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Abstract

Soil salinization is a global issue that negatively impacts crop yield and has become a prime concern for researchers world-
wide. Many important crop plants are susceptible to salinity-induced stresses, including ionic and osmotic stress. Approxi-
mately, 20% of the world's cultivated and 33% of irrigated land is affected by salt. While various agricultural practices have
been successful in alleviating salinity stress, they can be costly and not environment-friendly. Therefore, there is a need for
cost-effective and eco-friendly practices to improve soil health. One promising approach involves utilizing microbes found in
the vicinity of plant roots to mitigate the effects of salinity stress and enhance plant growth as well as crop yield. By exploit-
ing the salinity tolerance of plants and their associated rhizospheric microorganisms, which have plant growth-promoting
properties, it is possible to reduce the adverse effects of salt stress on crop plants. The soil salinization is a common problem
in the world, due to which we are unable to use the saline land. To make proper use of this land for different crops, microor-
ganisms can play an important role. Looking at the increasing population of the world, this will be an appreciated effort to
make the best use of the wasted land for food security. The updated information on this issue is needed. In this context, this
article provides a concise review of the latest research on the use of salt-tolerant rhizospheric microorganisms to mitigate
salinity stress in crop plants.
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SOD Superoxide dismutase
Zn Zinc
Introduction

The rapid growth of the world's population has made it
imperative to boost the production of crucial crop plants
by expanding cultivation areas, including those affected by
salinity and degraded land. About a 50% increase in grain
yield of rice, wheat and maize will be required to feed the
projected population by 2050 [1]. Seven million hectares of
land are affected by salinity in India [2]. Salt stress is one
of the key factors accountable for the losses in crop yield.
Low rainfall and rock weathering are increasing salinity at
the rate of 10% annually. According to Ouhibi et al. [3],
salinity has increased due to inappropriate use of nutrients,
inadequate irrigation and pollution. Elevated concentrations
of sodium and chlorine ions in the soil lead to soil salinity,
which further develops hyperosmotic conditions. Jamil et al.
[4], predicted that>50% of the arable land may be salinized
by 2050. Krasensky and Jonak [5], reported that high soil
salinity creates an imbalance in the cellular osmotic potential
inside the cell. Salt-stressed soils reduce the development of
plants [6]. Soil salinity decreases the rate of nutrient uptake
[7]. Many crop plants are glycophytes, which are salt sensi-
tive and their growth is adversely affected by salt stress [8].
Wang et al. [9] showed the role of microbial communities
in long-term phytoremediation of coastal saline soil. They
observed that the microbial community was plant species-
specific. Overall abiotic stresses cause adverse effects on
plant growth [10]. Globally, soil salinization is a menace to
agricultural productivity [11].

The rhizosphere is a soil region in the vicinity of plant
roots. This soil harbours many bacteria, fungi, cyanobacte-
ria, etc. which interact with the plants and induce positive,
negative or neutral effects on the host. The rhizosphere cov-
ers an area of a few millimetres in the surrounding of the
plant root. The plants suffer from different types of stresses
that can be broadly classified as biotic and abiotic catego-
ries. Biotic stresses in crop plants encompass the impacts
of fungi, bacteria, viruses, protozoa, nematodes, algae,
and parasitic plants. Meanwhile, abiotic stresses in crop
plants are attributed to factors such as soil and water salin-
ity, inadequate moisture levels, extreme temperatures, and
nutrient excesses or deficiencies. Hence, new technologies
and methods are required to improve soil health through
plant—microbe interactions [12].

In the natural environment, plants are colonized by
diverse microbial communities [13]. Among these, ben-
eficial rhizospheric microorganisms have been shown to
enhance plant health and performance under unfavourable
environmental conditions, ultimately leading to increased
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crop productivity [14]. Plant growth-promoting bacteria
(PGPB) are known to stimulate plant growth and develop-
ment by providing essential nutrients [15]. In particular, salt-
tolerant and plant growth-promoting microbes offer a prom-
ising avenue for the management of salt stress in various
crop plants. This work aims to compile the latest research in
salt stress management to increase the food grain production
that is hampered heavily by saline land. Microorganisms can
alleviate and revive the saline soil for the potential produc-
tion of food grains from different crops.

