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Abstract
Soil salinization is a global issue that negatively impacts crop yield and has become a prime concern for researchers world-
wide. Many important crop plants are susceptible to salinity-induced stresses, including ionic and osmotic stress. Approxi-
mately, 20% of the world's cultivated and 33% of irrigated land is affected by salt. While various agricultural practices have 
been successful in alleviating salinity stress, they can be costly and not environment-friendly. Therefore, there is a need for 
cost-effective and eco-friendly practices to improve soil health. One promising approach involves utilizing microbes found in 
the vicinity of plant roots to mitigate the effects of salinity stress and enhance plant growth as well as crop yield. By exploit-
ing the salinity tolerance of plants and their associated rhizospheric microorganisms, which have plant growth-promoting 
properties, it is possible to reduce the adverse effects of salt stress on crop plants. The soil salinization is a common problem 
in the world, due to which we are unable to use the saline land. To make proper use of this land for different crops, microor-
ganisms can play an important role. Looking at the increasing population of the world, this will be an appreciated effort to 
make the best use of the wasted land for food security. The updated information on this issue is needed. In this context, this 
article provides a concise review of the latest research on the use of salt-tolerant rhizospheric microorganisms to mitigate 
salinity stress in crop plants.

Abbreviations
ABA  Abscisic acid
ACC   1-Aminocyclopropane-1-carboxylic acid
AMF  Arbuscular mycorrhizal fungi
APX  Ascorbate peroxidase

AsA  Antioxidants ascorbate
CAT   Catalase
Cl−  Chloride ion
EC  Electrical conductivity
EPS  Exopolysaccharides
GPX  Guaiacol peroxidase
GR  Glutathione reductase
H2O2  Hydrogen peroxide
HCN  Hydrogen cyanide
IAA  Indole acetic acid
JA  Jasmonic acid
MDA  Malondialdehyde
Mha  Million hectares
mM  Millimolar
Na+  Sodium ion
NaCl  Sodium chloride
NOR  Nitric oxide reductase
P  Phosphorus
PGPB  Plant growth-promoting bacteria
PGPMs  Plant growth-promoting microbes
POD  Peroxidase dismutase
POX  Peroxidase
ROS  Reactive oxygen species
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SOD  Superoxide dismutase
Zn  Zinc

Introduction

The rapid growth of the world's population has made it 
imperative to boost the production of crucial crop plants 
by expanding cultivation areas, including those affected by 
salinity and degraded land. About a 50% increase in grain 
yield of rice, wheat and maize will be required to feed the 
projected population by 2050 [1]. Seven million hectares of 
land are affected by salinity in India [2]. Salt stress is one 
of the key factors accountable for the losses in crop yield. 
Low rainfall and rock weathering are increasing salinity at 
the rate of 10% annually. According to Ouhibi et al. [3], 
salinity has increased due to inappropriate use of nutrients, 
inadequate irrigation and pollution. Elevated concentrations 
of sodium and chlorine ions in the soil lead to soil salinity, 
which further develops hyperosmotic conditions. Jamil et al. 
[4], predicted that > 50% of the arable land may be salinized 
by 2050. Krasensky and Jonak [5], reported that high soil 
salinity creates an imbalance in the cellular osmotic potential 
inside the cell. Salt-stressed soils reduce the development of 
plants [6]. Soil salinity decreases the rate of nutrient uptake 
[7]. Many crop plants are glycophytes, which are salt sensi-
tive and their growth is adversely affected by salt stress [8]. 
Wang et al. [9] showed the role of microbial communities 
in long-term phytoremediation of coastal saline soil. They 
observed that the microbial community was plant species-
specific. Overall abiotic stresses cause adverse effects on 
plant growth [10]. Globally, soil salinization is a menace to 
agricultural productivity [11].

