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Abstract. The major adhesin ofActinobacillus pleuropneumoniae, the causative agent of porcine
pleuropneumonia, has been previously identified as lipopolysaccharide (LPS). The purpose of the present
study was to isolate and characterizeA. pleuropneumoniaeLPS mutants. Screening of LPS mutants was
performed with colony dot and sensitivity to novobiocin. One mutant obtained by colony dot (F19) and
one mutant selected for its increased sensitivity to novobiocin (33.1) did not react with a monoclonal
antibody againstA. pleuropneumoniaeserotype 1 O-antigen compared with the parent strain. Mutants F19
and 33.1 did not express high-molecular-mass LPS bands as determined in silver-stained SDS-PAGE gels.
The core-lipid A region of mutant 33.1 and of the parent strain had similar relative mobilities and reacted
with serum from a pig experimentally infected with the serotype 1 reference strain ofA. pleuropneu-
moniae, while the same region in mutant F19 showed faster migration and did not react with this serum.
Use of piglet tracheal frozen sections indicated that mutant F19 was able to adhere to piglet trachea as well
as the parent strain, while mutant 33.1 adhered [half as much as] the parent strain. Finally, both LPS
mutants were markedly less virulent in mice than the parent strain. Taken together, our observations
support the idea that LPS is an important virulence factor ofA. pleuropneumoniae.

Actinobacillus pleuropneumoniaeis the causative agent
of porcine pleuropneumonia [25], a worldwide disease
causing tremendous economic loss to the swine industry.
Twelve serotypes ofA. pleuropneumoniaehave been
recognized from capsular antigens [26]. In Que´bec,
serotypes 1 and 5 are the most predominant [23]. The
pathogenesis of porcine pleuropneumonia is not well
understood, but several cytotoxic and hemolytic activities
have been described [9].

The initial event in bacterial colonization is the
adherence of microorganisms to the epithelial cells
and/or mucus layer of the mucosal surfaces, which
involves specific interactions between bacterial adhesins
and host receptors [27]. We have shown that lipopolysac-
charides (LPS) are the major adhesin ofA. pleuropneu-
moniaeinvolved in adherence to porcine respiratory tract
cells and mucus [2–4]. More recently, we demonstrated
that high-molecular-mass LPS, with the longest O-chains,
were involved inA. pleuropneumoniaeadherence to

porcine respiratory tract cells [28]. In addition,A. pleuro-
pneumoniaeLPS have been shown to bind pig hemoglo-
bin [5]. LPS is a complex molecule composed of three
well-defined regions: the lipidA; the core, an oligosaccha-
ride containing 2-keto-3-deoxyoctulosonic acid (KDO);
and the O-antigen, a polysaccharide consisting of repeat-
ing units [11]. Depending on the presence and the number
of O-antigen repeating units, LPS can be rough, semir-
ough (e.g., as inA. pleuropneumoniaeserotype 1), or
smooth (e.g., as inA. pleuropneumoniaeserotype 2) [2, 6,
11]. The biosynthesis of LPS is complex. To assemble
O-antigens, monomers are not transferred directly to a
growing LPS molecule. Instead, O-antigens are synthe-
sized separately on a lipid carrier (undecaprenol phos-
phate) by enzymes encoded by therfb gene cluster. Once
completed, O-antigen is transferred and convalently
linked to a preformed lipid A-core acceptor at the
periplasmic face of the plasma membrane. After ligation,
the completed LPS molecule is translocated to the cell
surface by unknown mechanisms [39].
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defective in capsule synthesis [13, 30] andA. pleuropneu-
moniaeserotypes 1, 2, 5, and 7 mutants defective in
hemolysin production [1, 12, 16, 32, 36] have been
studied. To the best of our knowledge, no LPS mutants of
A. pleuropneumoniaehave been isolated so far. Thus, the
purpose of the present study was to isolate and character-
ize LPS mutants to better understand the role of LPS in
the pathogenesis of swine pleuropneumonia.

Materials and Methods

Bacterial strain and growth conditions. A. pleuropneumoniaerefer-
ence strain representing serotype 1 (strain 4074) was provided by A.
Gunnarson (National Veterinary Institute, Uppsala, Sweden). Bacteria
were grown on brain heart infusion (BHI; Difco Laboratories, Detroit,
MI) agar plates supplemented with 15 µg of nicotinamide adenine
dinucleotide (NAD) per ml. Plates were incubated at 37°C in a 5% CO2

atmosphere for 18–24 h.

