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Abstract
Antibiotic resistance of bacteria is causing clinical and public health concerns that are challenging to treat. Infections are 
becoming more common in the present era, and patients admitted to hospitals often have drug-resistant bacteria that can 
spread nosocomial infections. Urinary tract infections (UTIs) are among the most common infectious diseases affecting all 
age groups. There has been an increase in the proportion of bacteria that are resistant to multiple drugs. Herein is a com-
prehensive update on UTI-associated diseases: cystitis, urethritis, acute urethral syndrome, pyelonephritis, and recurrent 
UTIs. Further emphasis on the global statistical incidence and recent advancement of the role of natural products in treating 
notorious infections are described. This updated compendium will inspire the development of novel phycocompounds as 
the prospective antibacterial candidate.

Introduction

Infections from multidrug-resistant (MDR) bacteria, myco-
bacteria, and fungi are wearisome health problems, causing 
several comorbidities, even physical disabilities from Hans-
en’s disease and ultimate mortalities [1]. Urinary tract infec-
tions (UTIs) are among the most commonplace infectious 
diseases [2], affecting all age groups, and even children were 
seen infected in hospitals and communities [3]. It would not 
be out of place to state that every female gets a UTI at least 
once in her lifetime. It is often infected in adult females with 
a challenged immune system. The short physical distance 
between vaginal and rectal openings is the contrivance to 
super-infections from rectal microbiota [2]. About 150 mil-
lion people are diagnosed with UTIs yearly [4].

The occurrence of any infection depends on several fac-
tors, such as improper functioning of the immune system 
and the bacterial/fungal virulent status, i.e., MDR strains of 
infectious bacteria that survive in the body. The most com-
mon causative agents of UTI-MDR bacteria are Escherichia 
coli, Staphylococcus aureus, and Acinetobacter baumannii 
[5]. Thus, it became resistant to the most common antibacte-
rial, which no longer remains in mainstream medicine today; 
therefore, chemical modifications were done [1, 6].

Moreover, the bloodstream infection leads to the spread of 
the infecting bacteria to all innards through blood, wherein 
those colonize; sometimes, the bacterial growth leads to 
toxic shock syndrome (TSS) and bacteremia (Fig. 1) [7, 
8]. As it is known, both TSS and bacteremia lead to fatal-
ity without a timely use of some suitable antibacterial(s), 
assessed from the MDR nature of bacterial strains [9]. 
Staphylococcus sp., such as S. aureus or S. saprophyticus, 
is the second most common genus of the causative bacteria 
of acute UTI, after E. coli, and it accounts for 5–15% of 
the reported UTIs and usually affects younger women [10]. 
Indeed, Staphylococcus sp. is mostly a cutaneous infection 
that can spread to the urethra through sexual intercourse. 
Moreover, the complicated UTIs were attributed to Kleb-
siella sp.; pregnant women are more prone to this infection 
because the enlarged uterus blocks the required free urinary 
passage to wash out the infecting bacterial microbiota [11] 
(Fig. 2).
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Recent trends in the study of plant products and the devel-
opment of new drugs have established natural products as 
a significant source of druggable compounds against mul-
tiple diseases [12]. It is a common belief that natural medi-
cines are usually potentially less toxic than their synthetic-
prepared drugs [1]. A broad range of naturally occurring 
antimicrobial chemicals has been found in marine environ-
ments. These have shown remarkable increases in bioactive 
compounds, and concomitant algal-based products are sig-
nificant therapeutic activities. However, conventional anti-
microbials prefer those derived from natural sources because 
these are more effective, safer for the environment, and have 
fewer adverse effects [13].

Modern medicine’s most challenging issue is preventing 
the spread of more dangerous MDR bacterial pathogens. 
MDR bacterial infections account for over 700,000 annual 
fatalities worldwide, but estimates suggest that number 
might increase to 10 million by 2050 [9]. An extensive 
search for novel antimicrobial compounds that could reduce 
the existing dependence of modern medicine on standard 
antibiotics is essential to halt the trend of adding newer anti-
biotic classes that are gradually resistant to the newly gener-
ated bacterial strains [10].

This review considers a comprehensive update on UTI-
associated diseases, namely cystitis, urethritis, acute urethral 
syndrome, pyelonephritis, and uncomplicated, complicated, 

Fig. 1  Inhibition mechanism of UTIs

Fig. 2  Schematic representation 
of cellular structure of bacteria
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and recurrent UTIs. Further emphasis on the global statisti-
cal incidence and recent advancement of the role of natu-
ral products in treating notorious infections are described. 
This updated compendium would inspire the development 
of novel phycocompounds as the prospective antibacterial 
candidate(s).