The rhizosphere is a soil region in the vicinity of plant 
roots. This soil harbours many bacteria, fungi, cyanobacte-
ria, etc. which interact with the plants and induce positive, 
negative or neutral effects on the host. The rhizosphere cov-
ers an area of a few millimetres in the surrounding of the 
plant root. The plants suffer from different types of stresses 
that can be broadly classified as biotic and abiotic catego-
ries. Biotic stresses in crop plants encompass the impacts 
of fungi, bacteria, viruses, protozoa, nematodes, algae, 
and parasitic plants. Meanwhile, abiotic stresses in crop 
plants are attributed to factors such as soil and water salin-
ity, inadequate moisture levels, extreme temperatures, and 
nutrient excesses or deficiencies. Hence, new technologies 
and methods are required to improve soil health through 
plant–microbe interactions [12].

In the natural environment, plants are colonized by 
diverse microbial communities [13]. Among these, ben-
eficial rhizospheric microorganisms have been shown to 
enhance plant health and performance under unfavourable 
environmental conditions, ultimately leading to increased 

crop productivity [14]. Plant growth-promoting bacteria 
(PGPB) are known to stimulate plant growth and develop-
ment by providing essential nutrients [15]. In particular, salt-
tolerant and plant growth-promoting microbes offer a prom-
ising avenue for the management of salt stress in various 
crop plants. This work aims to compile the latest research in 
salt stress management to increase the food grain production 
that is hampered heavily by saline land. Microorganisms can 
alleviate and revive the saline soil for the potential produc-
tion of food grains from different crops.

Adverse Effects of Soil Salinity on Plants

Soil salinization poses a significant threat to agriculture and 
is a big challenge in crop production [11]. When crops are 
grown in saline soils, they often fail to reach their genetic 
potential and yield reduction is common [4, 16]. Based on 
electrical conductivity (EC) values, soils can be classified 
into seven categories ranging from non-saline (0–2 dS  m−1) 
to extremely saline (> 32 dS  m−1), as proposed by Rasool 
et al. [17]. Soil salinization occurs across all climates and 
altitudes, including in desert regions [18]. Salts are ubiq-
uitous in both soil and water. Even high-quality canal and 
groundwater sources used for irrigation contain dissolved 
salts. These salts are essential for plant growth, but exces-
sive accumulation can result in soil salinization caused by 
mineral weathering, inorganic fertilizer use, and irrigation 
water [19]. Salinity is increased by crop irrigation and it 
introduces salinity including new salts to the soils [20]. 
About 2% of dry-land agriculture, and > 45 Mha of irrigated 
land have been badly affected by salinity [21]. Salinity prob-
lems resulting from seawater and saline water irrigation are 
prevalent in Mediterranean regions [22], while in Australia, 
oceanic salt deposition is a major contributor to soil salinity 
[23]. Any soluble material added to the soil can increase its 
salinity level [18]. Poor drainage in irrigated agricultural 
lands is a serious concern that may lead to soil salinization 
and conversion of productive agricultural lands into saline 
lands [24, 25]. Effective management of soil salinity is cru-
cial to prevent soil sodicity, which can compromise soil tex-
ture and structure [18].

Soil salinity causes ion toxicity, nutrient deficiency, 
osmotic and oxidative stress on plants, and thus restricts 
water uptake [26]. The yield and productivity of crops are 
hampered to a great extent by soil salinity [23, 27, 28]. Soil 
salinity adversely affects seed germination, photosynthesis, 
plant growth and uptake of nutrients and water [18, 29]. 
Salinity stress causes a reduction in the photosynthetic 
rate in crops like sugarcane It is a response against stress 
in which moisture loss is reduced through the partial clo-
sure of stomata, stomatal conductance reduction, reduced 
transpiration, and, then, limitation in the internal stomatal 
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 CO2 concentration [30]. There is minimal adverse effect on 
the crop yield at low salt concentrations [31]. However, in 
saline conditions, crop production decreases because plants 
are unable to grow at high salt concentrations (100–200 mM 
NaCl) and affected plants may die. This is because plants 
evolved under low saline conditions do not exhibit salt toler-
ance [32]. Soil salinity affects plant photosynthesis by reduc-
ing leaf area and chlorophyll content and alters many other 
plant growth processes [33]. Reproductive growth is also 
affected by salinized soil. On the other hand, halophytes can 
survive in high saline conditions (> 300–400 mM). Halo-
phytes can live under saline conditions due to their ability 
to adapt to saline soil as they have developed salt tolerance 
mechanisms. High salinity hampers the ability of roots to 
absorb water. Moreover, high salt within the plant may be 
toxic, which further interferes with many essential plant bio-
logical processes [23, 34–36].

