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Abstract
The current study aimed to evaluate the plant growth-promoting (PGP) potential of endophytic strain Bacillus subtilis 
KU21 isolated from the roots of Rosmarinus officinalis. The strain exhibited multiple traits of plant growth promotion viz., 
phosphate (P) solubilization, nitrogen fixation, indole-3-acetic acid (IAA), siderophore, hydrogen cyanide (HCN), lytic 
enzymes production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. The isolate also exhibited antago-
nistic activity against phytopathogenic fungi, i.e., Fusarium oxysporum, Fusarium graminiarum, and Rhizoctonia solani. 
The P-solubilization activity of B. subtilis KU21 was further elucidated via detection of glucose dehydrogenase (gdh) gene 
involved in the production of gluconic acid which is responsible for P-solubilization. Further, B. subtilis KU21 was evalu-
ated for in vivo growth promotion studies of tomato (test crop) under net house conditions. A remarkable increase in seed 
germination, plant growth parameters, nutrient acquisition, and soil quality parameters (NPK) was observed in B. subtilis 
KU21-treated plants over untreated control. Hence, the proposed module could be recommended for sustainable tomato 
production in the Northwest Himalayan region without compromising soil health and fertility.
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Graphical Abstract

Introduction

The productivity of crops must be increased in developing 
countries to feed the growing population, and this is fre-
quently achieved using chemical fertilizers [1, 2]. However, 
long-term use of these fertilizers has been proven to reduce 
bacterial diversity in soil and can also have negative envi-
ronmental consequences, such as phosphorus and nitrogen 
leaching into groundwater leading to increased soil and 
groundwater contamination [3]. This compelled the scien-
tists all over the world to search for environment friendly 
and cost-effective solutions to mitigate this in a sustainable 
manner. The use of efficient, nutrient-mobilizing microor-
ganisms also known as plant growth-promoting bacteria 
(PGPB) is one way to reduce the need of chemical fertiliz-
ers and simultaneously restoring the soil health and fertility 
in a sustainable manner [4, 5].

PGPB which are found around plant roots (rhizospheric) 
and/or inside plant tissues (endophytic) are well known to 
improve plant/soil health and plant productivity [4, 6–8]. 
Without causing any visible symptoms, bacterial endo-
phytes colonize plant tissues and form beneficial relation-
ships with their host plant via improving nutrient uptake 
through fixation of nitrogen, solubilization of minerals such 

as phosphorus and potassium, production, and regulation 
of phytohormones, i.e., IAA and ethylene, respectively. 
Also, a multitude of plant endophytes prevents host plants 
against phytopathogens through the production of hydrolytic 
enzymes, HCN, siderophores, and activation of plant defense 
system [9].

It is believed that all plants on the earth are associated 
with one or more endophytic bacteria [10]. Of these, medici-
nal plants choose endophytes in a specific manner based on 
factors such as the root exudate composition and the second-
ary metabolites produced by the plant [11]. As a result, the 
endophytic bacterial communities linked to medicinal plants 
become more diverse according to their needs for nutrition, 
the type of soil, and the environment they inhabit. Therefore, 
medicinal plants are the possible source for discovering new 
endophytic bacterial species, which may subsequently be 
utilized as bioinoculants for environmentally friendly farm-
ing methods.

In the last decade, a vast number of PGP bacterial genera 
have been isolated from several medicinal plants such as 
Pseudomonas, Pantoea, Bacillus and Inquilinus, Burkholde-
ria, Citrobacter, Beijerinckia, Cedecea, Kosakonia, Lyso-
bacter, Oxynema, and Pesudoxanthomonas [12–14] among 
which Bacillus sp. subtilis is predominant. Furthermore, 
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numerous studies have also shown the potential of B. subti-
lis isolated form medicinal plants such as Duranta plumeri, 
Lonicera japonica, Clerodendrum colebrookianum Walp, 
and Pulicaria incisa to enhance plant growth and macronu-
trients uptake in crops such as cucumber [15], wheat [16], 
tomato [17], and Zea mays [18], respectively.