Adverse Effects of Soil Salinity on Plants

Soil salinization poses a significant threat to agriculture and
is a big challenge in crop production [11]. When crops are
grown in saline soils, they often fail to reach their genetic
potential and yield reduction is common [4, 16]. Based on
electrical conductivity (EC) values, soils can be classified
into seven categories ranging from non-saline (0-2 dS m™?)
to extremely saline (>32 dS m™'), as proposed by Rasool
et al. [17]. Soil salinization occurs across all climates and
altitudes, including in desert regions [18]. Salts are ubiq-
uitous in both soil and water. Even high-quality canal and
groundwater sources used for irrigation contain dissolved
salts. These salts are essential for plant growth, but exces-
sive accumulation can result in soil salinization caused by
mineral weathering, inorganic fertilizer use, and irrigation
water [19]. Salinity is increased by crop irrigation and it
introduces salinity including new salts to the soils [20].
About 2% of dry-land agriculture, and > 45 Mha of irrigated
land have been badly affected by salinity [21]. Salinity prob-
lems resulting from seawater and saline water irrigation are
prevalent in Mediterranean regions [22], while in Australia,
oceanic salt deposition is a major contributor to soil salinity
[23]. Any soluble material added to the soil can increase its
salinity level [18]. Poor drainage in irrigated agricultural
lands is a serious concern that may lead to soil salinization
and conversion of productive agricultural lands into saline
lands [24, 25]. Effective management of soil salinity is cru-
cial to prevent soil sodicity, which can compromise soil tex-
ture and structure [18].

Soil salinity causes ion toxicity, nutrient deficiency,
osmotic and oxidative stress on plants, and thus restricts
water uptake [26]. The yield and productivity of crops are
hampered to a great extent by soil salinity [23, 27, 28]. Soil
salinity adversely affects seed germination, photosynthesis,
plant growth and uptake of nutrients and water [18, 29].
Salinity stress causes a reduction in the photosynthetic
rate in crops like sugarcane It is a response against stress
in which moisture loss is reduced through the partial clo-
sure of stomata, stomatal conductance reduction, reduced
transpiration, and, then, limitation in the internal stomatal
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CO, concentration [30]. There is minimal adverse effect on
the crop yield at low salt concentrations [31]. However, in
saline conditions, crop production decreases because plants
are unable to grow at high salt concentrations (100-200 mM
NaCl) and affected plants may die. This is because plants
evolved under low saline conditions do not exhibit salt toler-
ance [32]. Soil salinity affects plant photosynthesis by reduc-
ing leaf area and chlorophyll content and alters many other
plant growth processes [33]. Reproductive growth is also
affected by salinized soil. On the other hand, halophytes can
survive in high saline conditions (>300-400 mM). Halo-
phytes can live under saline conditions due to their ability
to adapt to saline soil as they have developed salt tolerance
mechanisms. High salinity hampers the ability of roots to
absorb water. Moreover, high salt within the plant may be
toxic, which further interferes with many essential plant bio-
logical processes [23, 34-36].

Microbial Diversity in the Rhizosphere

Rhizosphere, the region of soil surrounding plant roots, is a
dynamic and complex environment that is heavily influenced
by the activity of diverse microbial communities [37]. In
the context of salinity stress, the rhizosphere is of particular
interest due to the role of microbes in mitigating the negative
effects of high soil salinity on plant growth and productiv-
ity. Research on microbial diversity in the rhizosphere has
revealed that salinity stress can influence the composition
and function of microbial communities in this environment
[38]. For example, studies have shown that high salinity lev-
els can lead to changes in microbial community structure,
with shifts towards halophilic (salt-tolerant) bacterial and
fungal taxa, as well as changes in the relative abundance of
different microbial functional groups (e.g., nitrogen-fixing
bacteria, phosphate-solubilizing bacteria). In addition to
shifts in microbial community structure, research has also
demonstrated that specific microbial taxa and functional
groups may play important roles in mitigating the negative
effects of salinity stress on plants. For example, some halo-
philic bacterial and fungal species have been shown to pro-
duce compounds that help to protect plant cells from damage
caused by high salt concentrations. Other microbial species
may enhance plant tolerance to salinity stress by facilitat-
ing nutrient uptake or producing plant growth-promoting
substances [39].