Microbial Diversity in the Rhizosphere

Rhizosphere, the region of soil surrounding plant roots, is a 
dynamic and complex environment that is heavily influenced 
by the activity of diverse microbial communities [37]. In 
the context of salinity stress, the rhizosphere is of particular 
interest due to the role of microbes in mitigating the negative 
effects of high soil salinity on plant growth and productiv-
ity. Research on microbial diversity in the rhizosphere has 
revealed that salinity stress can influence the composition 
and function of microbial communities in this environment 
[38]. For example, studies have shown that high salinity lev-
els can lead to changes in microbial community structure, 
with shifts towards halophilic (salt-tolerant) bacterial and 
fungal taxa, as well as changes in the relative abundance of 
different microbial functional groups (e.g., nitrogen-fixing 
bacteria, phosphate-solubilizing bacteria). In addition to 
shifts in microbial community structure, research has also 
demonstrated that specific microbial taxa and functional 
groups may play important roles in mitigating the negative 
effects of salinity stress on plants. For example, some halo-
philic bacterial and fungal species have been shown to pro-
duce compounds that help to protect plant cells from damage 
caused by high salt concentrations. Other microbial species 
may enhance plant tolerance to salinity stress by facilitat-
ing nutrient uptake or producing plant growth-promoting 
substances [39].

The research on microbial diversity in the rhizosphere 
highlights the potential for harnessing the power of microbes 
to manage crop salinity stress [40]. By understanding the 
complex interactions between plants and the diverse micro-
bial communities in the rhizosphere, researchers and farm-
ers may be able to develop innovative microbial solutions 

that improve crop productivity and resilience in the face of 
salinity stress.

Mechanisms of “Microbial Salinity Tolerance” 
and Plant Growth Promotion

Microbes that are adapted to saline environments are known 
to possess various mechanisms that allow them to tolerate 
high salt concentrations. These mechanisms (Fig. 1) include 
the production of compatible solutes, the activation of spe-
cific transport systems for ions and water, and the synthesis 
of extracellular polysaccharides that can act as a protective 
barrier against salt stress. For example, halophilic bacteria 
such as Halomonas and Salinivibrio produce high levels of 
compatible solutes such as glycine betaine and trehalose, 
which help to maintain cellular homeostasis under high salt 
concentrations. In addition, some microbes can modulate 
the plant's response to salt stress by inducing the expres-
sion of stress-responsive genes or by producing phytohor-
mones that promote plant growth and development. Plant 
growth-promoting microbes (PGPMs) can also enhance 
plant growth and productivity under saline conditions 
through various mechanisms. For instance, PGPMs can 
produce plant growth-promoting substances such as indole 
acetic acid (IAA), gibberellins, and cytokinins, which stimu-
late plant growth and development [41, 42]. They can also 
enhance nutrients uptake by solubilizing insoluble nutrients 
such as phosphorus and iron or by fixing atmospheric nitro-
gen. Moreover, PGPMs can reduce the negative impact of 
salt stress on plant growth by lowering the concentration of 
toxic ions such as sodium  (Na+) and chloride  (Cl−) in the 
plant tissue. In addition to the above mechanisms, microbes 
can also interact with each other to form complex microbial 
communities in the rhizosphere, which can enhance plant 
growth and productivity under heavy metal toxic conditions 
[43]. These communities can form biofilms that protect 
the microbes from salt stress, facilitate nutrient exchange 
between different microbial species, and enhance the pro-
duction of plant growth-promoting substances.