In the District Solan of Himachal Pradesh (India), sev-
eral plants of medicinal importance are cultivated, includ-
ing R. officinalis (rosemary), which is high in polyphenols 
and flavonoids [19]. Rosemary harbors diverse genera of 
endophytic bacteria with multifarious PGP traits [9]. Fur-
thermore, application of these bacteria (Bacillus subtilis) led 
to improved growth metrics and soil nutrient acquisition in 
R. officinalis [20]. In addition to rosemary, numerous cash 
crops are also produced commercially in Solan region. In 
terms of area and production, tomatoes are the most exten-
sively produced vegetable in this region. To boost output 
and productivity, farmers employ an excessive amount of 
chemical fertilizers. As described earlier, chemical fertiliz-
ers not only lower plant nutritive value and harm human 
health, but also endanger sustainable crop production. Keep-
ing this in view, the objective of the current study was to 
determine the impact of B. subtilis KU21 on the growth 
performance of tomato as an important economic cash crop. 
As a result, the hypothesis behind the current investigation 
is that B. subtilis KU21 is not host specific and can demon-
strate growth-promoting activities when linked with tomato. 
The study's framework focuses on the development of a B. 
subtilis KU21-based biofertilizer whose application can be 
expanded to non-specific host.

Materials and Methods

Bacterial Culture and Maintenance

Root endophytic PGP bacterium B. subtilis KU21 previously 
isolated from R. officinalis [9] was used in the present study. 
This strain was maintained on nutrient agar (NA) plates at 
4 °C for further experimentation.

In Vitro PGP Traits

The in vitro PGP activities of the strain B. subtilis KU21 
were evaluated. For qualitative P-solubilization assay, iso-
late was streaked on Pikovskaya’s agar and incubated for 
72 h at 30 °C. A clear zone formed around the colony dem-
onstrated the P-solubilization. Further quantitative assess-
ment of P-solubilization was carried out in PVK broth sup-
plemented with 5.0 g/L tricalcium phosphate (TCP) using 
vanadomolybdate method [21]. For IAA production, the iso-
late was grown in Luria–Bertani broth (LB broth) amended 
with 5 mM l-tryptophan, 0.065% sodium dodecyl sulfate, 

and 1% glycerol for 72 h at 30 °C under shaken conditions 
and was estimated colorimetrically using Salkowski reagent 
[22]. The ability of isolate to grow on DF (Dworkin and 
Foster) salt minimum medium with ACC (1-aminocyclo-
propane-1-carboxylate) as the only nitrogen source indicated 
ACC deaminase activity [23]. The nitrogen-fixing potential 
of isolate was first evaluated by its capability to grow on 
nitrogen-free medium (Jensen’s agar medium) [9] and then 
by acetylene reduction assay to check nitrogenase activity 
[24]. For nitrogenase activity, isolate was grown in duplicate 
vials for 5 days at 30 °C containing 15 mL of gas phase and 
were sealed with silicone rubber caps. The cultures were 
exposed to atmosphere of air containing 10% acetylene. 
After 2 and 5 days of exposure to acetylene, 1 mL samples 
were withdrawn from the culture vials and analyzed by gas 
chromatography with a hydrogen flame ionization detector. 
Reduction of acetylene to ethylene was determined by the 
peak height relative to a standard of 50 nmol of ethylene.

For qualitative siderophore production, isolate was spot 
inoculated on Chrome-Azurol S (CAS) agar plates and incu-
bated for 72 h at 30 °C. Formation of yellow (hydroxamate), 
pink (catecholate), or white (carboxylate) zone around col-
ony showed siderophore activity [25]. Percent siderophore 
unit (%SU) production was also determined in cell-free 
supernatant using spectrophotometric method as described 
by Schwyn and Neilands [25]. Lytic enzymes production, 
i.e., protease, amylase, and chitinase, was determined using 
spot inoculation on starch agar, skim milk agar, and minimal 
agar medium amended with 0.3% colloidal chitin, respec-
tively, and incubation for 72 h at 30 °C. Formation of clear 
zone around colony indicated respective enzymes activity 
[9]. For HCN production, the isolate was streaked on NA 
plates amended with 4.4 g/L glycine. Whatman No.1 filter 
paper strips were soaked in 0.5% picric acid in 0.2% sodium 
carbonate and was placed inside the lid of the petriplates and 
incubated at 30 °C for 72 h. Change in color of filter paper 
from yellow to brown inferred HCN production [26]. Fur-
thermore, antagonistic potential of isolate was also evaluated 
against F. oxysporum, F. graminiarum and R. solani using 
dual plate method [27]. Percent growth inhibition (%GI) was 
calculated according to Vincent [27].