Selection of mutants. (1) Colony dot. A bacterial suspension was
inoculated onto BHI-NAD agar plates to obtain approximately 100
bacterial colonies per plate. After incubation, the plates were incubated
at 4°C for 2 h. A nitrocellulose membrane (0.45 µm) was placed on the
plate at room temperature for 1 h, lifted, and then incubated for 1 h with
a blocking solution consisting of 2% (wt/vol) skim milk in Tris-saline
buffer-Tween 20 [TSBT; 10 mM Tris, 150 mM NaCl, pH 7.4, 0.02%
(vol/vol) Tween 20 (Sigma Chemical Co., St. Louis, MO)], followed by
an incubation of 2 h with monoclonal antibodies againstA. pleuropneu-
moniaeserotype 1 O-antigen (5.1 G8F10; kindly supplied by Eva I.
Stenbaek, Department of Biochemistry and Immunology, National
Veterinary Laboratory, Copenhagen V, Denmark). The membranes were
then washed in TSBT and incubated for 1 h with a goat anti-mouse
IgG1 IgM (H 1 L) horseradish peroxidase conjugate (Jackson Immu-
noResearch Laboratories, Mississauga, Ontario, Canada). The reaction
was revealed by addition of 4-chloro-1-naphthol and hydrogen peroxide
(Sigma) following the method described by Hawkes [10]. The LPS
profiles of nonreactive colonies were analyzed by SDS-PAGE and
immunoblotting.

(2) Sensitivity to novobiocin. Different bacterial colonies from a
master plate were inoculated onto BHI-NAD agar plates supplemented
with 2 µg of novobiocin (Sigma) per ml. After incubation, the colonies
that did not grow were selected from the master plate. These colonies
were also analyzed by SDS-PAGE and immunoblotting.

SDS–PAGE and Tricine SDS–PAGE.Analysis of the mutants was
done by SDS–PAGE. Agar-grown bacteria were suspended in a
solubilization buffer containing 10% (vol/vol) glycerol, 5% (vol/vol)
b-mercaptoethanol, 2% (wt/vol) sodium dodecyl sulfate (SDS), 62.5
mM Tris-HCl (pH 6.8), and 0.025% (vol/vol) bromophenol blue, and
heated for 15 min at 100°C. An equal volume of proteinase K (1 mg/ml;
Sigma) prepared in 50 mM Tris-HCl (pH 8.0) containing 1 mM CaCl2
was added to the samples, and the mixture was incubated for 60 min at
60°C. Samples were separated with a stacking gel of 4.5% (wt/vol)
polyacrylamide and a separating gel of 12.5% (wt/vol) polyacrylamide
[19]. Samples were electrophoresed at 100 V (stacking gel) and 200 V
(separating gel) in a Mini-Protean II apparatus (Bio-Rad Laboratories,
Richmond, CA). Gels were either stained with the silver-staining
procedure of Tsai and Frasch [38] or used in immunoblotting. The
core-lipid A region electrophoretic profile of the mutants was deter-
mined by Tricine SDS-PAGE as described previously [15].

Immunoblotting. Immunoblots were carried out as described by
Towbin et al. [37]. The samples separated by SDS–PAGE were
transferred with a mini Trans-Blot apparatus (Bio-Rad Laboratories) to

a nitrocellulose membrane (0.2 µm; Bio-Rad Laboratories) for 1 h at
100 V. The membranes were first incubated for 1 h with a blocking
solution consisting of 2% (wt/vol) skim milk in TSB, followed by an
overnight incubation at 4°C with the monoclonal antibody 5.1 G8F10.
The membranes were then washed in TSB, and incubated for 1 h with a
goat anti-mouse IgG1 IgM (H 1 L) horseradish peroxidase conjugate
(Jackson ImmunoResearch Laboratories). The reaction was revealed as
described above. Tricine SDS–PAGE gels were transferred to nitrocellu-
lose membranes and treated as described above. However, an antiserum
obtained from a pig experimentally infected with the serotype 1
reference strain ofA. pleuropneumoniae[29] and a goat anti-swine IgG
(H 1 L) horseradish peroxidase conjugate (Jackson ImmunoResearch
Laboratories) were used to detect the core-lipid A region [15].

Electron microscopy. Capsular material ofA. pleuropneumoniae
serotype 1 cells was stabilized with a mouse monoclonal antibody
againstA. pleuropneumoniaecapsular antigen (1.5 C5 F4; kindly
supplied by Marcelo Gottschalk, Faculte´ de Médecine Vétérinaire,
Université de Montréal, St-Hyacinthe, Que´bec, Canada) and stained
with ruthenium red before examination by transmission electron
microscopy as described by Jacques et al. [14].

