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Abstract
In the present scenario, growing population demands more food, resulting in the need for sustainable agriculture. Numerous 
approaches are explored in response to dangers and obstacles to sustainable agriculture. A viable approach is to be exploiting 
microbial consortium, which generate diverse biostimulants with growth-promoting characteristics for plants. These bioinocu-
lants play an indispensable role in optimizing nutrient uptake efficiency mitigating environmental stress. Plant productivity 
is mostly determined by the microbial associations that exist at the rhizospheric region of plants. The engineered consortium 
with multifunctional attributes can be effectively employed to improve crop growth efficacy. A number of approaches have 
been employed to identify the efficient consortia for plant growth and enhanced crop productivity. Various plant growth-
promoting (PGP) microbes with host growth-supporting characteristics were investigated to see if they might work cohesively 
and provide a cumulative effect for improved growth and crop yield. The effective microbial consortia should be assessed 
using compatibility tests, pot experimentation techniques, generation time, a novel and quick plant bioassay, and sensitivity 
to external stimuli (temperature, pH). The mixture of two or more microbial strains found in the root microbiome stimulates 
plant growth and development. The present review deals with mechanism, formulation, inoculation process, commercializa-
tion, and applications of microbial consortia as plant bioinoculants for agricultural sustainability.

Abbreviations
ACC   1-aminocyclopropane-1-carboxylate
K  Potassium
N  Nitrogen
P  Phosphorus

PGP  Plant growth promotion
PGPR  Plant growth-promoting rhizobacteria
PSMs  Phosphorus-solubilizing microbes
Zn  Zinc
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Introduction

Addressing global food insecurity is a persistent challenge 
that is expected to exacerbate due to climate change, rapid 
population expansion, and a shortage of arable land. The 
significant and anticipated growth in global population will 
place substantial pressure on food security. In an attempt to 
meet the rising demand for food, there has been an unbal-
anced utilization of agrochemicals, including fertilizers 
and pesticides for crop production. In light of the grow-
ing population and dwindling natural resources, there is a 
pressing requirement to enhance agricultural productivity 
in a sustainable and environmental friendly manner. Tradi-
tional agricultural methods heavily rely on chemical ferti-
lizers to boost productivity, but this practice poses risks to 
agro-ecosystems, including contamination of the food chain, 
deterioration of soil quality, and water pollution [1]. Plant 
growth frequently takes place in various challenging envi-
ronments, including soils with varying degrees of acidity 
and alkalinity. The pH of the soil, controlled by hydrogen ion 
concentration, plays a crucial role in regulating the chemical 
properties of nutrient colloidal solutions for plants. When 
soil pH surpasses certain thresholds, it can lead to various 
stresses in plants, including hydrogen ion toxicity and imbal-
ances in nutrients, resulting in toxicities or deficiencies. In 
agriculture, one approach to address these issues has been 
to breed plants for stress tolerance and combine these efforts 
with appropriate agronomic practices to manage such chal-
lenges [2]. It is crucial to make transition toward sustainable 
agricultural practices, such as the utilization of plant growth 
promotion (PGP) microbes as an alternative to traditional 
chemical fertilizers to address these challenges. This shift 
can contribute to the restoration of agro-ecosystems.

All plants require a variety of minerals from their sur-
roundings in order for their vegetative and reproductive 
tissues to grow and develop appropriately. These miner-
als have a variety of uses, such as being ionized species 
that balance charges in cellular compartments, cofactors 
in enzyme activities, osmotic solutes required to maintain 
the right water potential, and structural elements of macro-
molecules [3]. Based on the proportional amounts required 
for plant growth, minerals can be classified into two types. 
The macronutrients are sulfur (S), calcium (Ca), magne-
sium (Mg), phosphorous (P), nitrogen (N), and potassium 
(K). In plants, these elements are often present in amounts 
higher than 0.1% of dry tissue weight. Iron (Fe), zinc (Zn), 
manganese (Mn), copper (Cu), boron (B), chlorine (Cl), 
molybdenum (Mo), and nickel (Ni) are among the cur-
rently recognized micronutrients; these are often found at 
concentrations less than 0.01% of dry tissue weight.

The PGP microorganisms refers to any type of microbe, 
including bacteria, fungi, algae, and actinomycetes, that 

promotes plant development through direct or indirect 
methods [4]. They play a vital role for crop production and 
protection for sustainable agriculture. They boost diversity 
and interaction with other beneficial microbes, enhance 
soil fertility, boost crop productivity, prevent the growth 
and infectious activity of possible diseases, and overall 
preserve the sustainability of the systems. The real aspect 
of these interactions in the environment, where a variety of 
microbial species can occur, is overlooked despite the fact 
that this has improved our understanding of plant–microbe 
interactions [5].