Thin‑Layer Chromatography (TLC) Based Analysis 
of IAA

TLC was used to assess in vitro IAA synthesis by B. subtilis 
KU21 using the method of Chaiharn and Lumyong [28] with 
some modifications. To extract crude IAA, strain B. subtilis 
KU21 was inoculated into nutrient broth enriched with filter 
sterilized l-tryptophan (0.2% v/v) and incubated for 72 h 
at 30 °C under shaken conditions. The culture suspension 
was then centrifuged for 30 min at 10,000 rpm to produce 
cell-free supernatant. 1 M NaOH was used to adjust the pH 
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of the supernatant to 9.0. The IAA was extracted twice with 
ethyl acetate (100% v/v) at double the supernatant volume. 
The extracted ethyl acetate fraction's pH was reduced to 
2.5 using acetic acid before being evaporated in a rotating 
evaporator at 40 °C. The dried extract was dissolved in 1 mL 
of methanol (analytical grade) and used for TLC analysis. 
Simultaneously, 50 ppm of IAA standard (Sigma-Aldrich) 
was prepared.

For TLC, 100 µL of the methanol extract and IAA stand-
ard was spotted on pre-coated silica gel TLC plate (F254, 
Merck, India) using capillary tube. The solvent front, 
which consisted of isopropanol and water (30:20 v/v), was 
allowed to flow for approximately 80% of the plate. Plates 
were sprayed with Salkowsky's reagent and watched for the 
emergence of pink dots in the dark. Rf (retardation factor) 
for IAA standard and crude extract was computed using the 
following formula:

Cloning of Glucose Dehydrogenase (gdh) Gene 
Responsible for Phosphate Solubilization 
from Genomic DNA of B. subtilis KU21

The complete gdh gene sequence of B. subtilis KU21 was 
amplified as described by Chauhan et al. [24] with some 
modifications. Briefly, the genomic DNA was isolated 
using conventional method [29] followed by PCR-mediated 
amplification using gene-specific primer set (gdhF: 5′-ATG 
TAT CCG GAT TTA AAA GGA-3′ and gdhR: 5′-TTA ACC 
GCG GCC TGC CTG GAA-3′). PCR mix of 25 µL was pre-
pared with 50 ng of template DNA, 20 pmol of each primer, 
0.2 mM dNTPs, and 1U Taq polymerase in 1× PCR buffer. 
The reaction was cycled 35 times as initial denaturation at 
94 °C for 2 min, further denaturation for 45 s, annealing at 
55 °C for 45 s and extension at 72 °C for 1 min followed by 
a final extension at 72 °C for 10 min. The PCR product was 
analyzed by gel electrophoresis on 2.0% (w/v) agarose gel 
and purified using a gel extraction kit (RBCs Real Genom-
ics, New Taipei City, Taiwan). The purified fragment was 
ligated into pGEM-T cloning vector before transformation 
into chemically competent cells of Escherichia coli strain 
DH5α. Transformants were grown at 37 °C on Luria–Ber-
tani (LB) agar containing ampicillin (100 µg/mL), IPTG 
(50 mM), and X-gal (80 µg/mL) for blue/white screening of 
recombinant colonies. Transformed E. coli strains were con-
firmed for the presence of insert of gdh gene using respective 
designed primers followed by sequencing (GeNei™ Labora-
tories, Bengaluru, India). The obtained sequence was aligned 
with corresponding sequences of gdh gene of Bacillus sp. 
from the database using BLASTn program [30]. Multiple 
alignment with gdh gene sequences of genus Bacillus was 

Rf = (Distance covered by the solute)∕(Distance covered by the solvent)

implemented using CLUSTAL W. A neighbor-joining phylo-
genetic tree was constructed with other gdh gene sequences 
of related taxa retrieved from GenBank using MEGA X 
software. The sequence was submitted to NCBI GenBank 
database (accession number: MN166090).

In Vivo Plant Growth Stimulation Studies

To assess the potential of B. subtilis KU21 for enhanc-
ing plant growth, a pot experiment was conducted using 
tomato (Solanum lycopersicum cv. Solan Lalima) as test 
crop during mid-summer season for a period of two months 
(June–August 2020) at net house of Department of Basic 
Sciences, College of Forestry, Dr YS Parmar University of 
Horticulture and Forestry, Solan, (Himachal Pradesh), India.