Urinary Tract Infection: A Global Threat

Post-COVID infection cases have increased, and patients 
admitted to hospitals carry drug-resistant bacteria that 
spread nosocomial. The antibiotic resistance of MDR bac-
teria produces clinical and public health concerns that are 
difficult to treat. This is because of the rise in the prevalence 
of multidrug-resistant bacteria (Fig. 3) [5]. There have been 
several reports of the emergence of MDR bacterial strains 
in various geographical places; this phenomenon is related 
to the local use of antibiotics. MDR microorganisms travel 
across regions, leading to global infection scenarios of indi-
vidual harmful bacteria. These strains are more dangerous 
than drug-sensitive variants, and MDR bacteria are more 
antibiotic-resistant [8]. The administration of antibiotics for 
the treatment of a broad range of infections leads to the grad-
ual development of antibiotic resistance in bacterial strains 
(Fig. 4). Even among bacteria that are not linked to one 
another phylogenetically, the bacterial consortia facilitate 
the interchange of genetic characteristics, which is neces-
sary for the establishment of MDR bacterial microbiota [12]. 
Recently, the resistance mechanisms have resulted in the 
concurrent development of resistance to several antibiotic 

classes, resulting in hazardous MDR bacterial strains, 
some of which are also known as superbugs,  the MDR-
MRSA (multidrug-resistant-methicillin-resistant S. aureus) 
(Fig. 2). Because of the recent emergence of newer initially 
harmless microbes, the emergence of multidrug resistance 
in pathogenic strains occurred; eventually, the potential use 
of MDR bacilli became a possibility [7].

The clinical manifestations of UTI include harmless 
conditions as well as those that are potentially fatal. Any 
component of the urinary tract, including the urethra (which 
can develop urethritis), the bladder (which can develop cys-
titis), the ureters, and the kidneys, is susceptible to infection 
(pyelonephritis). In certain patients with lower UTIs, the 
disease could even ascend or cause pyelonephritis as well 
as male genital infections, including such prostatitis and 
epididymis-orchitis, or it can progress to severe and life-
threatening urosepsis if it is not treated or if the case cannot 
be resolved with antibiotics (Fig. 1). This can happen in the 
absence of treatment or in issues where the infection cannot 
be resolved with antibiotics [11].

UTIs can be divided into three categories: lower, which 
affects only the bladder; upper, which affects the pyelone-
phritis; and either uncomplicated as well as complicated. 
An uncomplicated urinary tract infection (UTI) develops in 
a usual host that is not pregnant, does not have any struc-
tural or physiological abnormalities, and has not been out-
fitted (for example, with a catheter) [12, 13]. The urethra 
serves as the exit point for urine and allows the entry of 
microbiota into the urinary tract. However, these microbes 
are regularly flushed out through frequent urination in both 

Fig. 3  Patients are affected by urinary tract infections worldwide
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men and women (Fig. 1). Urine acts as a portal for releasing 
microbes from the urethra into the urinary tract. In addition, 
the opening of the urethra in women is close to vaginal cavi-
ties and even the rectum, contributing to the development 
of UTIs. Although E. coli is responsible for eighty percent 
of all cases of infection, in addition to the illness caused by 
E. coli, gram-positive cocci and other organisms can also 
cause urinary tract infections (UTIs) (Fig. 2) [4, 11]. When 
a bladder infection takes place, it is frequently followed by 
a condition of the kidneys. This, in turn, leads to a blood-
borne disease, which, in extreme cases, can result in fatal 
consequences, including death. Because of this, severe cases 
of urinary tract infection (UTI) have the potential to take 
lives, but with the proper treatment, patients can make a 
speedy recovery and avoid spreading the infection. Cystitis 
is an infection of the lower urinary system caused by bac-
teria usually found in the bladder. This illness is often fol-
lowed by pyelonephritis, which is an infection of the upper 
urinary tract. This may result from BSI, and the antibiotics 
are resistant to UTIs (Fig. 4) [13].

Associated Diseases

Cystitis

Inflammation of the urinary bladder causes pain and dis-
comfort from the infection by bacteria found in the fecal 
microbiota. These bacteria colonize the vaginal and periu-
rethral openings and then enter the bladder. Urine is slightly 
acidic, with urea and uric acid contributing to the demise of 

infectious bacteria and fungi. Infection from E. coli can be 
confirmed by the complex with a sugar called d-mannose, 
which is a kind of monosaccharide that is found in the blad-
der. Furthermore, enterococci and non-UTIs are caused by 
infection from 5 to 10% coliform aerobic Gram-negative 
rods. Moreover, the clinical manifestations are distinguished 
by symptoms such as dysuria, urine frequency, and urgency 
and may also be accompanied by discomfort in the suprapu-
bic region. These are the signs of a lower UTI, which has 
still not moved beyond the bladder; infection is the most 
prevalent cause of inflammation [7].