The term microbial consortium is a group of two or more 
beneficial microorganism that work together and contain 
diverse array of microbes that exhibited PGP through a 
variety of mechanisms and enhance activity against other 
pathogens [6]. Various studies have reported that inoculation 
of microbial consortium performs better task than individ-
ual microbial strain [7]. Numerous studies have shown that 
the effect of biofertilizer containing two or more microbial 
strains also referred to as co-inoculation or consortium is 
more advantageous than the application of a single microbial 
strain. The PGP microbial formulation used as biofertilizer 
generally uses a single microbial strain. However, incon-
sistent outcomes were observed when this biofertilizer was 
applied to the soil, because it is difficult for alone strain 
to break down complex substances like cellulose, execute 
two-step or multi-step reactions, and maintain stability in 
an unstable environment. Microbial consortia are a great 
alternative to improve plant growth, increase crop productiv-
ity, soil properties and biodiversity, and reduce the chemical 
inputs [8]. The mixture of two or more microbial strains 
found in the root microbiome stimulates plant growth and 
development. The present review deals with mechanism, 
formulation, inoculation process, commercialization, and 
applications of microbial consortia as plant bioinoculants 
for agricultural sustainability.

Mechanism of Plant Growth Promotion 
by Microbial Consortia

Plant growth-stimulating microbes facilitate the plant 
growth by two types of mechanisms either direct and 
or indirect mechanisms. Direct mechanism of microbes 
stimulates the plant growth directly through production 
of various plant growth stimulators, such as auxin, cyto-
kinin, and gibberellin; iron sequestration through the 
production of siderophores; and availing the macro- and 
micronutrients through fixation, chelation, and solubiliza-
tion. The indirect mechanism facilitates the plant growth 
by protecting the plants from biotic stress exerted by path-
ogens (bacteria, fungi, virus, and oomycetes) and pest 
(insects) [9]. Production of cell wall-degrading enzymes 
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(chitinase, amylase, protease, xylanase, and pectinase), 
antibiotics hydrogen cyanide, siderophore, and 1-amino-
cyclopropane-1-carboxylate (ACC) deaminase activity 
[10, 11] (Fig. 1).

Absorption of Nutrients from Soil

The appropriate growth of plants requires different types of 
macro- (nitrogen, potassium, and phosphorus) and micro-
nutrients (iron and zinc). Plants assimilate these nutrients 
from soil and in soil various forms of nutrients, i.e., soluble, 
and insoluble forms. In between both the forms, plants could 

Fig. 1  Mechanism of microbial consortia for enhancement of crop productivity for agricultural sustainabilty
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absorb only soluble form of nutrients. Most of the soil in the 
world lacks the soluble form of nutrients which is one of the 
main reasons for the plant growth depletion and low produc-
tivity. Microbes from soil and plant niches could convert 
the insoluble form of nutrients to soluble form via fixation 
and solubilization mechanism. Fixation process avails the 
nitrogen nutrients, whereas solubilization process coverts 
insoluble form to soluble form of phosphorus, potassium, 
and zinc [12–14].

Nitrogen Fixation

Nitrogen is essential macronutrients as it is the most impor-
tant structural nutrient of the cell components (DNA, pro-
tein, and RNA) of plant [15]. Plant absorbs nitrogen from 
soil in the reduced form, i.e., ammonia, and this form of 
nutrient is in low concentration. Although, nitrogen is the 
most abundant nutrient in the atmosphere in the form of 
dinitrogen gas which is unavailable for plant use. To fulfill 
the plant requirement of nitrogen, urea was being utilized 
by the farmers which was prepared synthetically through 
Haber–Bosch process. The continue practice of urea in the 
fields has resulted in the serious damages to the environment 
and the humans [16].

As a substitute, microbes with nitrogen fixation capabil-
ity could be used for reducing the dinitrogen into ammonia 
through the process of biological nitrogen fixation. Microbes 
with the attribute of nitrogen fixation have been reported 
for having specialized gene named nif which codes for a 
complex system of enzyme nitrogenase [17]. The complex 
system of enzyme nitrogenase was elucidated into two dif-
ferent metalloenzyme components consisting of iron protein 
dinitrogenase reductase (provides electron with high reduc-
ing power) and a metal cofactor dinitrogenase (uses elec-
trons to reduce the dinitrogen into ammonia). On the basis 
of metal cofactor, three types of nitrogen-fixing systems 
were identified, namely Mo-nitrogenase (most abundantly 
found), V-nitrogenase, and Fe-nitrogenase, which are present 
in among various genera of bacteria [18].