According to the United States Department of Agricul-
ture Soil Taxonomy, the soil utilized in the pot experiment 

belongs to the Entisols order. The potting mixture was made 
by combining sand, soil, and farmyard manure (FYM) in 
a 1:2:1 ratio. The above combination was then tyndallized 
[9]. The pH of the potting mixture was tested in a 1:2.5 
(soil:water) suspension, and the electrical conductivity 
(E.C.) of the supernatant liquid was measured and expressed 
in dSm−1 [31]. Furthermore, organic carbon (O.C.) was eval-
uated using the chromic acid titration method developed by 
Walkley and Black [32]. The available N, P, and K levels of 
soil were assessed using established protocols [33].

The inoculum of B. subtilis KU21 was prepared by 
inoculating into nutrient broth and incubated at 30 °C for 
overnight under shaken conditions. Pellet of bacterial cells 
was then obtained by centrifugation at 3000 rpm for 10 min. 
The pellet was subsequently washed with autoclaved dis-
tilled water and the cell suspension was finally adjusted to 
1 × 108 CFU/mL by dilution. The suspension was employed 
as a seed treatment inoculum [24]. Tomato seeds cv. Solan 
Lalima were obtained from the Department of Vegetable 
Science, Dr YS Parmar University of Horticulture and For-
estry, Solan, (Himachal Pradesh), India, and subjected to 
surface sterilization by sodium hypochlorite (2%) for 2 min, 
followed by washing with autoclaved distilled water. The 
sterilized seeds were immersed in 20 mL (for 2 h) of pre-
pared bacterial inoculum (108 CFU/mL) supplemented with 
carboxymethyl cellulose (CMC) (0.2%) to facilitate adher-
ence of bacterial cells to seeds. Tomato seeds immersed in 
sterilized distilled water supplemented with CMC was kept 
as control. Twenty treated seeds per treatment (7 replica-
tions of each treatment) were sown in each pot (containing 
4 kg potting mixture). After 3–4 days of seedling emergence, 
thinning was done and three plants per pot were maintained. 
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Booster doses of liquid bacterial culture of the same cell 
density was applied @ 20 mL/plant near the root zone with 
15 days interval following planting (2 times).

At the termination of experiment, observations on physi-
cal parameters such as stem height and root length were 
measured from plant’s tip to the end of the stem and from 
collar area to the root end, respectively, using a foot ruler. 
Samples were dried in a hot air oven (LFAS, digital model) 
at 40 °C until a consistent weight was reached, and the dry 
weight (biomass) of the root and stem was calculated using 
a weighing balance machine (ATOM series electronic bal-
ance). Percent seed germination was recorded 3 days after 
sowing and was calculated as [34]:

The vigor index was also determined using the following 
formula [35]:

Oven-dried plant samples were ground and sieved for the 
estimation of macronutrients (NPK). The total concentration 
of N in plant samples was determined using micro-Kjeld-
hal’s method [35]. Plant samples were digested in a diacid 
mixture of HNO3:HClO4 (4:1) for P and K analysis [31]. P 
concentration was tested in the digested sample [31]. K in 
the digest was analyzed using the flame photometer (Biogen, 
Microcontroller Flame Photometer) [36].

To examine root colonizing potential of endophytic 
strain B. subtilis KU21, isolation of culturable endophytic 
bacteria was carried out after termination of the experi-
ment. For this, root samples were collected from each 
inoculated and uninoculated treatment and standard serial 
dilution spread plate technique was done on NA plates [9]. 
Recovered bacteria from treated and control treatments 
were compared (for presence/absence of inoculated strain 
B. subtilis KU21) by morpho-biochemically characteriz-
ing them as per Bergey’s Manual of Determinative Bac-
teriology [9]. Further identification of isolates was done 
at molecular levels using 16S rDNA sequence analysis 
as described by Sharma et al. [9]. Briefly, genomic DNA 
was obtained using the conventional method [29] and then 
PCR-mediated amplification was carried out [9] using a 
pair of universal primers (16SF: 5′-AGA​GTT​TGA​TCC​
TGG​CTC​AG-3′ and 16SR: 5′-AAG​GAG​GTG​ATC​CAG​
CCG​CA-3′). Using 50 ng of template DNA, 20 pmol of 
each primer, 0.2 mM dNTPs, and 1 U of Taq polymerase 
in 1× PCR buffer, a 25 µL PCR mix was created. 35 cycles 
of the reaction were performed, each consisting of 30 s 
of denaturation at 94 °C, 30 s of annealing at 55 °C, and 
1 min and 30 s of extension at 72 °C. The last extension 

