
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Hence the system (2.1) has a unique positive equilibriumE∗ = (u∗, y∗) if and only
if s > δ + r and y∗ = h(u∗) > 0. From (2.2), (2.3) the variational matrix of the
system (2.1) is given by

J (u, y) =
[
ϕ′(u)(h(u)− y)+ ϕ(u)h′(u) −(u+ θ)(u+ 1)

sy/(1 + u)2 −(r + δ)+ su/(u+ 1)

]

. (2.6)

The stability of equilibria E1 and E∗ is determined by the eigenvalues of the
matrix J (E1) and J (E∗) respectively. The following lemma states that: whenever
E∗ exists, it is asymptotically stable; if bothE∗ andE1 exist, thenE1 is a saddle; if
E∗ does not exist butE1 exists, thenE1 is asymptotically stable. A straightforward
computation shows that u∗ > µ0 is equivalent to sµ0/(1 + µ0) < r + δ. It is also
equivalent to sθ/(s + θ − r − 1) < r + δ.

Lemma 2.2. For system (2.1), the following statements are true.
(a) : If s − r ≤ δ, then system (2.1) has no nonnegative equilibrium.
(b) : If 1 < s − r and u∗ > µ0, then E1 is locally asymptotically stable and E∗
does not exist.
(c) : If 1 < s − r and u∗ < µ0, then E1 is a saddle point and E∗ is locally
asymptotically stable.
(d) : If δ < s − r ≤ 1, then E∗ is locally asymptotically stable and E1 does not
exist.

Proof. From the assumption δ ≤ 1, (2.2) and (2.4), we haveg(u) > 0 andψ(u) < 0
for all u > 0. Hence system (2.1) has no equilibrium point in R2+ and its boundary.

For part (b) and the first part of (c), the variational matrix at E1 is

J (E1) =
[
ϕ(µ0)h

′(µ0) −ϕ(µ0)

0 (s − δ − r)(µ0 − u∗)/(1 + µ0)

]

.

Since h′(µ0) < 0, so if u∗ > µ0 thenE1 is locally asymptotically stable. Similarly
if u∗ < µ0 then E1 is a saddle point.

For part (d) and the second part of (c), from (2.6), the variational matrix at E∗
is

J (E∗) =
[
ϕ(u∗)h′(u∗) −ϕ(u∗)
sy∗/(1 + u∗)2 0

]

. (2.7)

Since the determinant of J (E∗) is positive and the trace of J (E∗) is ϕ(u∗)h′(u∗).
It is easy to verify that h′(u∗) < 0 under the assumptions in (c) and (d). Hence E∗
is locally asymptotically stable. Thus the assertions (c) and (d) hold. �	

In the following (Lemma 2.3, Theorem 2.1 and Theorem 2.2), we consider the
case s − r ≤ δ.

Lemma 2.3. If s − r ≤ δ then limt→∞ u(t) = +∞ and limt→∞ y(t) = 0.

Proof. Since s − r ≤ δ, then from Lemma 2.2(a), the system (2.1) has no equilib-
rium.
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Recall that R2+ = {(u, y)| u > 0, y > 0}, and

�1 = {(u, y) ∈ R2+| y ≥ h(u)};
�2 = {(u, y) ∈ R2+| 0 < y < h(u)}.

Since there is no steady state in �1, the trajectories that start in �1 will enter �2
by crossing the u−isocline downward vertically. Since there is no equilibrium in
�2, we must have y(t) → 0 and u(t) → +∞ as t → +∞. Thus we complete the
proof of the lemma. �	

We already know that if δ > 1, then limt→∞(x(t) + y(t)) = 0. The next
theorem shows that the same is true even if δ = 1, provided that s − r ≤ δ.

Theorem 2.1. If s − r ≤ δ and 1 ≤ δ then the equilibrium (0, 0) is the global
attractor for system (1.3) in R2+.

Proof. From Lemma 2.3, we have limt→∞ y(t) = 0 for all solutions (x(t), y(t))
of system (1.3). Hence, we only need to show limt→∞ x(t) = 0. Assume on the
contrary that there is a solution of system (1.3) such that lim supt→∞ x(t) = L > 0.
Now let us consider the following two cases.

Case 1. L > lim inf t→∞ x(t) ≥ 0. There is a monotone sequence {tn} tends to ∞
such that x′(tn) = 0 for all n ≥ 1 and limn→∞ x(tn) = L. Hence,

0 = x′(tn) = F(x(tn), y(tn)) → L(1 − δ − L) < 0.

So, this case is impossible.