Urethritis

Infections with microorganisms are typically the root cause 
of urethral annoyance. The related symptoms may be com-
parable to cystitis. Infectious causes, such as the fungus 
Chlamydia trachomatis or the bacterium Neisseria gonor-
rhoeae, are typically acquired via sexual intercourse and do 
not climb to the bladder. The urethra is the principal entry 
point for organisms into the bladder and BSI; the particular 
infections of the urethra are the typical course of UTI [8, 13].

Acute Urethral Syndrome

A 'urethral syndrome’ is diagnosed when the clinical signs 
and symptoms of a UTI are present. Still, the urine culture 
does not show any positive results for the infection from 
any bacterium. Patients visit the hospital complaining of a 
bacterial infection in their lower urinary tract, which may be 

Fig. 4  Global incidence of antibiotic resistance and mortality rate
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caused by microorganisms or chronic diseases like diabetes. 
Patients may also be admitted to the facility complaining of 
pain in their lower urinary tract with fungi [5].

Pyelonephritis

Pyelonephritis is the infection of the kidneys from the begin-
ning of the UTI; clinical manifestations of pyelonephritis are 
often more complex than those of lower urinary tract infec-
tions. Pyelonephritis occurs when bacteria from the infected 
bladder migrate to the kidneys. Symptoms of a lower urinary 
tract infection often precede an upper urinary tract infec-
tion [5, 11]; by empiric therapy or administration of some 
antibiotic of the higher generation or the ongoing drug of 
the regions, the lower UTIs are usually controlled being 
prompted by the unbearable pain in the lower abdomen.

Recurrent Urinary Tract Infection

A recurrence of the symptoms of a UTI after the infection 
may occur from the continued presence of MDR bacterial 
strains for the recurrence of symptoms. In adults, the recur-
rent UTI could be the occurrence of three or even more UTI 
episodes in one year [4, 6].

Statistics of Urinary Tract Infections

There were 274 million new UTIs worldwide in 2017 in 
people of all ages and sexes. Every year, symptomatic UTIs 
affect one or more episodes for about 10% of women in the 
USA. Women between the ages of 18 and 24 years who are 
sexually active have the highest prevalence of the infection. 
The symptoms disappear in approximately one-quarter of 
these women, and an equal ratio becomes infected with the 
causative microorganisms. The incidence of UTIs in males 
is lower than in women, particularly in men with urologic 
structural abnormalities [7, 11].

Biomass Production

Algal biomass production involves numerous phases, includ-
ing culture, harvesting, and dehydration of the biomass. The 
open pond and closed photobioreactor (PBR) technologies 
are the two methods for generating or cultivating algal bio-
mass. Then, two systems—natural waterways (ponds, lakes, 
and lagoons) and artificial ponds (circular and raceway)—
are used to categorize the production of open ponds. The 
open pond is a less expensive way to produce vast amounts 
of algal biomass than the PBR. However, the PBR offers a 
tremendous and well-managed closed culture environment 
for growing, avoiding risk or contamination from molds, 
bacteria, protozoa, and competition by other algae. It is typi-
cally positioned outside to use the accessible energy sources 

from sunshine. PBR is divided into three categories: flat 
plate, vertical column, and tubular. However, the PBR offers 
a tremendous and well-managed closed culture environment 
for growing, avoiding risk or contamination from molds, 
bacteria, protozoa, and competition by other algae. To make 
use of the accessible energy sources from sunshine, it is typi-
cally positioned outside.

The algal biomass can be separated from the culture 
medium or harvested by four processes: biomass aggrega-
tion (flocculation and ultrasound), flotation, centrifugation, 
and filtration. Combining two or more procedures is some-
times done to boost efficiency. The selection of the harvest-
ing technique is influenced by several algae-related factors, 
including the density, size, and intended end products. In 
the biomass dehydration process, as soon as algal biomass 
is removed from the growing medium, it is processed to 
the next stage to avoid rotting or to increase its shelf life. 
The three most common drying or dehydrating methods are 
sun drying, spray drying, and freeze-drying. The desired 
outcomes are determined by the technique picked [14, 15].

Extraction of Phycochemicals

Algae have minerals, lipids, proteins, and carbohydrates 
as components. The algal biomass is pre-treated to release 
the stored bioactive component in the cells to use the com-
pounds for various applications, such as biofuels/energy and 
agricultural use. A variety of techniques, including physi-
cal, mechanical (bead milling, homogenization, microwave, 
ultrasonic, and pulsed electric field), chemical (solvent, acid, 
and alkali), and biological (enzymes) procedures, can be 
used to lyse the cell walls to extract all the necessary com-
ponents. A pre-treatment process method is selected based 
on the required end products [14].