The research on microbial diversity in the rhizosphere
highlights the potential for harnessing the power of microbes
to manage crop salinity stress [40]. By understanding the
complex interactions between plants and the diverse micro-
bial communities in the rhizosphere, researchers and farm-
ers may be able to develop innovative microbial solutions

that improve crop productivity and resilience in the face of
salinity stress.

Mechanisms of “Microbial Salinity Tolerance”
and Plant Growth Promotion

Microbes that are adapted to saline environments are known
to possess various mechanisms that allow them to tolerate
high salt concentrations. These mechanisms (Fig. 1) include
the production of compatible solutes, the activation of spe-
cific transport systems for ions and water, and the synthesis
of extracellular polysaccharides that can act as a protective
barrier against salt stress. For example, halophilic bacteria
such as Halomonas and Salinivibrio produce high levels of
compatible solutes such as glycine betaine and trehalose,
which help to maintain cellular homeostasis under high salt
concentrations. In addition, some microbes can modulate
the plant's response to salt stress by inducing the expres-
sion of stress-responsive genes or by producing phytohor-
mones that promote plant growth and development. Plant
growth-promoting microbes (PGPMs) can also enhance
plant growth and productivity under saline conditions
through various mechanisms. For instance, PGPMs can
produce plant growth-promoting substances such as indole
acetic acid (IAA), gibberellins, and cytokinins, which stimu-
late plant growth and development [41, 42]. They can also
enhance nutrients uptake by solubilizing insoluble nutrients
such as phosphorus and iron or by fixing atmospheric nitro-
gen. Moreover, PGPMs can reduce the negative impact of
salt stress on plant growth by lowering the concentration of
toxic ions such as sodium (Na‘t) and chloride (Cl7) in the
plant tissue. In addition to the above mechanisms, microbes
can also interact with each other to form complex microbial
communities in the rhizosphere, which can enhance plant
growth and productivity under heavy metal toxic conditions
[43]. These communities can form biofilms that protect
the microbes from salt stress, facilitate nutrient exchange
between different microbial species, and enhance the pro-
duction of plant growth-promoting substances.

In plants, many genes control the salinity tolerance in
plants. We can measure the genetic variation indirectly by
observing the response of different genotypes [44]. Dur-
ing the process of evolution, plants have evolved three
mechanisms to adapt to salinity. Organic ions (K*, C1™ and
osmolytes such as proline, glycine, betaine and soluble sug-
ars help in maintaining osmoregulation, which is essential
to maintain the turgidity of plant cells. Proline maintains the
osmotic stability of the plant cells and protects them from
salt injury. Proline concentration increases under the influ-
ence of certain microbes, which further helps in the allevia-
tion of salt stress in plants. Betaines are ammonium com-
pounds that plants produce under salt stress. Phytohormones

@ Springer



14 Page4of15

S. K. Goswami et al.

Fig. 1 Alleviation of salt stress
in plants by rhizospheric micro-
organisms using different salt
tolerance mechanisms including
an increase in production of
IAA, CAT, SOD, POX, ACC
deaminase activity, total soluble
sugars, osmoprotectants, betaine
proline, antioxidant enzyme and
EPS and decrease in reactive
oxygen spp.

I Production of IAA, CAT, SOD, POX
> ﬁ ACC deammase activity

Total soluble sugars, osmoprotectants, Betain
Proline, antioxidant enzymes and EPS

such as strigolactones, jasmonic acid (JA) and abscisic acid
(ABA) play important roles in plant growth and salinity
management. lonic homeostasis in plant cells is also very
important for normal growth in plants. The antioxidant
defense mechanisms have an important role in inhibiting
salinity stress and enhancing crop growth [45]. The enzy-
matic antioxidants include catalase (CAT), superoxide dis-
mutase (SOD), peroxidase (POX), ascorbate peroxidase
(APX), guaiacol peroxidase (GPX) and glutathione reduc-
tase (GR), while non-enzymatic antioxidants are ascorbate
(AsA), carotenoids, glutathione and phenolics.