In a report, nitrogen-fixing bacterial strain EU-A3SNfb 
Rahnella sp. was combine with P and K-solubilizer, namely 
Bacillus tropicus EU-ARP-44 and B. megaterium EU-
ARK-23, respectively. The combined effect of these strains 
significantly exhibited growth and physiological parameter 
of Aegilops kotschyi and wheat crop under greenhouse and 
field conditions [19]. In an another report, a microbial mix-
ture of Erwinia sp. EU-B2SNL1 (N-fixer), Chryseobacte-
rium arthrosphaerae EU-LWNA-37 (P-solubilizer), and 
Pseudomonas gessardii EU-MRK-19 (K-solubilizer) were 
inoculated on barley. The result showed that the combined 
effect of these strains increased physiological parameters 
and overall growth and was found to be more efficient as 
compared to a single inoculum [20]. A study by Kour et al. 

[21] reported N-fixing and K-solubilizing bacterial strains, 
namely Acinetobacter guillouiae (EU-B2RT.R1) and Acine-
tobacter calcoaceticus (EU- LRNA-72) inoculated in onion. 
The result revealed that co-inoculation of these strains posi-
tively impacted shoot length, root length, biomass, phenolic, 
flavanoids, total soluble sugars, and chlorophyll content.

Phosphorus Solubilization

Phosphorus (P) is one of the indispensable macronutrients 
required for the various key metabolic processes in plants 
life. Energy generation, macromolecules biosynthesis, cell 
division, photosynthesis, signal transduction, member integ-
rity respiration, and fixation of nitrogen are the various sig-
nificant processes in which phosphorus nutrient plays an 
important role. Plants acquire P from the soil present in the 
top layer but the amount for plant uptake is only 0.1% of the 
total available amount (50 to 3000 mg  kg−1), due to cations 
precipitation, absorption, immobilization, and organic form 
interconversion [22]. Being an essential nutrient farmer has 
totally relied on phosphatic fertilizers and its excessive uti-
lization had precipitated the soil and accumulated the heavy 
metals. The precipitation and heavy metal accumulation 
caused various determinantal effects on fertility soil, animal, 
and consumers health [23]. Looking at the health hazards 
of using chemically processed fertilizers, an eco-friendly 
approach exigency is very important. Phosphorus-solubi-
lizing microbes (PSMs) have been known as an appropriate 
approach without any cons [24].

Phosphorus-solubilizing microbes solubilize the P with 
the help of solubilization mechanisms and they are converted 
in to soluble form with the help of several processes, namely, 
production of protons, organic acids, inorganic acid, sidero-
phores, hydrogen sulfide  (H2S), and extracellular enzymes 
[12]. Organic acid production releases the soluble form 
of P by lowering the pH and complexation the metal ion. 
Microbes produces various organic acids like malic acid, 
lactic acid, lactic acid, gluconic acid, oxalic acid, tartaric 
acid, and 2-ketogluconic acid which helps in releasing the P 
[25]. The production of inorganic acids (hydrochloric acid, 
carbonic acid, nitric acid, sulfuric acid, and  H2S) solubi-
lizes P with low efficiency as compared to organic acid. 
Protons production also lower the pH of the soil aids the 
dissolution of phosphorus. The production of exopolysac-
charides releases the soluble form by forming the complex 
with metal ions present in soil and this extrapolated as a 
mean solubilization. Microbes could also solubilize the P 
through enzymatic actions of phytases and phosphonatases 
and C–P lyases [14].