Synergistic Effect of Phycochemicals for UTI 
Prevention

There has been a concerning rise in MDR bacterial strains 
in recent years; it has become increasingly important to 
locate alternative sources of antibacterial for timely con-
trol, lest increasingly higher generations of antibiotics be 
used. Unfortunately, the use of any newer antibiotics would 
induce the emergence of deadlier MDR bacterial strains, as 
the phenomenon of the emergence of drug-resistance bac-
teria is an inducible event in nature, wherein the Darwinian 
principle of the ‘struggle for existence and survival of the 
fittest’ is operative in microbes was nor proved by Darwin 
or his followers. Massively exchanging genetic characters in 
bacterial consortia in the body or the environment is a natu-
ral process [12]. Furthermore, research in biomedical and 
natural products and the utilization of bioactive chemicals 
derived from medicinal plants as therapeutic agents has been 
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a significant area of research. Likewise, algae also create an 
extensive range of primary and secondary metabolites with 
a wide range of biological activities, with inherent amino 
acid residues, terpenoids, phlorotannin, steroids, phenols, 
ketones, alkenes cyclic polysulfides, and a few more (Fig. 5) 
[8]. Natural compounds with pharmacological effects can be 
sourced from marine algal species due to their unique struc-
tural composition in blue-green algae. Incidentally, seaweed 
or macroalgae are highly valued because of their medicinal 
substances of curiosity [6].

Algae have emerged as a rich source of novel therapies 
since the 1940s. The three significant algae families, namely, 
Rhodophyceae, Phaeophyceae, and Chlorophyceae, account 
for most of the approximately 2400 natural products identi-
fied. Indeed, antibacterial activity was thought of as a way 
to identify algae as the notable medicinal potential for the 
production of pharmacologically active algal compounds 
(Table 1) [59] because of their naturally inherent secondary 
metabolites that have antibacterial activity against infectious 
bacteria invitro often envisaged. Apart from the antibacterial 
activity, anticoagulant and antifouling activity are identi-
fied with algal chemicals. Antimicrobial substances such 
as chlorellin derivatives, acrylic acid, halogenated aliphatic 
compounds, phenol inhibitors, and the more recently known 

guanine sesquiterpenes and labdane diterpenoids were also 
documented in macroalgae (Table 2) [60, 61]. These anti-
microbial agents were found to inhibit the growth of micro-
organisms in vitro (Fig. 2). 

Blithely, it was found that marine algae produce a wide 
variety of bioactive secondary metabolites that act as antimi-
crobial, antifeedant, antihelmintic, and cytotoxic agents. The 
bioactive substances produced by marine algae are alkaloids, 
polyketides, cyclic peptides, polysaccharides, phlorotannins, 
diterpenoids, sterols, diterpenoids, quinones, lipids, and 
glycerols [13]. Because of the prokaryotic photosynthesizing 
metabolic activity, these organisms have biotechnological 
advantages over other organisms like plants and fungi. These 
advantages include the production of several compounds of 
curiosity that have potential applications in food, bioenergy 
production, and health biomaterials [13, 60].

Pigments, carotenoids, C-phycobilin, peptides, fatty 
acids, and polysaccharides are biologically active com-
pounds formed by cyanobacteria. These biologically 
active molecules present considerable promise for phar-
maceutical and cosmeceutical applications due to their 
antioxidant, anticancer, antimicrobial activity, antiviral, 
skin-regenerative, immunomodulatory, and immune-stim-
ulatory activities. Cyanobacterial pigments have inhibited 

Fig. 5  Bioactive compounds of algae
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Table 1  Algae-mediated inhibitory actions of UTIs

Algal Strains UTI pathogens Antimicrobial activity (ZOI in mm) Reference

Blue-green algae (Cyanobacteria)
Family: Spirulinaceae
S. platensis E. coli, Pseudomonas sp., Aeromonas sp., 

Vibrio sp.
ND [16]

E. coli ND [17]
Spirulina major S. enteritidis 8 (B); 8 (tH) [18]

E. coli 8 (M); 9 (Eo); 9 (B); 8 (A); 8 (H); 11 (tH)
Family: Microcystaceae
M. aeruginosa E. coli, Pseudomonas sp., Aeromonas sp., 

Vibrio sp., K. pneumoniae
[16]