In plants, many genes control the salinity tolerance in 
plants. We can measure the genetic variation indirectly by 
observing the response of different genotypes [44]. Dur-
ing the process of evolution, plants have evolved three 
mechanisms to adapt to salinity. Organic ions  (K+,  Cl−) and 
osmolytes such as proline, glycine, betaine and soluble sug-
ars help in maintaining osmoregulation, which is essential 
to maintain the turgidity of plant cells. Proline maintains the 
osmotic stability of the plant cells and protects them from 
salt injury. Proline concentration increases under the influ-
ence of certain microbes, which further helps in the allevia-
tion of salt stress in plants. Betaines are ammonium com-
pounds that plants produce under salt stress. Phytohormones 
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such as strigolactones, jasmonic acid (JA) and abscisic acid 
(ABA) play important roles in plant growth and salinity 
management. Ionic homeostasis in plant cells is also very 
important for normal growth in plants. The antioxidant 
defense mechanisms have an important role in inhibiting 
salinity stress and enhancing crop growth [45]. The enzy-
matic antioxidants include catalase (CAT), superoxide dis-
mutase (SOD), peroxidase (POX), ascorbate peroxidase 
(APX), guaiacol peroxidase (GPX) and glutathione reduc-
tase (GR), while non-enzymatic antioxidants are ascorbate 
(AsA), carotenoids, glutathione and phenolics.

Microbial Solutions for Alleviating Crop 
Salinity Stress

Microbial solutions for managing crop salinity stress have 
several advantages over conventional practices. Microbial 
treatments are cost-effective, environmentally friendly, and 
sustainable. These solutions do not contribute to soil deg-
radation or pollution, and imply that the organisms reduce 
the need for fertilizers and chemical pesticides. Moreover, 
microbial treatments have been shown to enhance soil health, 
increase nutrient availability, and improve plant growth and 
stress tolerance (Fig. 2). Many research works found that 
the use of PGPB is a reliable option to reduce plant stress 

caused by salinized soil [46]. These salts are essential for 
plant growth, but excessive accumulation can result in soil 
salinization caused by mineral weathering, inorganic ferti-
lizer use, and irrigation water [19]. Microbial amelioration 
of crop salinity stress, induction of abiotic stress tolerance in 
plants by endophytic microbes and role of salt tolerant plant 
growth promoting rhizobacteria for enhancing crop produc-
tivity of saline soils have been reviewed [47–49]. Salinity 
stresses induced physio-biochemical changes in sugarcane 
and its tolerance mechanism and mitigating approaches have 
been recently reviewed by Kumar et al. [50]. Salt-tolerant 
arbuscular mycorrhizal fungi (AMF), cyanobacteria, endo-
phytes, fungi and bacteria are highly effective in salt stress 
amelioration in plants and are discussed here.

Arbuscular Mycorrhizal Fungus (AMF)

Numerous studies have demonstrated the effectiveness of 
arbuscular mycorrhizal fungi (AMF) in managing salinity 
stress in various crops. For example, Tisarum et al. [51], 
showed that the AMF Glomus etunicatum can mitigate the 
adverse effects of salinity on rice by increasing fructose and 
free proline. In addition, the AMF Funneliformis mosseae 
has been shown to reduce salt stress in pigeon peas [52] and 
soybean [53] by enhancing the activity of catalase (CAT), 

Fig. 1  Alleviation of salt stress 
in plants by rhizospheric micro-
organisms using different salt 
tolerance mechanisms including 
an increase in production of 
IAA, CAT, SOD, POX, ACC 
deaminase activity, total soluble 
sugars, osmoprotectants, betaine 
proline, antioxidant enzyme and 
EPS and decrease in reactive 
oxygen spp.
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superoxide dismutase (SOD), and peroxidase (POX). Fur-
thermore, a mixture of Glomus fungi (AMF) was found to 
decrease soil salinity effects by increasing CAT and POX 
enzymes in wheat crops [54].

Cyanobacteria

Cyanobacteria have been identified as a potential solution to 
mitigate the harmful effects of salinity stress on crops. Sev-
eral studies have reported that cyanobacteria employ vari-
ous mechanisms to alleviate salt stress. For instance, Syn-
echococcus elongatus PCC 7942, a type of cyanobacterium, 
accumulates sucrose as a compatible solute to manage salt 
stress [55]. Similarly, another cyanobacterium, Synechococ-
cus elongatus UTEX 2973, synthesizes sucrose as an osmo-
protectant to mitigate the negative impact of salinity [56]. 
These findings suggest that cyanobacteria could be a poten-
tial microbial solution for alleviating crop salinity stress.