Numerous microorganisms from diverse habitats have 
been reported for solubilizing the P nutrient and found to 
enhance the growth of the host plants upon inoculation 
[26]. In a study Devi et al. [27] reported that phosphorus 
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solubilizer and nitrogen-fixing bacterial strain identified as 
Pseudomonas gessardii and Erwinia rhapontici were evalu-
ated on Amaranthus crops. The study showed that co-inoc-
ulation of both of strain significantly enhances plant growth 
and physiological parameter such as content of chlorophyll, 
carotenoids, sugar, phenolics, and flavonoids. In a different 
report, three efficient bacterial strains identified as Bacillus 
subtilis (P-solubilizer), Bacillus amyloliquefaciens (K-sol-
ubilizer), and Pseudomonas extremorientalis (N-fixer) were 
evaluated on pearl millet as single inoculum and as bacterial 
consortium. The study showed that combine inoculation of 
consortia promote physiological parameter including content 
of sugar, phenolics, flavonoids, chlorophyll, carotenoids, and 
overall growth as compared to single inoculum [28]

Potassium Solubilization

Potassium is the third essential macronutrient for plants 
which plays role in physiological and metabolic processes, 
such as growth, photosynthesis, accumulation of sugar, 
and regulates the rate of photosynthetic carbon assimila-
tion [29]. Additionally, K plays roles like root growth, high 
yield seed development, metabolism of organic acids, fats, 
carbohydrates, nitrogenase compounds, biosynthesis of pro-
teins, stomata regulation, water uptake and could mediate 
resistance against biotic stresses caused by various patho-
gens [30]. Plant assimilates the K from soil in the soluble 
form, i.e.,  K+ ion which is present in limited amount and 
about 80–90% of K is exist insoluble form including biotite, 
illite, orthoclase, muscovite, zeolite, glauconite, chlorite, 
and vermiculite [31]. To fulfill the limitation of K, potash 
fertilizer is widely used which have proven to be hazardous 
to consumers and environment. To overcome this constraint, 
potassium-solubilizing microbes are one of the eco-friendly 
approaches which could solubilize the insoluble form and 
release the  K+ ion. Likewise, solubilization P, insoluble form 
of K is dissolute by the production of organic acids, extracel-
lular enzymes, and exopolysaccharides [32].

In a report, three bacterial strains namely Halomonas 
aquamarina (K-solubilizer), Erwinia persicina (P-solubi-
lizer), and Pseudomonas extremorientalis (N-fixer) were 
evaluated on chilli. The study showed the combined effect 
of these strains significantly improved plant growth param-
eters such as root length, shoot length, fresh weight, dry 
weight, and physiological parameters, including content of 
phenolics, flavonoids, sugar, chlorophyll, and carotenoids 
as compared to single inoculum [33]. In a different report, 
bacterial strains identified as Bacillus sp. (K-solubilizer), 
Pseudomonas marginalis (P-solubilizer), and Stenotropho-
monas rhizophila (N-fixer) were inoculated on foxtail crop. 
The study revealed that co-mixture of these strains exhibited 
growth of plant as compared to single inoculums, chemical 
fertilizer, and untreated control [34].

Zinc Solubilization

Zinc is the most significant micronutrient among all other 
which plays crucial role in regulation of cofactors that acti-
vates wide range of enzymes. Additionally, this nutrient also 
helps in the maintaining the cellular membrane integrity, 
synthesis of proteins, regulating of auxin biosynthesis, and 
pollen production. Plants uptake zinc from the soil in form 
of zinc ions and the concentration of Zn ion is very less. 
Zinc sulfate, zinc oxide and zinc carbonate are in very high 
concentration which cannot be assimilated by the plants, due 
to which plants have zinc deficiency which cause problem, 
such as yellowing of the young plants, necrosis, shortened 
internode, sterility of pollens, and spikelet [35]. Zinc solubi-
lization mechanism exhibited by zinc-solubilizing microbes 
could alleviate the deficiency of the nutrient by converting 
the insoluble form to soluble form. Microbes could solu-
bilize the insoluble form of zinc either producing various 
organic acids such as 2-ketogluconic acid and 5-ketoglu-
conic acid which lowers of the pH or by metabolites that 
form a complex with zinc ion. In literature, various zinc-sol-
ubilizing microbes from diverse niches have been reported 
which also helps in the plant growth promotion [36].

In another investigation, zinc-solubilizing bacteria Strep-
tomyces venezuelae and Klebsiella aerogenes were found to 
enhance Zn biofortification in the wheat upon inoculation 
with ZnO nanoparticles and improving its growth [37]. In 
a finding, potential zinc-solubilizing bacterial strain identi-
fied as Bacillus sp. SH-10 and Bacillus cereus SH-17 were 
evaluated on rice as individually or as combine mixture. The 
mixture of bacterial strain improve yield and Zn content as 
compare to chemical fertilizer [38].