Microbial Solutions for Alleviating Crop
Salinity Stress

Microbial solutions for managing crop salinity stress have
several advantages over conventional practices. Microbial
treatments are cost-effective, environmentally friendly, and
sustainable. These solutions do not contribute to soil deg-
radation or pollution, and imply that the organisms reduce
the need for fertilizers and chemical pesticides. Moreover,
microbial treatments have been shown to enhance soil health,
increase nutrient availability, and improve plant growth and
stress tolerance (Fig. 2). Many research works found that
the use of PGPB is a reliable option to reduce plant stress
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Bactena, fungi, endophytes, ANV

cyanobactena

caused by salinized soil [46]. These salts are essential for
plant growth, but excessive accumulation can result in soil
salinization caused by mineral weathering, inorganic ferti-
lizer use, and irrigation water [19]. Microbial amelioration
of crop salinity stress, induction of abiotic stress tolerance in
plants by endophytic microbes and role of salt tolerant plant
growth promoting rhizobacteria for enhancing crop produc-
tivity of saline soils have been reviewed [47-49]. Salinity
stresses induced physio-biochemical changes in sugarcane
and its tolerance mechanism and mitigating approaches have
been recently reviewed by Kumar et al. [50]. Salt-tolerant
arbuscular mycorrhizal fungi (AMF), cyanobacteria, endo-
phytes, fungi and bacteria are highly effective in salt stress
amelioration in plants and are discussed here.

Arbuscular Mycorrhizal Fungus (AMF)

Numerous studies have demonstrated the effectiveness of
arbuscular mycorrhizal fungi (AMF) in managing salinity
stress in various crops. For example, Tisarum et al. [51],
showed that the AMF Glomus etunicatum can mitigate the
adverse effects of salinity on rice by increasing fructose and
free proline. In addition, the AMF Funneliformis mosseae
has been shown to reduce salt stress in pigeon peas [52] and
soybean [53] by enhancing the activity of catalase (CAT),
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Examples of microbes alleviating
salt stress

*Halomonas and Bacillus species
*Sphingobacterium BHU-AV3
*Staphylococcus sp. strain P-TSB-70
*Pseudomonas geniculate MF-84

*Serratia liquefaciens KM4

*Pseudomonas pseudoalcaligenes and Bacillus
subtilis

*Arthrobacter woluwensis (AK1)

*Bacillus (AT2RP4, HL1RS13, NRS4HaP9, and
LK3HaP7) and Bacillus filamentosus HL2HP6
*Bacillus firmus SW5

*Enterobactersp. P23

*Bacillus stratosphericus (NBRI 5Q and NBRI 7A)
*Micrococcus yunnanensis, Planococcus
rifietoensis, and Variovorax paradoxus.

Multiple modes of Action

Alleviate salinity stress with
microbes

Revolutionizing
Agriculture

Salinity stressin soil and water

Microbial success story for crop salinity stress

Fig. 2 Illustrations show salt stress alleviation from soil and water using prominent microorganisms’ genera i.e. Halomonas, Bacillus, Sphingob-
acterium, Staphylococcus, Pseudomonas, Serratia, Arthrobacter, Enterobacter, Micrococcus, Planococcus, and Variovorax spp.

superoxide dismutase (SOD), and peroxidase (POX). Fur-
thermore, a mixture of Glomus fungi (AMF) was found to
decrease soil salinity effects by increasing CAT and POX
enzymes in wheat crops [54].

Cyanobacteria

Cyanobacteria have been identified as a potential solution to
mitigate the harmful effects of salinity stress on crops. Sev-
eral studies have reported that cyanobacteria employ vari-
ous mechanisms to alleviate salt stress. For instance, Syn-
echococcus elongatus PCC 7942, a type of cyanobacterium,
accumulates sucrose as a compatible solute to manage salt
stress [55]. Similarly, another cyanobacterium, Synechococ-
cus elongatus UTEX 2973, synthesizes sucrose as an osmo-
protectant to mitigate the negative impact of salinity [56].
These findings suggest that cyanobacteria could be a poten-
tial microbial solution for alleviating crop salinity stress.