Adherence assay.The adherence assay to frozen sections was per-
formed as described by Paradis et al. [28]. Briefly, bacteria were diluted
in PBS containing 1% (wt/vol) bovine serum albumin and 0.01%
(vol/vol) Tween 20 to give anA540of 0.2. A volume (100 µl) of bacterial
suspension was pipetted onto piglet tracheal frozen sections on glass
slides and incubated in a moist chamber at 37°C for 2 h. After intensive
washing in distilled water, sections were stained with the Diff-Quik
stain (Baxter Healthcare Corporation, McGraw Park, IL) according to
the manufacturer’s instructions. Upon microscopic examination, the
number of bacterial cells attached to the tracheal epithelium was
determined at a magnification of 1,000. Results were compared for
statistical significance by Student’st test.

Virulence in mice. Groups of ten CD1 mice (Charles River Inc.,
St-constant, Que´bec, Canada), 8 weeks of age, were challenged with a
total of 50 µl of a 6-h-old culture containing approximately 13 108

CFU ofA. pleuropneumoniaeserotype 1 (parent strain or LPS mutants)
by the intranasal route. Intranasal inoculations were performed accord-
ing to the method described by Rushton [31]. Mice were monitored for
mortality for one week after the challenge.

Results and Discussion

The initiating event in the pathogenesis of most bacterial
pulmonary infections is most probably the establishment
of the organisms in the upper respiratory tract. Adherence
is a complex interaction between the bacterium and the
target cells that enables colonization to occur and allows
the bacterium to exert its pathogenic and immunogenic
effects. The pathogenesis of porcine pleuropneumonia is
not well understood, but we have shown the involvement
of LPS in adherence ofA. pleuropneumoniaeto porcine
respiratory tract cells and mucus [2–4, 28]. Using sponta-
neous LPSmutants, we now provide further evidence that
LPS represent an important virulence factor ofA. pleuro-
pneumoniae.

Initial screening of LPS mutants was performed by
two different approaches, colony dot and sensitivity to
novobiocin. O-antigen expression was analyzed with
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monoclonal antibody 5.1 G8F10, which is directed
against an epitope located in the O-antigen ofA. pleuro-
pneumoniaeserotype 1 LPS [20]. Approximately 4100
individual bacterial colonies were probed with this mono-
clonal antibody in colony dot. Bacterial colonies that
differed in reactivity with this monoclonal antibody from
the parent strain were selected. With this approach, seven
putative O-antigen-deficient mutants were identified. A
total of 1100 individual bacterial colonies were also
tested on a selective medium containing novobiocin, and
188 mutants, not able to grow in the presence of the
hydrophobic antibiotic, were observed. All these putative
LPS mutants were then analyzed by immunoblotting.
One of the seven putative mutants obtained by colony dot
(F19) and one of the 188 mutants selected for their
increased sensitivity to novobiocin (33.1) did not react
with the monoclonal antibody 5.1 G8F10 compared with
the parent strain (Fig. 1a). The other mutants reacted as
well as the parent strain with the monoclonal antibody 5.1
G8F10 when tested by immunoblot.

These spontaneous mutants were also characterized
by SDS–PAGE. Mutants F19 and 33.1 appeared to
possess a truncated LPS as they did not express high-
molecular-mass LPS bands in silver-stained gels (Fig.
1b). In addition, the core-lipid A region of mutant 33.1
and of the parent strain had similar relative mobilities,
while the same region in mutant F19 showed faster
migration than the parent strain (Fig. 1b). The samples
were separated by Tricine SDS–PAGE, which allows a
better resolution of the core-lipid A region [21], trans-
ferred to nitrocellulose membranes, and the antigenicity
of the core-lipid A region was tested by immunoblot

(Fig. 2). The core-lipid A of mutant 33.1 reacted with a
serum from a pig experimentally infected with the
serotype 1 reference strain ofA. pleuropneumoniaeas did
the parent strain, while the core-lipid A region of mutant
F19 did not react with the same serum. These results
suggest the presence of an incomplete core in mutant F19
compatible with a faster migration on gel and absence of
epitopes recognized by the pig antiserum.

Fig. 1. Immunoblot (A) and silver-stained SDS-
PAGE profiles (B) of whole-cell, proteinase
K-treated preparations ofA. pleuropneumoniaepar-
ent strain and spontaneous LPS mutants. The immu-
noblot was probed with a monoclonal antibody
againstA. pleuropneumoniaeserotype 1 O-antigen.
Lane 1, parent strain; lane 2, mutant F19; lane 3,
mutant 33.1. Molecular mass markers (in kilodal-
tons) are indicated on the left. Arrow indicates the
core-lipid A region.