Formulation and Inoculation Process 
of Microbial Consortia

The primary objective when contemplating plant inoculation 
with PGP microbes is to identify the most efficient bacterial 
strain or microbial consortia that exhibits multifarious plant 
growth-promoting attributes and can achieve the desired 
outcome for the specific target crop. Subsequently, the next 
step involves creating a tailored inoculant formulation for 
the target crop, devising a practical application method, 
and considering the limitations of the growers. The main 
practical features of inoculants expected by the grower are 
that the inoculant has to be compatible with routine field 
practices. Secondarily, important features of microbial con-
sortia are compatibility with the seeding equipment at the 
time of seeding, ability to work under different field condi-
tions, types of soil, tolerance of abuse during storage, ability 
to help prolong survival of the inoculated microbe for the 
time needed by the plant, shelf life that lasts more than one 
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season, reproducible results in the field, and human, animal, 
and plant safety by eliminating the use of hazardous materi-
als [39].

The formulation of a microbial consortium involves the 
following steps: preparing the inoculums; adding additives; 
choosing a carrier; sterilizing the carrier material; upscal-
ing; performing quality control processes; and packaging 
the product appropriately with the best distribution chan-
nels. Understanding the complexities of microbial interac-
tions in their natural environments is the biggest challenge in 
designing the consortium. As a result, it will become easier 
to design consortia when you have a solid understanding 
of metabolic pathways, compatibility of microbes and their 
limitations [40]. The process of discovering and character-
izing consortia involves a bottom-up selection approach. 
This approach encompasses the collection of microbial 
cultures and the analysis of their properties through cul-
ture-dependent screening techniques [41]. Screening tests 
primarily depend on specific microbial functions, such as 
nitrogen fixation, antibiotic production, siderophore produc-
tion, phosphate solubilization, plant hormone production, 
and ACC deaminase activity.

The most promising microbial consortium is then 
assessed in greenhouse conditions, and further testing is 
carried out in the field following a bottom-up approach. It 
is worth noting that while many microbial strains may dem-
onstrate success in laboratory and greenhouse settings, they 
may encounter challenges when it comes to enhancing the 
suboptimal plant microbiome in the field. Laboratory test-
ing may offer limited insights. For instance, a Pseudomonas 
strain that exhibited antagonistic activity against Phytoph-
thora infestans when developed in co-culture with another 
Pseudomonas strain, lost its biocontrol activity under field 
conditions [42]. Top-down strategies enable the study of 
microbiome properties at a molecular level, allowing for 
the selection of PGP-consortium candidates based on this 
molecular information. This has become possible through 
the direct identification of core and satellite microbiota in 
environmental samples, relying on single amplicon variants 
obtained through high-throughput sequencing of nucleic 
acids [43]. Formulations are essential to maintain the long-
term viability of microbial cells during storage and to pro-
vide an adequate number of viable cells for field-grown 
plants. Unfortunately, there is a shortage of formulations 
available for many microbes, particularly Gram-negative 
bacteria [44].

There are only few different ways to distribute PGP 
microbes as microbial consortium in the field. Farmers are 
not keen on purchasing specialized machinery to be used 
for microbial-based products. Therefore, prepared microbial 
inoculation should be easily applied using common farming 
equipment and simple procedures [45]. Formulated micro-
bial consortia as biofertilizers can be used for a variety of 

applications, including seed inoculation with powder formu-
lations, mixing water and peat powder, dry fertilizers mixed 
with the seeds, soil application and seedling root dip, and 
suspending the biofertilizer in water along with seeds [46].

Soil Inoculation

When microorganisms are put directly into the soil, a pro-
cess known as soil inoculation, they face competition from 
native microbes that have already adapted to the local envi-
ronment and outnumber the microbial inoculums [8]. It is 
possible to significantly influence the soil’s microbiological 
balance and improve the environment for plant growth and 
protection using inoculants of mixed cultures of beneficial 
microorganisms [47]. Granules or liquid inoculants can be 
added to the seedbed to inoculate the soil. The possibil-
ity that part of the inoculants will be lost during seeding 
machinery and seeding is decreased when the soil is inocu-
lated. Small seeds are more benefited by soil inoculation 
than by seed-coat inoculation because they can be exposed 
to higher quantities of inoculants [39]. A microbial consor-
tium solution is introduced to the soil during soil soaking as 
closely as feasible to the host root. This is essential because 
it is in the rhizosphere that the PGP microbes will be able to 
carry out various essential tasks for supporting plant growth 
promotion, such as solubilization of phosphate, potassium, 
and zinc, and synthesis of siderophores and phytohormones 
[48]. In an investigation, [49] reported that by introducing 
inoculums through soil, Bacillus improves plant growth. 
The plant growth-promoting (PGP) microbes inoculated 
through soil improved the growth of Ranunculus asiaticus 
and enhanced nutrient efficiency and water absorption [50].