A. platensis E. coli 10 (E) [19]
Family: Nostocaceae
Nostoc sp. P. aeruginosa, E. coli [16]

E. coli 13.3 (M); 14.3 (Eo); 12 (C) [20]
P. aeruginosa 13.9 (M); 11.8 (Eo); 10 (C)
K. pneumoniae 19 (M);20.3 (Eo); 12.3 (C)
B. subtilis 17 (M); 12.4 (Eo); 11.1 (C)
S. aureus 18.3 (M); 14.2 (Eo); 12.2 (C)
S. typhi 14.1 (M); 13.5 (Eo); 10 (C)
P. vulgaris 11 – 16 (M/10 µg): < 10 (M/20 µg): < 10 (M/30 µg): 11–16 (M/40 µg) [21]
K. pneumoniae  < 10 (M/10 µg); < 10 (M/20 µg); 11 – 16 (M/30 µg); 11–16 (M/40 µg)
P. aeruginosa 11 – 16 (M/10 µg); 11–16 (M/20 µg); < 10 (M/30 µg); < 10 (M/40 µg)
E. coli  < 10 (E/40 µg)

A. sphaerica E. coli ND [16]
A. oryzae B. cereus 12.5 ± 0.35 (A); 9.33 ± 0.54 (C); 9.5 ± 0.35 (M); 12.6 ± 0.12 (P) [22]

M. luteus 11.33 ± 0.2 (A); 9.66 ± 0.2 (C); 7.33 ± 0.2 (M); 8.33 ± 0.2 (P)
K. aerogenes 7.6 ± 0.2 (A); 9.33 ± 0.2 (C); 10.33 ± 0.2 (M); 11.83 ± 0.2 (P)

Anabaena sp. E. faecalis  < 10 (E/40 µg); 11 – 16 (M/40 µg) [21]
Family: Oscillatoriaceae
O. limnetica E. coli, K. pneumoniae, P. aeruginosa ND [16]

S. enteriditis 9 (tH) [18]
O. limosa S. enteritidis 10 (Eo); 9 (B); 8 (A); 8 (H); 8 (tH) [18]

E. coli 8 (Eo); 8 (B); 8 (A); 8 (H); 9 (tH); 8 (M)
Oscillatoria sp. E. coli 10 [23]

K. pneumoniae 9; 8
C. albicans 12

O. sancta E. coli 12.4 (M); 16.1 (Eo); 10 (C) [20]
P. aeruginosa 8.2 (M); 10 (Eo); 7.4 (C)
K. pneumoniae 16 (M); 13.3 (Eo); 10 (C)
C.albicans 12 (M); 16 (Eo); 12 (C)
S. aureus 13.3 (M); 14.2 (Eo)
S. typhi 10.2 (M); 10.4 (Eo); 8 (C)
B. subtilis 12.2 (M); 14.3 (Eo); 9.8 (C)
P. vulgaris 8 (M) [24]
P. mirabilis 10 (M)
S. aureus 8 (M); 7 (Eo); 9 (H)

L. birgei P. mirabilis 8 (M) [24]
P. vulgaris 8 (M)

Lyngbya sp. P. aeruginosa 11 – 16 (E); 11 – 16 (M) [21]
V. cholerae  < 10 (M)

Phormidium sp. C. albicans 9 (E) [23]
E. coli 11 – 16 (E) [21]

P. tenue S. enteritidis 7 (B) [18]
E. coli 8 (Eo);8 (B);8 (A);8 (M); 10 (tH)
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Table 1  (continued)

Algal Strains UTI pathogens Antimicrobial activity (ZOI in mm) Reference

Family: Chroococcaceae
C. turgidus E. coli ND [16]
Chroococcus sp. P. aeruginosa 11 – 16 (E); 11 – 16 (M) [21]

K. pneumoniae  > 17 (M)
Family: Synechococcaceae
Synechococcus sp. P. aeruginosa 12.5 ± 0.71 [17]

P. aeruginosa 14 ± 1.41
K. pneumoniae  < 10 (E) [21]
E. faecalis – 16 (E)
P. aeruginosa 11 – 16 (E)

Family: Aphanizomenonaceae
N. spumigena B. cereus 12.66 ± 0.2 (A); 7.83 ± 0.2 (C); 7.33 ± 0.2 (P) [22]

M. luteus 12.33 ± 0.4 (A); 11.66 ± 0.2 (C); 7.13 ± 0.16 (P)
K. aerogenes 13.83 ± 0.2 (A)

Family: Merismopediaceae
S. pevalekii K. pneumoniae 5.5 [25]

E. coli 12
S. aureus 14

Family: Rivulariaceae
R. mesenterica E. coli 25.7 ± 0.9 (Eo);16.2 ± 1.1 (M) [26]

B. cereus 18.4 ± 1.1 (Eo); 12.7 ± 0.5 (M)
M. luteus 25.3 ± 1.4 (Eo); 12.2 ± 1.7 (M)
P. aeruginosa 17.9 ± 1.2 (Eo); 14.6 ± 0.9 (M)
S. aureus 17.9 ± 0.3 (Eo); 14.7 ± 0.9 (M)
K. pneumoniae 12.5 ± 0.5 (Eo); 10.3 ± 0.5 (M)
C. albicans 14.4 ± 1.5 (Eo); 14.6 ± 0.5 (M)