Endophytes

Endophytes are an important group of bacteria or fungi 
which live inside the host plants asymptomatically without 
causing any harm to the plants. These endophytes take nutri-
ents and shelter from the plants for their survival. In return, 
endophytes help in the alleviation of many abiotic stresses 
viz. salt stress, drought stress, heat stress metal toxicity etc. 
faced by the plant under different soil and environmental 

conditions. Endophytes also make the required nutrients 
available to the plants. Endophyte strains Pseudomonas 
pseudo alcaligenes + Bacillus pumilus + Achromobacter 
xylosoxidans UM54 alleviated the effect of salinity in rice 
crops by causing a reduction in lipid peroxidation and super-
oxide dismutase activity [57]. Similarly, Pantoea indica also 
ameliorates the salinity effect in rice by increasing the glyc-
erol concentration [58]. Detailed reviews on the importance 
of endophytes in mitigating abiotic stresses in plants have 
been given by various workers [48, 59, 60].

Fungi

Fungi also play a vital role in salt stress management in 
various crops by the production of different types of com-
pounds [61]. In a study conducted by Ripa et al. [62], it was 
found that Trichoderma aureoviride and T. harzianum fungi 
are effective in mitigating the harmful effects of salinity on 
wheat crops by enhancing the production of indole acetic 
acid (IAA) and though phosphorus solubilisation. The use of 
Trichoderma longibrachiatum T6 also resulted in a signifi-
cant reduction in salt stress in wheat through the production 
of IAA and ACC-deaminase, which in turn improved crop 
productivity [63]. Furthermore, Kashyap et al. [64], dem-
onstrated that the application of salt-tolerant Trichoderma 
and Hypocrea fungi could be a potential biological strategy 
to manage Rhizoctonia solani AG-4, which causes tomato 
root rot under saline conditions. These findings highlight 
the potential of using Trichoderma fungi as a microbial 

Fig. 2  Illustrations show salt stress alleviation from soil and water using prominent microorganisms’ genera i.e. Halomonas, Bacillus, Sphingob-
acterium, Staphylococcus, Pseudomonas, Serratia, Arthrobacter, Enterobacter, Micrococcus, Planococcus, and Variovorax spp.
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solution for alleviating crop salinity stress and enhancing 
plant growth.

Bacteria

Bacteria have been shown to have great potential for the 
bio-remediation of saline soils, as highlighted by Arora 
et al. [65], which can lead to enhanced agricultural produc-
tion. The rhizospheric soil is a rich source of bacteria, and 
researchers have identified many bacteria and plant growth-
promoting rhizobacteria (PGPR) that are tolerant to various 
abiotic stresses such as drought, heat, and salinity. These 
stress-tolerant bacteria have been used to alleviate and 
manage different types of abiotic stresses in many economi-
cally important crop plants. The consortium of rhizospheric 
microorganisms: Brevibacillus fuminis, Brevibacillus agri 
and Bacillus paralicheniformis has been effective in salt 
stress amelioration in solanaceous crops [66]. The consor-
tium bacteria increased the production of indole-3-acetic 
acid (IAA) and ammonia. They are also helpful in Zn and 
P solubilisation. Bacillus amyloliquefaciens NBRISN13 
(SN13) strain has been found to alleviate salt stress in rice 
crops [67]. Kumar et al. [68], showed the potential of PGPR 
in salt stress management in medicinal plants. Saghafi et al. 
[69], gave a detailed account of the increase in rapeseed crop 
production in saline soils using salt-tolerant PGPRs. It was 
observed that PGPRs increase ACC deaminase, IAA produc-
tion and phosphate solubilisation. Yasin et al. [70], observed 
the important role of halotolerant PGPRs and kinetin in the 
amelioration of salt stress in black gram. It was reported 
that improvement in  H2O, photosynthesis and gas exchange 
mitigated the effect of salinity in this case.