Root Inoculation

The process of root inoculation involves submerging roots 
in a microbial solution. After being inoculated, the seedling 
is set up on a growing medium that is appropriate for it. 
Because inoculation may be done on seedlings of similar 
sizes, this method allows for the standardization of plant 
size. Through putting the inoculum in direct contact with 
the host roots, this inoculation approach also improves root 
colonization [16]. The various mechanisms employed by 
microbes to co-operate and compete on root suggest that 
microbe–microbe interactions play fundamental roles in 
shaping and structuring microbial networks in environment. 
The root of most the plant is associated with mycorrhiza. 
The mutualism with mycorrhizas significantly enhance the 
active surface of roots, thereby facilitating exploration of a 
larger soil volume for nutrients and water uptake and also 
increase the translocation between the roots and shoots of the 
host plant [51]. A study concluded that induction of induced 
systemic resistance (ISR) against the fungus Colletotrichum 
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graminicola was reported when Pseudomonas putida was 
applied as a root inoculant in maize plants [52]. In a similar 
study showed that Burkholderia sp. improved Vitis vinifera 
resistance to low temperatures, altered its metabolism of car-
bohydrates, and enhanced plant growth and yield through 
root inoculation Fernandez et al. [53].

Seed Inoculation

Co-culture inoculation treatment with seed is cost-effective 
and accessible method for field applications [54]. The inocu-
lants are mixed with the seeds manually, with the use of 
huge dough or cement mixers, inexpensive rotating drums, 
or mechanical tumbling gadgets. Beneficial microorganisms 
can inoculate seeds to assist and prevent infections and to 
colonize the roots of the seeds when they are planted in 
soil [55]. The primary benefit of using the microbial con-
sortia seed inoculation technique is that it transports bac-
teria directly to the rhizosphere, where they can bind with 
plants [55]. When seeds are inoculated in leguminous plants, 
rhizobia proliferate in the rhizosphere, where they colonize 
further, form nodules, and fix nitrogen to maximize produc-
tivity and yield [56]. Although seed inoculants can interact 
with fungicides used for seed treatment, they also establish 
the plant before the pests do and can strengthen microbial 
defenses. In contrast, mature plants require the suppres-
sion of an established microbiome in order to develop an 
entirely distinct one [57, 58]. There are many drawbacks to 
seed inoculation. Only a little quantity of inoculant can be 
coated on each seed, especially small ones. This could be a 
constraining factor since most PGP microbe may require a 
threshold of bacteria for successful inoculation. The sow-
ing device has the potential to remove an inoculant that is 
not securely bonded with pelleting [39]. In a study by Kaur 
et al. [20] coated barley seed with microbial consortium with 
sugar solution by 1:1 ratio of before sowing. In a similar 
study, Negi et al. [19] treated Aegilops kotschyi and wheat 
seed with microbial mixture and sugar solution in ratio of 
1:1 before sowing.

Commercialization of Microbial Consortia

Commercialization of microbial consortium started in 1895 
when Nobbe and Hiltner introduced the rhizobia product 
under the “Nitragin” name. N. V. Joshi initiated the market-
ing of Rhizobium in India to promote the growth of legu-
minous plants [59]. Throughout its ninth five-year plan, the 
Ministry of Agriculture launched the National Project on 
Development, which aimed to popularize and promote the 
production of biofertilizers while establishing standards 
for various biofertilizers, training, and exploitation. The 
National Biofertilizer Development Center was established 