Case 2. L = lim inf t→∞ x(t). Hence, there is a sufficiently large T such that
x(t) > L/2 and y(t) < L(L/2 + δ − 1)/2(θ + 1) for t ≥ T . This leads to

x′(t) ≤ x(t)(1 − δ − x(t))+ θy(t)

≤ L(1 − δ − L/2)/2 + Lθ(L/2 + δ − 1)/2(θ + 1)

≤ −L(L/2 + δ − 1)/2(θ + 1) < 0

for t ≥ T . Thus x(t) → −∞ for t → ∞. This is a contradiction and hence the
lemma is proved. �	

The following theorem present conditions for the boundary steady state (1−δ, 0)
of (1.3) to be globally attractive.

Theorem 2.2. If s−r ≤ δ < 1 then the equilibrium (1−δ, 0) is the global attractor
for system (1.3) in R2+.

Proof. From Lemma 2.3, we have limt→∞
x(t)

y(t)
= +∞ and limt→∞ y(t) = 0 for

all solutions (x(t), y(t)) of system (1.3). Hence, for any given ε > 0, there exists a
sufficiently large Tε such that εx(t) ≥ y(t) for all t ≥ Tε. Now from (1.3),we have

x′(t) = x(1 − δ − x)− (1 + θ)xy + θy(1 − y)− sxy/(x + y)

≥ x(1 − δ − x)− (1 + θ)εx2 − sεx/(1 + ε)

= x(1 − δ − sε/(1 + ε)− (1 + ε + θε)x)
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for all t ≥ Tε. If we choose ε small enough such that 1 − δ − sε/(1 + ε) > 0
then, by a standard comparison theorem, one obtains lim inf t→∞ x(t) = l > 0.
Let lim supt→∞ x(t) = L.We claim that L = l. For otherwise, we have L > l and
there are two sequences {tn}, {sn} such that x′(tn) = x′(sn) = 0 for all n ≥ 1 and
limn→∞ x(sn) = l, limn→∞ x(tn) = L. Thus

L(1 − δ − L) = l(1 − δ − l) = 0,

a contradiction. Now we have limt→∞ x(t) = L. From (1.3), we see that x′′ is
bounded on [0,∞). Hence limt→∞ x′(t) = 0. Therefore,

0 = lim
t→∞ x

′(t) = F(L, 0) = L(1 − δ − L).

This implies limt→∞ x(t) = 1 − δ and the theorem follows. �	

From now on we discuss the case s > r + δ. First we consider the case δ <
s − r ≤ 1. According to Lemma 2.2 (d), E∗ is locally asymptotically stable and
E1 does not exist.

Theorem 2.3. If δ < s − r ≤ 1 then the positive equilibrium E∗ is the global
attractor in R2+ for the system (2.1).

Proof. To show that E∗ is a global attractor in R2+, consider the following Lyapu-
nov function

V (u, y) =
∫ u

u∗

ψ(ξ)

ϕ(ξ)
dξ +

∫ y

y∗

η − y∗

η
dη

for (u, y) ∈ R2+. Notice that (u − u∗)(h(u) − h(u∗)) ≤ 0, which implies that
ψ(u)(h(u)− h(u∗)) ≤ 0. The derivative of V along a solution of system (2.1) is

V̇ (u, y) = (g(u)− ϕ(u)y)ψ(u)/ϕ(u)+ ψ(u)y − h(u∗)ψ(u)
= ψ(u)(h(u)− h(u∗)) ≤ 0

(2.8)

for (u, y)∈R2+. Hence, Theorem 2.3 follows from (2.8) and the Lyapunov-LaSalle’s
invariance principle (Hale (1980)). �	

The last theorem of this paper completes the global analysis of system (2.1),
and hence model (1.3).

Theorem 2.4. Let 1 < s − r in system (2.1). The following statements are true.
(a) : If sµ0/(1 + µ0) < δ + r (i.e. u∗ > µ0), then the equilibrium E1 = (µ0, 0)
of system (2.1) is the global attractor.
(b) : If sµ0/(1 + µ0) = δ + r (i.e. u∗ = µ0), then the equilibrium E1 = (µ0, 0)
of system (2.1) is the global attractor.
(c) : If sµ0/(1 + µ0) > δ + r (i.e. u∗ < µ0), then the equilibrium E∗ = (u∗, y∗)
of system (2.1) is the global attractor.
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Proof. Under the assumption of the theorem, it is easy to verify that for arbitrary
ε > 0, the strip