Calothrix sp. P. aeruginosa  < 10 (E) [21]
E. coli  > 17 (E)

Family: Hapalosiphonaceae
W. prolifica E. coli ND [27]
Family: Romeriaceae
R. gracilis P. aeruginosa 10.5 ± 0.71 (M); 11 ± 1.41 (Eo) [17]
Diatom
Family: Phaeodactylaceae
P. tricornutum Vibrio sp. ND [16]
Family: Bacillariaceae
Nitzschia sp. S. aureus 14.6 (Eo) [28]

E. coli 18.3 (Eo); 13.6 (M)
Green algae
Family: Chlorellaceae
C. vulgaris E. coli, Pseudomonas sp., Aeromonas sp., 

Vibrio sp., K. pneumoniae
ND [16]

S. enteritidis 9 (B) [18]
E. coli 9 (Eo); 9 (B); 9 (A); 9 (H); 11 (tH)
S. aureus 9 [29]
E. aerogenes 10

Chlorella sp. P. aeruginosa 8—10.9 [30]
E. coli 9
K. pneumoniae 8.6
E. coli 14 (M); 12.6 (Eo); 12.2 (C) [20]
P. aeruginosa 15.2 (M); 13.7 (Eo); 13.1 (C)
K. pneumoniae 14.8 (M); 13.8 (Eo); 13.5 (C)
C. albicans 19.8 (M); 19.1 (Eo); 19.1 (C)
B. subtilis 17.9 (M); 18.6 (Eo); 17.9 (C)
S. aureus 15.2 (M); 17.6 (Eo); 17 (C)
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Table 1  (continued)

Algal Strains UTI pathogens Antimicrobial activity (ZOI in mm) Reference

S. typhi 14.2 (M); 13.1 (Eo); 13.1 (C)
Family: Haematococcaceae
H. pluvialis E. coli ND [16]
Family: Oedogoniaceae
O. echinospermum E. coli 1 (M); 12.2 (Eo); 12.1 (C) [20]

P. aeruginosa 12.4 (M); 13 (Eo); 12 (C)
K. pneumoniae 14 (M); 12.4 (Eo); 12 (C)
S. typhi 12 (M); 11.8 (Eo); 12.4 (C)
S. aureus 12 (M); 12 (Eo); 11 (C)
B. subtilis 12 (M); 13 (Eo); 13.5 (C)
S. typhi 7 (M); 7 (Eo); 7 (H) [24]
P. mirabilis 7 (Eo)

Family: Zygnemataceae
S. crassa C. albicans 12 (M); 13 (Eo); 13 (C) [20]

S. aureus 8.3 (Eo)
S. typhi 11.7 (Eo)
P. mirabilis 9 (M) [24]
S. aureus 8 (Eo)

S. decimina P. mirabilis 9 (M)
S. aureus 12 (M); 9 (H)

S. gratiana E. coli 9 (Eo)
S. typhi 7 (M)
P. vulgaris 10 (Eo)
P. mirabilis 9 (Eo)

S. biformis P. vulgaris 8 (M)
S. aureus 8 (H)

S. condensata P. mirabilis 8 (M)

Family: Ulvaceae
U. lactuca E. coli 18 (M); 22 (Eo); 26 (C) [20]

P. aeruginosa 13 (M); 13 (Eo); 23 (C)
K. pneumoniae 14.8 (M); 15.2 (Eo); 19.9 (C)
C. albicans 13.6 (M); 13 (Eo); 17.7 (C)
B. subtilis 11.6 (M); 12.7 (Eo); 17.4 (C)
S. aureus 10.1 (M); 12 (Eo); 17.2 (C)
S. typhi 12.3 (M); 13 (Eo); 16 (C)
E. coli 18 ± 0.1 (A); 36 ± 0.03 (Eo); 13 ± 0.06 (M); 11 ± 0.02 (W) [2]
K. pneumoniae 20 ± 0.7 (A); 34 ± 0.3 (Eo); 26 ± 0.1 (M); 21 ± 0.5 (W)
P. mirabilis 7 ± 0.06 (A); 39 ± 0.01 (Eo); 23 ± 0.01 (M); 13 ± 0.03 (W)
S. aureus 11 (C) [31]
E. coli 10 (C)
C. tropicalis 0.29 ± 0.06 (Eo) [32]
Streptococcus sp. 10 (Aq) [33]
E. coli 9 (Aq)
P. aeruginosa 11 (Aq)
P. mirabilis 9 (Aq)
K. pneumoniae 10 (Aq)
M. luteus 7 (Aq)
B. subtilis 9 (Aq)
S. aureus 10 (Aq)
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Table 1  (continued)