with six regional centers [60]. Worldwide, there are over 700 
products available in the market and more than 200 biopes-
ticide active ingredients are registered. In 2008, there were 
just 15 biopesticides authorized for use in India under the 
IA (1968), accounting for a mere 4.2% of the total pesticide 
market. Nevertheless, growth at a pace of 10% is expected 
to occur over the next several years [61]. The government 
measures in favor of sustainable and environmentally 
friendly agriculture have a significant impact on Asia. In 
India, there are about 100 public and commercial enterprises 
that produce biofertilizer; the following is a list of a few of 
these companies and the important products they produce. 
The Ministry of Agriculture passed a new decree on the 
control of biofertilizer production and marketing standards 
concerning different kinds of microorganisms. The product 
should fulfill seven quality parameters, like physical form, 
minimum count of viable cells, contamination level, pH, 
particle size in the case of carrier-based materials, maxi-
mum moisture percent by weight of carrier-based products, 
and efficiency character [51]. In bacterial bioproducts, the 
minimum viable cells to be maintained are 5 ×  107 CFU/g−1 
for solid carrier or 1 ×  108 CFU  mL−1 for liquid carrier. For 
products containing mycorrhizal fungi, at least 100 viable 
propagules must be present per gram of product. Nitrogen-
fixing efficiency of biofertilizer product should be capable 
of fixing at least 10 mg N  g−1 of sucrose consumed and for 
phosphate solubilization product a zone of solubilization of 
at least 5 mm in a media. AMF products should provide 80 
infection points in roots  g−1 of inoculum [62].

Applications of Microbial Consortia 
in Agriculture

PGP microbe as microbial consortium enhances agro-
nomic efficiency by reducing production costs and envi-
ronmental pollution. This is achieved because effective 
PGP microbes decrease the need for chemical fertilizers 
[63]. Different microbial communities, including fungi, 
bacteria, actinomycetes, and yeasts, serve as inoculants, 
primarily promoting plant growth through various mech-
anisms. These include nitrogen fixation, phosphate, and 
potassium solubilization, exopolysaccharide secretion, 
biocontrol activities, organic matter decomposition, and 
siderophore production [63]. Microbes are employed to 
release soil nutrients for crops without harming soil fer-
tility, ensuring an environmentally sustainable approach. 
Prior research has demonstrated their beneficial impacts 
on the growth and yield of diverse crops, soil types, and 
even under biotic and abiotic stress conditions. Moreover, 
these microbes have also proven effective as biocontrol 
agents against a range of plant pathogens [1]. Microbial 
consortia have demonstrated their potential as sustainable 
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enhancers of plant growth and as aids in coping with vari-
ous environmental stresses. Given the extensive, long-term 
evolutionary interactions between plants and microbes, it 
is highly likely that there are still many undiscovered ben-
efits that can be harnessed from PGP microbes [2].

PGP microbe are free-living bacteria that play a direct 
role in promoting plant growth and enhancing root systems 
in plants [64]. Various pieces of literature have revealed 
that these bacteria enhance plant growth and crop yields 
through their plant growth-promoting activities. The lit-
erature shows that a microbial consortium has a positive 
impact on PGP activities. Numerous reports indicate that 
a wide array of microorganisms thrive in their challenging 
environments, engaging in interactions with other microor-
ganisms, both intra- and interspecifically. In natural envi-
ronments, the majority, around 99%, of microorganisms 
exist in the form of microbial consortia [65]. Numerous 
studies have demonstrated that individual microorgan-
isms can have a positive impact on plant growth. How-
ever, in natural settings, it is evident that multiple species 
within microbial consortia can perform a broader range 
of beneficial functions for ecosystems compared to single 
microorganisms. The interaction between PGP microbes 
and plants synergistically contributes to the overall ben-
efits for the plant microbiome [66]. Plants further support 
the growth of PGP microbe by producing various storage 
substances and root exudates, which serve as sources of 
nutrition for these beneficial microbes [67].Microbial con-
sortia are abundant in various natural settings, such as bio-
films, food products, soils, and wastewater. These consor-
tia are prevalent in soil and exhibit superior performance 
compared to individual microorganisms in accomplishing 
multiple functions. When employed as inoculants, they 
demonstrate the capacity to thrive in dynamic environ-
ments, as they can occupy a wider resource niche within 
the soil when working together rather than individually. 
This enables them to compete more effectively with the 
native soil microorganisms [68]. Furthermore, considering 
the intricate interactions between soil microbiomes and 
plants, utilizing microbial consortia appears to be a more 
practical strategy compared to using single microorgan-
isms as inoculants [69].

In an investigation, microbial mixture of Bacillus megate-
rium, Arthrobacter chlorophenolicus, Enterobacter sp., and 
P. aeruginosa increased grain yield by 75.80% and 40.09% 
under greenhouse and natural conditions, respectively [70]. 
In an another investigation, microbial mixture of Bacillus 
cereus, Lysobacter antibioticus, and Lysobacter capsici 
increase the yield by 2909.8 kg/666.67  m2 [71]. In a finding, 
microbial consortium of Enterobacter spp. ZW32, Ochro-
bactrum sp. SSR, and Enterobacter spp. was inoculated on 
wheat crop. The study revealed that mixture of microbial 
strain significantly enhance 15% grain yield [72] (Table 1).