Fig. 2. Immunoblot of whole-cell, proteinase K-treated preparations of
A. pleuropneumoniaeparent strain and spontaneous LPS mutants
separated by Tricine SDS–PAGE. The immunoblot was probed with
serum from a pig experimentally infected with the serotype 1 reference
strain ofA. pleuropneumoniae. Lane 1, parent strain; lane 2, mutant
F19; lane 3, mutant 33.1. Molecular mass markers (in kilodaltons) are
indicated on the left. Arrow indicates the core-lipid A region.
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Electron microscopy of thin sections of bacterial
cells stabilized with amousemonoclonal antibody against
A. pleuropneumoniaecapsular antigen and stained with
ruthenium red revealed the presence of capsular material
(a layer of approximately 160 nm) surrounding cells ofA.
pleuropneumoniaeparent strain and both LPS mutants
(Fig. 3), indicating that synthesis of capsular material was
not altered in these LPS mutants.

The virulence of the mutants was evaluated in mice,
an economical animal model that has been used by others
[17, 18, 34]. After challenge with mutants F19 and 33.1,
20–30% mortality was recorded, while after challenge
with the parent strain, the percentage of mortality was
100% (Table 1). Therefore, the LPS mutants, although
well encapsulated, were markedly less virulent in mice
than the parent strain. Similar results with strains of
Salmonelladefective in LPS biosynthesis have been
reported [7, 22].

Finally, the adherence ofA. pleuropneumoniaepar-
ent strain and of the two mutants with truncated LPS
lacking O-chains to piglet tracheal frozen sections was
evaluated. After 2 h of incubation, the parent strain and
the mutant F19 adhered similarly; the average number of
bacterial cells adhered to tracheal sections was 92 and 94,
respectively (Table 1). For mutant 33.1, the average
number of adherent bacterial cells was decreased to 50.
These observations support, at least in part, the idea that
A. pleuropneumoniaeLPS play a role in adherence, but
also suggest that the presence of O-chains does not seem
to be essential. Similar results with lipooligosaccharide
(LOS) mutants ofNeisseria gonorrhoeaehave been
reported [33]. One LOS mutant (Isi-1) adhered poorly to
Chang epithelial cells in contrast to the parent strain and
to another isogenic LOS mutant (galE). In addition, LPS
mutants ofPseudomonas aeruginosashowed a reduced
ability to adhere to rat corneas [8] and to epithelial cells
[35]. Other studies have reported a relationship between
LPSmutations and reduced adherence. For example, with
LPS mutants ofSalmonella tiphy,Mroczenski-Wildey et
al. [24] showed that adhesion to and penetration of HeLa
cell monolayers byS. tiphyTy2 requires the presence of a
complete LPS molecule.

In summary, our results indicate that oneA. pleuro-
pneumoniaeLPS mutant adhered less than the parent
strain, while both mutants are markedly less virulent in
mice. Taken together, our observations support the idea
that LPS is an important virulence factor ofA. pleuropneu-
moniae. However, since these mutants are not genotypi-
cally well characterized, future studies should use, for
example, transposon mutagenesis for the generation of
isogenic mutants. Studies conducted with such isogenic
mutants will eliminate the possibility of mutations in

Fig. 3. Transmission electron micrographs of thin sections ofA. pleuropneumoniaeimmunostabilized with a mouse monoclonal antibody againstA.
pleuropneumoniaecapsular antigen, and stained with ruthenium red. (A) Parent strain; (B) mutant F19; (C) mutant 33.1. Bar5 200 nm.

Table 1. Adherence to piglet tracheal frozen sections and virulence
in mice ofA. pleuropneumoniaeserotype 1 parent strain
and LPS mutants

Strain Adherence (%)a Virulence in mice (%)b

Parent strain 926 20 (100) 10/10 (100)
F19 946 37 (102) 3/10 (30)
33.1 506 20 (54)c 2/10 (20)

aRepresents the number of bacterial cells attached to the tracheal
epithelium determined at a magnification of31000. Values represent
the average of four samples6 standard deviation, and the values in
parentheses represent the percentage relative to the parent strain.
bRepresents the number of dead mice/number inoculated.
c Significant differences (P, 0.05) were observed between the adher-
ence of mutant 33.1 and of the parent strain.
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different A. pleuropneumoniaegenes that could play a
role in virulence.
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