�ε = [0, µ0 + ε] × [0,∞)

is positively invariant and attractive.
From the assumption of part (a), there is an ε > 0 and small enough such that

s(µ0 + ε)/(1 + µ0 + ε) < δ + r. For this ε, there is a Tε large enough, such that
(u(t), y(t)) ∈ �ε for all t ≥ Tε. Thus,

y′(t) = y(su/(1 + u)− (r + δ)) ≤ (s(µ0 + ε)/(1 + µ0 + ε)− (r + δ))y,

for all t ≥ Tε. This implies that limt→∞ y(t) = 0.
Let lim inf t→∞ u(t) = l and lim supt→∞ u(t) = L. If L > l, then there

are two sequences {tn}, {sn} such that u′(tn) = u′(sn) = 0 for all n ≥ 1 and
limn→∞ u(sn) = l, limn→∞ u(tn) = L. Thus

(1 + r − s)L+ θ = (1 + r − s)l + θ = 0,

a contradiction. Hence, we have limt→∞ u(t) = L. From (2.1), we see that if u′′
is bounded on [0,∞), then limt→∞ u′(t) = 0. Hence,

0 = lim
t→∞ u

′(t) = (1 + r − s)L+ θ.

This implies limt→∞ u(t) = µ0 and hence, the assertion (a).

To prove parts (b) and (c), we consider the Lyapunov function

V (u, y) =
∫ u

u∗

ψ(ξ)

ϕ(ξ)
dξ +

∫ y

y∗

η − y∗

η
dη

for (u, y) ∈ R2+. Notice that ψ(u)(h(u) − h(u∗)) ≤ 0 for all u ∈ [0,∞) and if
sµ0/(1+µ0) = δ+ r thenE∗ = E1.Hence, the derivative of V along the solution
of system (2.1) is

V̇ (u, y) = (g(u)− ϕ(u)y)ψ(u)/ϕ(u)+ ψ(u)y − h(u∗)ψ(u)
= ψ(u)(h(u)− h(u∗)) ≤ 0

(2.9)

for (u, y) ∈ R2+. Thus, parts (b) and (c) follow from (2.9) and the Lyapunov-
LaSalle’s invariance principle (Hale (1980)). �	

3. Discussion

A distinct feature of the simple models (1.1) and (1.2) is that the parasite population
is not explicitly modeled. The general form of the model is similar to susceptible/in-
fected (i.e. SI) models in epidemiology. A key feature of the model (1.2) is that the
the term describing the infection rate is assumed to depend on the ratio of infect-
ed to susceptible individuals. In the terminology of predator-prey models, such a
rate term would be called ratio-dependent. In the terminology of epidemic models
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Table 1. Complete global results of system (2.1).

Conditions Results

1. δ > 1, or s − r ≤ δ plus δ ≥ 1 (0, 0) is globally asymptotically stable.

2. s − r ≤ δ, δ < 1 (1 − δ, 0) is globally asymptotically stable.

3. 1 ≥ s − r > δ (x∗, y∗) is globally asymptotically stable.

4. s − r > 1, sµ0/(1 + µ0) ≤ r + δ (0, 0) is globally stable.

5. s − r > 1, sµ0/(1 + µ0) > r + δ (x∗, y∗) is globally stable.

such a rate term would be said to reflect proportional mixing as opposed to ho-
mogeneous mixing. The model (1.2) is derived by replacing a mass action term
describing the infection rate with a ratio-dependent term in the existing model due
to Ebert et al.(2000). Our analysis shows that the model may predict extinction of
the host population in some cases. This behavior does not occur in models where
the infection rate is described by a mass action law.

To facilitate the discussion, we first summarize the main results of system (1.3)
in Table 1. The most important finding here is that the origin can be an attractor
(global) for model (1.3), which may explain the often observed deterministic ex-
tinctions of hosts. There are two scenarios for this to happen: 1) δ ≥ 1; and 2)
s− r > 1 and r + δ ≥ sµ0/(1 +µ0). The first scenario is intuitive, since the death
rate is no less than the birth rate which means there is no any growth in host popu-
lation. Moreover, the infection reduces the birth rate and increase the death rate of
the infected group which forces the total host population to decline continuously
and eventually drives it to extinction.

The second scenario is more interesting. Recall that sµ0/(1 + µ0) ≤ r + δ is
equivalent to sθ/(s + θ − r − 1) ≤ r + δ. In terms of original parameters in (1.2),
this condition is equivalent to

b ≥ α + a
d + α − dθ

d + α − aθ
.

If d ≤ a (or δ ≤ 1), then the above inequality implies b > α + a (or s − r > 1).
Observe also that this condition reduces to δ ≥ 1 when the disease does not exist
(i.e. θ = 1, r = 0). So the second scenario describes a situation when infection
rate is high (s > r + 1) and the infection imposes a severe reduction in the birth
rate of the infectious group (small θ ), or some significant yet subtle increases in
the additional death rate (α) to the infective group in certain situations (Figure 1).