Limitations and Challenges

An essential component of any effective co-cultivation 
system is strain compatibility [73]. In addition to being 
able to grow effectively in the same growing conditions 
media, pH, temperature, and oxygen requirement. The co-
cultivation constituent stains must also be able to avoid 
producing harmful substances that might seriously impair 
the other microbial community members [74]. Microbial 
strains from the same species can be used to meet these 
requirements because their growth rates and requirements 
for growing environments are identical [75]. However 
when several strains from various species are employed 
to build the synthetic microbial consortium, issues occurs 
since different species have varied requirements for media 
and have considerably different growth rates. Success-
ful synthetic microbial consortia not only carry out the 
desired functions but also sustain cell growth in a stable 
and robust way. More stable relationships among consor-
tium members are formed when they highly depend on 
each other. Microbial interactions that lead to the inter-
dependence and stable relationships include cross-feeding, 
detoxification, and biofilm formation, which are important 
consortium design principles [76].

It is not intended for the industrial fermentation pro-
cess used in bioproduction for co-cultivation partners to 
use the same growth resources as this will lead to unsta-
ble co-cultivation and competitive exclusion. Nutritional 
divergence or syntrophy techniques have been used in 
co-cultivation systems to overcome this problem. These 
techniques provide effective energy and carbon chan-
neling, which contribute to the formation of dynamic and 
symbiotic microbial interactions within the consortium 
[77]. It is challenging to use this strategy, though, because 
every organism has different nutritional needs and prefer-
ences. Consequently, it is preferable to have cross-feeding 
or nutritional divergence within a co-cultivation since it 
enables the removal or reduction of a microbial species 
from the consortium and permits coexistence [78].

The most significant obstacle to bioproduction in micro-
bial consortia is maintaining the population ratio at the 
desired level during co-cultivation. The population com-
position of co-cultivations can vary significantly because 
of a number of reasons, including substrate competition, 
variations in doubling times, and hazardous by-products 
generated by consortium members. As the culture vol-
ume increases, the stability of the culture population ratio 
declines, which could result in system heterogeneity [79]. 
To prevent one strain from eradicating the other, there are 
strategies to maintain the strain-to-strain ratios among 
the co-cultivation members. Although it is frequently 
seen that the sub-population ratio varies or fluctuates over 
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the cultivation period, fine-tuning the inoculation ratio 
between co-cultivation partners has a significant impact 
on overall productivity. Additionally, research on mutu-
alistic growth has been done to keep the engineered co-
cultivations’ intended composition of the population [80].

Conclusions

A new approach to alteration in metabolic pathway balanc-
ing is provided by microbial biosynthesis via co-cultivation 
engineering. It increases the range of options for fine-tuning 
intricate metabolic pathways and can be tailored for effective 
synthesis of various bioproducts. Compared to mono-culti-
vation systems, co-cultivation engineering offers a number 
of benefits, including increased productivity, robustness, 
modularity, and tolerance (toxic intermediates and waste 
created by one partner are consumed or degraded by the 
other partner). Co-cultivation fermentations have the poten-
tial to improve production efficiency and enable the use of 
less expensive substrates. Furthermore, without sacrific-
ing output or quality, artificial consortiums provide a solu-
tion to solve the problems associated with the functional 
expression of complicated biosynthetic pathway enzymes. 
They may also lessen the work involved in reconstructing 
recombinant biosynthesis pathways. Co-cultivation of sev-
eral populations is more difficult since it is unknown how 
individual strains would behave when grown together using 
standard techniques, and it may also be harder to regulate as 
the number of constituent strains or species increases. But 
recent advances in co-cultivation engineering have signifi-
cantly increased our comprehension of how microbes inter-
act in communities. Synthetic biology techniques must be 
used to overcome certain inherent obstacles, even though 
the potential of microbial consortia seems extremely prom-
ising. In the near future, it is expected that co-cultivations, 
or polycultures made up of several specialized members 
will be created and used to address the demand for increas-
ingly complex biochemical pathways. The creation of novel 
microbial consortia with distinct roles should be explored 
through the use of metabolic engineering and synthetic biol-
ogy techniques. Since functional genomics (metabolomics, 
proteomics, and transcriptomics) is still expensive, new 
methods must be developed to investigate community pro-
files and interactions among microbes in consortium culture.
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