It is clear from the literature that a variety of salt-tolerant 
rhizospheric microbes have been identified and studied for 
their role in alleviating the harmful effects of salinity on 
crop plants. Bacteria such as Halomonas, Bacillus, Sphin-
gobacterium, Staphylococcus, Pseudomonas, Serratia, and 
Arthrobacter are effective in controlling salinity in various 
crop plants by inducing antioxidant systems, osmoregula-
tion, nutrient uptake, and hormone production. These bacte-
ria also help in maintaining ionic balance and homeostasis in 
plants to mitigate the harmful effects of salinity. In addition, 
these bacteria produce hydrolytic enzymes, siderophores, 
and solubilize phosphates to enhance nutrient uptake by 
the plants. In addition, some bacteria augment the levels of 
compatible solutes such as glycine betaine and proline, and 
antioxidant enzymes like CAT, SOD, and POD, to protect 
the plants from salinity stress. Furthermore, some bacte-
ria also fix atmospheric nitrogen and produce ACC deami-
nase, which reduces the ethylene levels in plants and further 
improves their tolerance to salinity stress. Overall, the use 
of salt-tolerant rhizospheric microbes can be a promising 

strategy for the management of salinity stress in various crop 
plants. Detailed information on microorganisms and their 
role in alleviating salt stress is given in Table 1.

Challenges in Microbial Solutions for Crop 
Salinity Stress

Crop salinity stress is a major concern for agricultural pro-
ductivity worldwide. The use of microbial solutions has 
emerged as a promising approach for mitigating the harmful 
effects of salinity on crops. Despite the encouraging results 
from various studies, there are still some challenges that 
need to be addressed to further enhance the efficacy and 
applicability of microbial solutions in crop salinity stress. 
One of the major challenges is the variability in the efficacy 
of microbial solutions across different crops and environ-
ments. The effectiveness of microbial solutions depends 
on a variety of factors such as the type of crop, soil type, 
climatic conditions, and the specific microbial strains used. 
Therefore, more research is needed to identify the most suit-
able microbial strains for different crops and environments 
and to optimize the conditions for their application. Another 
challenge is the lack of understanding of the mechanisms 
by which microbial solutions alleviate crop salinity stress. 
Although several studies have demonstrated the beneficial 
effects of microbial solutions on crop growth and productiv-
ity under saline conditions, the exact mechanisms by which 
they work are still not fully understood. More research is 
needed to elucidate the specific biochemical pathways and 
molecular mechanisms involved in microbial-mediated 
salinity stress alleviation. Furthermore, the scalability and 
cost-effectiveness of microbial solutions for large-scale agri-
cultural applications remain a challenge. The development 
of cost-effective and efficient methods for large-scale pro-
duction and application of microbial solutions is crucial for 
their widespread adoption in agriculture. In addition, the 
development of standardized protocols for the preparation, 
application, and monitoring of microbial solutions is needed 
to ensure consistent and reliable results across different loca-
tions and crops. Lastly, there is a need for more extensive 
field trials and demonstrations to validate the efficacy of 
microbial solutions in real-world agricultural settings. Many 
of the studies conducted so far have been in controlled labo-
ratory or greenhouse conditions, and their efficacy under 
field conditions needs to be further validated.

Conclusions

In conclusion, microbial products have immense potential 
in mitigating the adverse effects of salinity stress in crop 
plants. Numerous studies have reported the effectiveness 
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of various microorganisms, including bacteria, fungi, and 
algae, in improving crop growth and yield under salinity 
stress conditions. Microbial solutions offer several advan-
tages over conventional methods of salinity stress man-
agement, such as cost-effectiveness, environmental safety, 
and sustainability. However, several challenges need to be 
addressed to realize the full potential of microbial solutions 
for crop salinity stress.

Future Plan

There is a need for a better understanding of the mechanisms 
by which microorganisms alleviate salinity stress in plants. 
This will help in the development of more efficient micro-
bial solutions for salinity stress management. There is also a 
need to identify and characterize more effective and specific 
microbial strains that can tolerate and mitigate the adverse 
effects of high salt concentrations in the soil. The formula-
tion and delivery of microbial solutions for salinity stress 
management need to be optimized. This includes developing 
methods for mass production, storage, and application of 
microbial products and there is a need to establish regulatory 
frameworks and guidelines for the use of microbial solutions 
in agriculture to ensure their safety and efficacy. Microbial 
solutions offer a promising and sustainable approach to 
managing crop salinity stress, with continued research and 
development, microbial solutions have the potential to play 
a significant role in ensuring food security and sustainable 
agriculture in regions affected by salinity stress.
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