Endophytes

Endophytes are an important group of bacteria or fungi
which live inside the host plants asymptomatically without
causing any harm to the plants. These endophytes take nutri-
ents and shelter from the plants for their survival. In return,
endophytes help in the alleviation of many abiotic stresses
viz. salt stress, drought stress, heat stress metal toxicity etc.
faced by the plant under different soil and environmental

conditions. Endophytes also make the required nutrients
available to the plants. Endophyte strains Pseudomonas
pseudo alcaligenes + Bacillus pumilus + Achromobacter
xylosoxidans UMS54 alleviated the effect of salinity in rice
crops by causing a reduction in lipid peroxidation and super-
oxide dismutase activity [57]. Similarly, Pantoea indica also
ameliorates the salinity effect in rice by increasing the glyc-
erol concentration [58]. Detailed reviews on the importance
of endophytes in mitigating abiotic stresses in plants have
been given by various workers [48, 59, 60].

Fungi

Fungi also play a vital role in salt stress management in
various crops by the production of different types of com-
pounds [61]. In a study conducted by Ripa et al. [62], it was
found that Trichoderma aureoviride and T. harzianum fungi
are effective in mitigating the harmful effects of salinity on
wheat crops by enhancing the production of indole acetic
acid (IAA) and though phosphorus solubilisation. The use of
Trichoderma longibrachiatum T6 also resulted in a signifi-
cant reduction in salt stress in wheat through the production
of IAA and ACC-deaminase, which in turn improved crop
productivity [63]. Furthermore, Kashyap et al. [64], dem-
onstrated that the application of salt-tolerant Trichoderma
and Hypocrea fungi could be a potential biological strategy
to manage Rhizoctonia solani AG-4, which causes tomato
root rot under saline conditions. These findings highlight
the potential of using Trichoderma fungi as a microbial
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solution for alleviating crop salinity stress and enhancing
plant growth.

Bacteria

Bacteria have been shown to have great potential for the
bio-remediation of saline soils, as highlighted by Arora
et al. [65], which can lead to enhanced agricultural produc-
tion. The rhizospheric soil is a rich source of bacteria, and
researchers have identified many bacteria and plant growth-
promoting rhizobacteria (PGPR) that are tolerant to various
abiotic stresses such as drought, heat, and salinity. These
stress-tolerant bacteria have been used to alleviate and
manage different types of abiotic stresses in many economi-
cally important crop plants. The consortium of rhizospheric
microorganisms: Brevibacillus fuminis, Brevibacillus agri
and Bacillus paralicheniformis has been effective in salt
stress amelioration in solanaceous crops [66]. The consor-
tium bacteria increased the production of indole-3-acetic
acid (IAA) and ammonia. They are also helpful in Zn and
P solubilisation. Bacillus amyloliquefaciens NBRISN13
(SN13) strain has been found to alleviate salt stress in rice
crops [67]. Kumar et al. [68], showed the potential of PGPR
in salt stress management in medicinal plants. Saghafi et al.
[69], gave a detailed account of the increase in rapeseed crop
production in saline soils using salt-tolerant PGPRs. It was
observed that PGPRs increase ACC deaminase, IAA produc-
tion and phosphate solubilisation. Yasin et al. [70], observed
the important role of halotolerant PGPRs and kinetin in the
amelioration of salt stress in black gram. It was reported
that improvement in H,O, photosynthesis and gas exchange
mitigated the effect of salinity in this case.