Algal Strains UTI pathogens Antimicrobial activity (ZOI in mm) Reference

E. prolifera E. coli 11.3 (M); 12.5 (Eo); 12 (C) [20]
P. aeruginosa 12.2 (M); 13.1 (Eo); 13.1 (C)
K. pneumoniae 10 (M); 12 (Eo); 12.7 (C)
C. albicans 13 (M); 15 (Eo); 16.1 (C)
B. subtilis 10.8 (M); 12.8 (Eo); 11.6 (C)
S. aureus 10 (M); 11 (Eo); 12.3 (C)
S. typhi 11 (M); 13 (Eo); 11 (C)

E. linza C. tropicalis 0.43 ± 0.05 (Eo); 2.75 ± 0.17 (M) [32]
Family: Cladophoraceae
C. antennina K. pneumoniae 1–5 [34]

P. aeruginosa 1–5
S. aureus 6–10

C. socialis E. coli 7 (M) [35]
S. xylosus  > 7 (M)

Family: Valoniaceae
V. pachynema P. aeruginosa 1–5 [34]

M. luteus 9.33 ± 0.33 (M) [36]
S. marcescens 8 ± 0.58 (M)

Family: Caulerpaceae
C. taxifolia E. coli 24 [37]

P. mirabilis 27
P. aeruginosa 20
K. pneumoniae 19
Enterobacter sp. 16

C. racemosa E. coli 9.5 ± 0.2 (E); 9.5 ± 0.3 (M) [38]
E. faecalis 8 ± 1.7 (E); 8 ± 0.8 (M)
P. aeruginosa 14.3 ± 0.3 (E)
Salmonella sp. 10.5 ± 1 (E)
S. aureus 19.2 ± 1.2 (E); 19.8 ± 0.4 (M)

Family: Halimedaceae
H. opuntia E. coli 14 ± 0.05 (M); 13 ± 0.05 (Eo); 12 ± 0.07 (D) [39]

K. pneumoniae 16 ± 0.02 (M); 19 ± 0.08 (Eo); 13 ± 0.02 (P); 15 ± 0.07 (D)
E. aerogenes 15 ± 0.07 (M); 12 ± 0.05 (Eo); 12 ± 0.05 (D)

Family: Scenedesmaceae
Scenedesmus sp. P. aeruginosa 7–8 [30]

E. coli 7.7
K. pneumoniae 9

Family: Coccomyxaceae
C. onubensis P. aeruginosa 7.4 ± 0.1 (Dich);7.1 ± 0.1 (E);7.3 ± 0.3 (A);7.6 ± 0.6 (M) [40]

E. coli 13.8 ± 0.4 (DEth);17.2 ± 1.4 (C);7.4 ± 0.1 (Dich); 7.1 ± 0.1 (E); 7.3 ± 0.3 (A);7.6 ± 0.6 
(M)

P. mirabilis 7.4 ± 0.7 (DEth); 15.9 ± 0.4 (C); 7.7 ± 0.5 (Dich);7.8 ± 0.3 (E);8.8 ± 0.4 (A);7.5 ± 0.3 
(M)

C. albicans 7.1 ± 0.1 (DEth);7.2 ± 0.2 (Dich);8 ± 0.1 (E);13.7 ± 0.1 (A);10.5 ± 0.5 (M)
Family: Desmidiaceae
Cosmarium sp. M. luteus 19.5 ± 3.5 (M);13.5 ± 2.21 (A);19.5 ± 2.21 (W) [41]

E. coli 8.5 ± 0.7 (A:M);8 (A); 8.5 ± 0.7 (H)
S. aureus 14.5 ± 0.7 (A:M); 23.5 ± 0.7 (W)

Family: Dunaliellaceae
Dunaliella sp. E. coli 12 – 14 [42]
Family: Prasiolaceae
D. olivaceus E. faecalis 9.7 [29]

S. aureus 15
Family: Chlorococcaceae
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Table 1  (continued)

Algal Strains UTI pathogens Antimicrobial activity (ZOI in mm) Reference

C. humicola S. aureus 11 [29]
E. aerogenes 8.5
E. faecalis 9.5

Family: Ulotrichaceae
Ulothrix sp. S. aureus 18.6 (Eo) [28]

E. coli 14.3 (Eo); 15.6 (M)
Family: Chaetophoraceae
Stigeoclonium sp. E. coli 17.3 (Eo); 14.6 (M) [28]
Red algae
Family: Rhodomelaceae
A. spicifera E. coli 14.9 (M); 15.7 (Eo) [20]

P. aeruginosa 14.5 (M); 14 (Eo)
K. pneumoniae 12 (M); 11 (Eo); 6.23 (C)
C. albicans 11.9 (M); 10.7 (Eo)
B. subtilis 17 (M); 14.3 (Eo); 6 (C)
S. aureus 12.9 (M); 13.2 (Eo)
S. typhi 13.2 (M); 14.2 (Eo)
E. coli 1–5 [34]
P. aeruginosa 1–5