In many horizontally transmitted parasites, the parasite induced host birth rate
reduction can be as high as 90%, which is to say θ = 0.1. For these parasites, it
is observed that host and parasites were prone to extinction in various experiments
(p 473, Ebert et al. (2000)). The second host extinction scenario described above
together with the work of Ebert et al. (2000) provides a simple and plausible ex-
planation to such phenomena (namely, the deterministic dynamics brings the total
population to the brink of extinction and the demographic stochasticity drives the
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Figure 1(c) α = 0.3
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Fig. 1. In this figure, the extinction region, parasite extinction region and coexistence re-
gion for model (1.2) in θb parameter space are depicted for k = 1, a = 0.4, d = 0.01 and
α = 0.1, 0.2, 0.3, 0.4 respectively. Notice that the extinction range increases as the para-
site induced mortality α increases and/or the parasite induced birth rate reduction (1 − θ )
increases.

population to extinction). In short, the field observed parasite induced determinis-
tic host extinctions are faithfully preserved by the host extinction dynamics of the
deterministic model (1.2).

The above extinction dynamics yields an unusual feature for model (1.2): even
if the basic reproduction number (Hethcote (2000)) for the diseaseR0 = b/(d+α)
is greater than 1 (equivalent to s > r+δ in model (1.3)), the disease may not persist.

Instead, it may simply drive the host to extinction (when b > α+ a d + α − dθ

d + α − aθ
in

model (1.2)).
Compare to ratio-dependent predator-prey dynamics, we see that the dynam-

ical outcome of model (1.2) does not dependent on the initial population levels.
This lack of sensitivity on initial conditions should be viewed as a limitation of the
model, since in many field observation, the timing and the amount of parasite release
can often alter the outcomes of the parasite-host interactions (Ebert et al. (2000)).

It is reported that there is less than 10% populations in the nature truly oscil-
late (Krukonis and Schaffer (1991), Kendall et al (1998)). However, when subject
to human intervention, population fluctuation increases in general (Kendall et all
(1998)). In addition, oscillatory population dynamics received widespread attention
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in the literature. From this perspective, another possible limitation of this simple
SI type microparasite model is the lack of limit cycle behavior. Solutions typically
tend to the global attractor quickly and monotonically after a brief transition peri-
od (Figure 2). The reasons cause the absence of oscillatory behaviors may due to
several factors, such as 1) the particular formulation of model (1.2); the implicit
assumptions that 2) the infection dynamics is instantaneous (for the importance
of introduce time delayed response, see Kuang (1993) and Harrison (1995)); and
that 3) the food resource is constant (not modeled). In reality, resources are highly
dynamic and hence must be explicitly modeled in order to describe the rich dy-
namics of parasite-host interactions observed in the fields. This is particularly so
if parasite is chosen as the control agent in a biological control process (Anderson
(1982), Luck (1990)). A plausible model may build the simple infection mecha-
nism described by model (1.2) on top of a typical predator-prey model with either
prey-dependent or ratio-dependent (or the more general predator-dependent ones)
functional responses. The model can take various forms depending on the specific
choices of infection mechanisms and the predator functional responses. Appropri-
ately formulated, these models shall be able to generate rich extinction dynamics
such as the one documented in Hsu et al. (2002). An example of such models with
prey-dependent functional response may take the form

x′(t) = rx

(

1 − x

K

)

− c1x(y + z)

a + x
, x(0) > 0,

y′(t) = m1x(y + f z)

a + x
− dy − c2yz

y + z
, y(0) > 0,

z′(t) = m2yz

y + z
− (d + α)z, z(0) > 0.

(3.1)
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Fig. 2. In Figure 2(a), solutions tend to E∗ monotonically after a brief transition period.
Here a = 0.4, d = 0.01, α = 0.2, θ = 0.6, b = 1, c = 1. From Figure 1(b), we see that E∗

is globally asymptotically stable. In Figure 2(b), solutions tend to the origin monotonically
after a brief transition period. Here a = 0.4, d = 0.01, α = 0.2, θ = 0.2, b = 2, c = 1.
From Figure 1(b), we see that the origin is the global attractor.
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Here x is the resource that interacts with pest. The pest is subjected to a horizon-
tally transmitted parasite attack and is divided into two classes: the susceptible y
(uninfected by the parasite) and the infective z. It will be interesting to know if
the naturally occurring ratio-dependence (resulted from the infection mechanism)
in the uninfected (y) and the infected pest (z) equations will generate fluctuations
in population levels and rich extinction dynamics that can be used together with
the findings of Ebert et al. (2000) to naturally account for the various extinction
scenarios observed in the fields.
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