Seed germination (%) =
No. of seeds germinated

No. of seeds sown
× 100

Vigor index = (Mean root length +mean shoot length) × (%) seed germination

was carried out for 10 min at 72 °C. Agarose (1.2%) gel 
electrophoresis was performed to analyze obtained PCR 
product. A gel extraction kit (RBCs Real Genomics, New 
Taipei City, Taiwan) was used to extract the amplified 
fragment of about 1400 bp, which was then purified and 
sequenced (GeNei™ Laboratories in Bengaluru, India). 
Using a BLASTn search, phylogenetically related bacteria 
were aligned based on 16S rDNA sequences [30]. Utilizing 
MEGA X software, a neighbor-joining phylogenetic tree 
was created using 16S rDNA sequences from related taxa 
that were obtained from the GenBank database.

Statistical Analysis

All experiments were carried out within a statistical frame-
work with seven number of replications and appropriate 
controls for both in vitro and in vivo studies. For pot trial, 

t test was performed using SPSS version 16 (SPSS Inc., 
Chicago, IL, USA) and Microsoft Excel 7.0. (Microsoft, 
Redmond, WA, USA).

Results

In Vitro PGP Traits

The selected strain B. subtilis KU21 demonstrated multiple 
PGP traits. The strain tested positive for P-solubilization 
(375 µg/mL), synthesis of siderophore (301.48%SU), HCN, 
and cell wall degrading enzymes such as protease, amyl-
ase, and chitinase synthesis. Strain also synthesized higher 
amount of IAA (52 µg/mL). The TLC profile revealed that 
the extract of ethyl acetate from B. subtilis KU21 showed 
a clear pink spot at the Rf value 0.71 which corresponds 
to the standard reference of Rf value 0.73, hence confirm-
ing IAA production (Fig. S1). The nitrogen-fixing ability 
was initially examined using bacterial growth on nitrogen-
free agar medium and was finally confirmed via nitroge-
nase activity of reducing acetylene to 405 nmol ethylene 
mL−1 h−1. ACC deaminase activity was confirmed by the 
ability of strain B. subtilis KU21 to thrive on DF salt media 
(Table 1). The strain also exhibited broad-spectrum antifun-
gal activity against F. oxysporum (60.00%GI), F. gramini-
arum (66.66%GI), and R. solani (62.00%GI) (Table 1).
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Cloning of gdh Gene

Phosphate-solubilizing gdh gene fragment from genomic 
DNA of B. subtilis KU21 was successfully amplified and 
cloned in E. coli DH5α cells. Sequencing of cloned gdh 
gene concluded that it was 786 bp long encoding 261 
amino acid proteins. Following sequence was analyzed 
with top seven hits as obtained in BLASTn analysis. Phy-
logenetic analysis revealed that gdh gene of B. subtilis 
KU21 showed maximum homology with gdh gene of 
Aneurinibacillus aneurinilyticus CKMV1 followed by B. 
subtilis strain CGMCC (Fig. 1).

In Vivo PGP Studies

A pot experiment was carried out in net house to evaluate 
the growth response of tomato seeds bacterized with strain 
B. subtilis KU21. Overall growth metrics of tomato seed-
lings treated with strain B. subtilis KU21 were significantly 

Table 1   Screening of B. subtilis KU21 for functional PGP traits

The data represent mean of 7 replicates ± standard error

PGP traits Activity

P-solubilization (µg/mL) 375.00 ± 2.88
Siderophore unit (%) 301.48 ± 2.02
IAA production (µg/mL) 52.00 ± 0.86
Nitrogenase activity (nmol ethylene mL−1 h−1) 405.60 ± 1.38
ACC deaminase activity (n mg−1 h−1)  + 
HCN production  + 
Antifungal activity (%GI)
 F. oxysporum 60.00 ± 1.21
 F. graminiarum 66.66 ± 1.03
 R. solani 62.00 ± 1.51