It is clear from the literature that a variety of salt-tolerant
rhizospheric microbes have been identified and studied for
their role in alleviating the harmful effects of salinity on
crop plants. Bacteria such as Halomonas, Bacillus, Sphin-
gobacterium, Staphylococcus, Pseudomonas, Serratia, and
Arthrobacter are effective in controlling salinity in various
crop plants by inducing antioxidant systems, osmoregula-
tion, nutrient uptake, and hormone production. These bacte-
ria also help in maintaining ionic balance and homeostasis in
plants to mitigate the harmful effects of salinity. In addition,
these bacteria produce hydrolytic enzymes, siderophores,
and solubilize phosphates to enhance nutrient uptake by
the plants. In addition, some bacteria augment the levels of
compatible solutes such as glycine betaine and proline, and
antioxidant enzymes like CAT, SOD, and POD, to protect
the plants from salinity stress. Furthermore, some bacte-
ria also fix atmospheric nitrogen and produce ACC deami-
nase, which reduces the ethylene levels in plants and further
improves their tolerance to salinity stress. Overall, the use
of salt-tolerant rhizospheric microbes can be a promising
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strategy for the management of salinity stress in various crop
plants. Detailed information on microorganisms and their
role in alleviating salt stress is given in Table 1.

Challenges in Microbial Solutions for Crop
Salinity Stress

Crop salinity stress is a major concern for agricultural pro-
ductivity worldwide. The use of microbial solutions has
emerged as a promising approach for mitigating the harmful
effects of salinity on crops. Despite the encouraging results
from various studies, there are still some challenges that
need to be addressed to further enhance the efficacy and
applicability of microbial solutions in crop salinity stress.
One of the major challenges is the variability in the efficacy
of microbial solutions across different crops and environ-
ments. The effectiveness of microbial solutions depends
on a variety of factors such as the type of crop, soil type,
climatic conditions, and the specific microbial strains used.
Therefore, more research is needed to identify the most suit-
able microbial strains for different crops and environments
and to optimize the conditions for their application. Another
challenge is the lack of understanding of the mechanisms
by which microbial solutions alleviate crop salinity stress.
Although several studies have demonstrated the beneficial
effects of microbial solutions on crop growth and productiv-
ity under saline conditions, the exact mechanisms by which
they work are still not fully understood. More research is
needed to elucidate the specific biochemical pathways and
molecular mechanisms involved in microbial-mediated
salinity stress alleviation. Furthermore, the scalability and
cost-effectiveness of microbial solutions for large-scale agri-
cultural applications remain a challenge. The development
of cost-effective and efficient methods for large-scale pro-
duction and application of microbial solutions is crucial for
their widespread adoption in agriculture. In addition, the
development of standardized protocols for the preparation,
application, and monitoring of microbial solutions is needed
to ensure consistent and reliable results across different loca-
tions and crops. Lastly, there is a need for more extensive
field trials and demonstrations to validate the efficacy of
microbial solutions in real-world agricultural settings. Many
of the studies conducted so far have been in controlled labo-
ratory or greenhouse conditions, and their efficacy under
field conditions needs to be further validated.

Conclusions

In conclusion, microbial products have immense potential
in mitigating the adverse effects of salinity stress in crop
plants. Numerous studies have reported the effectiveness
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of various microorganisms, including bacteria, fungi, and
algae, in improving crop growth and yield under salinity
stress conditions. Microbial solutions offer several advan-
tages over conventional methods of salinity stress man-
agement, such as cost-effectiveness, environmental safety,
and sustainability. However, several challenges need to be
addressed to realize the full potential of microbial solutions
for crop salinity stress.

Future Plan

There is a need for a better understanding of the mechanisms
by which microorganisms alleviate salinity stress in plants.
This will help in the development of more efficient micro-
bial solutions for salinity stress management. There is also a
need to identify and characterize more effective and specific
microbial strains that can tolerate and mitigate the adverse
effects of high salt concentrations in the soil. The formula-
tion and delivery of microbial solutions for salinity stress
management need to be optimized. This includes developing
methods for mass production, storage, and application of
microbial products and there is a need to establish regulatory
frameworks and guidelines for the use of microbial solutions
in agriculture to ensure their safety and efficacy. Microbial
solutions offer a promising and sustainable approach to
managing crop salinity stress, with continued research and
development, microbial solutions have the potential to play
a significant role in ensuring food security and sustainable
agriculture in regions affected by salinity stress.
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