Hydrolytic enzyme production
 Protease  + 
 Amylase  + 
 Chitinase  + 

Fig. 1   Neighbor-joining tree 
based on gdh gene sequences 
showing relationship between 
gdh gene of B. subtilis KU21 
and related taxa

Table 2   Effect of endophyte B. subtilis KU21 inoculation on growth parameters of tomato seedlings

The data represent mean of 7 replicates ± standard error

Growth parameters Control (uninoculated) B. subtilis KU21 t-Value P ≤ 0.05

Germination (%) 90.00 ± 1.14 94.20 ± 1.30 8.00 0.042
Root length (cm) 8.61 ± 0.57 11.40 ± 0.61 7.96 0.008
Stem height (cm) 44.00 ± 0.88 60.70 ± 1.02 7.83 0.00
Root biomass (g) 0.45 ± 0.09 0.64 ± 0.11 2.89 0.02
Shoot biomass (g) 3.08 ± 0.29 4.56 ± 0.36 7.72 0.013
Vigor Index 4734.90 ± 98.17 6789.94 ± 176.01 6.27 0.00
Microbiological parameters
 Endophytic bacterial population (× 103 cfu/g root) 3.80 ± 0.61 5.50 ± 0.84 – –
 Population of inoculated strain B. subtilis KU21 

(× 103 cfu/g root)
– 2.30 ± 0.56 – –
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(P ≤ 0.05) improved in comparison with uninoculated 
control (Table 2). Over the untreated control, the metrics 
increased by 4.67% for seed germination, 31.93% and 
42.22% for stem height and shoot biomass, 38.00% and 
48.05% for root length and biomass, and 44.56% for vigor 
index.

The NPK content of tomato seedlings was similarly con-
siderably impacted by strain B. subtilis KU21 inoculation 
over untreated seedlings (Fig. 2). The N, P, and K contents 
of strain B. subtilis KU21 bacterized seedlings increased by 
14.51%, 25.80%, and 18.50%, respectively, as compared to 
the uninoculated control.

The initial characteristics of potting mixture used in the 
present study were as follows: pH 7.18, E.C. 0.70 dSm−1, 
O.C. 1.08%, and available N, P, and K contents of 242.18, 
23.08, and 310.23 kg/ha, respectively. After strain B. sub-
tilis KU21 bacterization, the pH, E.C., and O.C. of the 
soil did not alter (data not shown). Treatment B. subtilis 
strain KU21, on the other hand, was shown to considerably 
increase accessible N (13.14%), P (20.41%), and K (11.75%) 
content as compared to the untreated control (Fig. 3).

To determine the colonization potential of inoculated 
strain within plant roots, isolation and identification of root 
endophytic bacteria was done from strain inoculated and 
uninoculated seedlings at the end of pot trial. The control 
treatment yielded 3.8 × 103 cfu/g root endophytic bacteria; 
however, no identical B. subtilis KU21 inoculated strain was 
found (Table 2). Furthermore, the colony morphology of 

the root endophytes, i.e., 2.3 × 103 cfu/g of the total isolates 
(5.5 × 103 cfu/g) from inoculated seedlings was identical with 
the B. subtilis KU21. The isolated endophytes with similar 
colony morphology were initially identified biochemically, fol-
lowed by 16S rDNA sequencing which also showed similar 
pattern as that of inoculated strain B. subtilis KU21 (Table S1, 
Fig. S2).

Discussion

In our earlier research, B. subtilis KU21 considerably 
improved R. officinalis growth and the availability of soil 
nutrients [4, 13]. Furthermore, the current work was car-
ried out to investigate the non-specific host PGP capabil-
ity of B. subtilis KU21 utilising tomato as a test crop. 
Our study demonstrates the enhancement in plant growth 
parameters and soil nutrient uptake by tomato being inocu-
lated with endophytic strain B. subtilis KU21. The PGP 
potential of B. subtilis has been widely documented in 
several crops without endangering the health of the soil, 
plants, or people [37–39].

Since direct (P-solubilization, nitrogen fixation, IAA, 
and siderophore production) and indirect (antimicrobial 
activities against phytopathogens via hydrolytic enzymes 
and ammonia production) mechanisms of plant growth 
promotion are well documented for endophytic bacteria [9, 
18, 40], the isolate B. subtilis KU21 was first assessed for 

Fig. 2   Effect of B. subtilis KU21 inoculation on plant nutrients content
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above mentioned PGP traits in vitro. Strain B. subtilis KU21 
solubilized P and formed considerably high amount of IAA, 
which was validated using the TLC technique. Nitrogen fixa-
tion in B. subtilis KU21 was also detected in an acetylene 
reduction test for nitrogenase activity. The importance of 
P-solubilization, IAA production, and nitrogen fixation by 
B. subtilis strains derived from various medicinal plants in 
exhibiting several PGP properties and boosting plant growth 
has been well established [9, 37, 41].

The findings in the present study indicate that B. subtilis 
KU21 solubilized P which might be mediated by metabolic 
production of organic acids. The cloning and sequencing of 
gdh gene in B. subtilis KU21 as reported in the present study, 
therefore, hint toward the acid production theory involving 
the gluconic acid biosynthesis by the glucose dehydroge-
nase enzyme. Mobilization of insoluble phosphates has been 
reported by researchers to be because of the production of 
gluconic acid, which results from the extracellular oxida-
tion of glucose via the quinoprotein glucose dehydrogenase 
[42–46]. Polymerase chain reaction method confirmed the 
presence of gdh gene in strain B. subtilis KU21. Detection of 
gdh gene has also been reported earlier in the genus Bacillus 
by Mehta et al. [47].

Besides facilitating PGP properties, isolate B. subti-
lis KU21 was characterized as potential biocontrol agent 
against some agriculturally important phytopathogenic 
fungi, i.e., F. oxysporum, F. graminiarum, and R. solani. The 
biocontrol potential of B. subtilis KU21 might be associated 

with the production of secondary metabolites, i.e., antibiot-
ics, siderophore, HCN, and lytic enzymes [9, 20]. Earlier 
studies of Sharma et al. [38] and Kumar et al. [39] had also 
reported antifungal properties of B. subtilis strains isolated 
from medicinal plants Podophyllum hexandrum and Hip-
pophae rhamnoides L., respectively.

To assess in vitro PGP traits of strain B. subtilis KU21, 
in planta evaluation was carried out in tomato. The results 
indicated that the application of strain B. subtilis KU21 
considerably enhanced the percent germination as well as 
growth of tomato seedlings in terms of plant height, root, 
and stem biomass and vigor index to varying degrees in 
comparison with untreated control. This enhancement could 
be ascribed to biopriming of seeds with liquid suspension of 
B. subtilis KU21, as biopriming creates ideal environment 
for bacterial inoculation and colonization [48, 49], which 
ultimately increase the amount of accessible P by producing 
organic acids and dissolving more insoluble P in the soil. 
Another possibility is the production of phytohormones such 
as IAA and ACC deaminase. ACC deaminase reduces ethyl-
ene levels in roots, resulting in increased root length, vigor, 
and surface area [50, 51]. Several studies have reported the 
promising effects of biopriming with B. subtilis in several 
crops such as barley [52], tomato [38, 39], finger millet [53], 
and oregano [54].

In terms of macronutrient content, seedlings treated with 
B. subtilis KU21 had significantly more NPK than untreated 
control plants. This is because of absorbing and utilizing 

Fig. 3   Effect of B. subtilis KU21 inoculation on soil available nutrients
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more nutrients from soil because of biopriming which 
increased root surface area and root hair formation [4]. In 
addition, B. subtilis KU21 have the potential to solubilize 
mineral nutrients, increasing the amount of soil accessible 
NPK levels and permitting the availability of those nutrients 
to plants. The present results are corroborated with Sood 
et al. [55], who also reported the potential of B. subtilis of 
increasing soil available macronutrients (NPK) and enhanc-
ing their uptake in wheat.

Conclusion

In essence, our results unequivocally proved our hypothesis 
correct that strain B. subtilis KU21 build beneficial associa-
tion with non-native host and stimulated plant growth. Thus, 
strain B. subtilis KU21 could be used to build an environ-
mentally acceptable and cost-effective system for bioferti-
lization of tomato. Field trials are also being conducted to 
confirm the efficacy of B. subtilis KU21 in increasing crop 
productivity.
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