L. papillosa E. coli 12.33 ± 0.5 [43]
P. aeruginosa 11.66 ± 0.5

L. majuscula S. aureus 7 – 12 (Ela) [44]
Pseudomonas sp. 12 – 18 mm (Ela)
E. coli 12 – 18 (Iso)
Salmonella sp. 25- 30 (Ela); 19–24 (Iso)
K. pneumoniae 19 – 24 (Ela); 19 – 24 (Iso)

L. brandenii E. coli, Salmonella sp., M. luteus, S. aureus, V. 
cholera, B. subtilis

ND [34]

Polysiphonia sp. E. coli 8.33 ± 0.5 [43]
P. aeruginosa 9.33 ± 0.5

Family: Halymeniaceae
G. lithophila E. coli 10–15 [34]

K. pneumoniae 6–10
P. aeruginosa 6–10
S. aureus 10–15

G. filicina E. coli 11.33 ± 0.5 [43]
P. aeruginosa 9.7 ± 0.5

Family: Gracilariaceae
G. corticata Streptococcus sp. 9 (Aq) [33]

M. luteus 10 (Aq)
P. mirabilis 17 (Aq)
P. aeruginosa 12 (Aq)
K. pneumoniae 12 (Aq)
E. coli 10 (Aq)

G. ornata E. coli ND [45]
G. changii P. aeruginosa MIC – 6.25 mg/mL [46]
G. verrucosa E. coli 11.41 [47]
Family: Gelidiaceae
G. spinosum E. coli 7 ± 0.15 (A); 20 ± 0.5 (Eo); 20 ± 0.05 (M); 6 ± 0.03 (W) [2]

K. pneumoniae 10 ± 2.6 (A); 16 ± 0.4 (Eo); 12 ± 0.7 (M); 12 ± 0. (W)
P. mirabilis 10 ± 3.2 (A); 22 ± 0.3 (Eo); 19 ± 0.5 (M); 7 ± 0.5 (W)
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Table 1  (continued)

Algal Strains UTI pathogens Antimicrobial activity (ZOI in mm) Reference

Family: Galaxauraceae
A. fragilis E. coli 10.5 ± 0.5 (E); 12 ± 1 (M) [38]

P. aeruginosa 9.7 ± 0.7 (E)
Salmonella sp. 10 ± 1 (E)
S. aureus 9 ± 1 (E); 7.8 ± 0.6 (M)

Brown algae
Family: Dictyotaceae
D. dichotoma E. coli 1–5 [34]

P. aeruginosa 1–5
S. aureus 1–5
E. coli 10 ± 1.0 [43]
P. aeruginosa 8 ± 1.0
P. mirabilis 10 (Aq) [33]
S. aureus 9 (C) [31]
E. coli 10 (C)

P. tetrastromatica K. pneumoniae 6–10 [34]
P. aeruginosa 6–10
S. aureus 10–15
Streptococcus sp. 8 (Aq) [33]
E. coli 13 (Aq)

P. gymnospora S. aureus MIC – 500 µg/mL [48]
E. coli 11.3 ± 0.8 (E); 13.3 ± 0.3 (M) [38]
E. faecalis 9 ± 0.5 (E); 7 ± 0.5 (M)
P. aeruginosa 10 ± 1.2 (E)
Salmonella sp. 9.5 ± 1.2 (E); 15 ± 1 (M)
S. aureus 17.8 ± 0.8 (E); 11.5 ± 0.5 (M)

S. marginatum E. coli 6–10 [34]
P. aeruginosa 1–5
S. aureus 10–15

Family: Scytosiphonaceae
P. fascia E. coli 11 ± 1.6 (A); 13 ± 0.2 (Eo); 6 ± 0.4 (M) [2]

K. pneumoniae 8 ± 2.6 (Eo); 8 ± 0.06 (M)
P. mirabilis 13 ± 0.03 (A); 8 ± 3 (Eo); 9 ± 0.6 (M); 5 ± 0.02 (W)

Family: Sargassaceae
T. ornata E. coli 8.6 ± 0.5 [43]

P. aeruginosa 9.7 ± 0.5
T. triquetra E. coli 19 ± 0.05 (M); 11 ± 0.05 (Eo); 12 ± 0.02 (P); 13 ± 0.07 (D) [39]

K. pneumoniae 18 ± 0.12 (M); 16 ± 0.05 (Eo); 14 ± 0.05 (P); 17 ± 0.05 (D)
E. aerogenes 17 ± 0.07 (M); 11 ± 0.06 (Eo); 13 ± 0.08 (P); 15 ± 0.07 (D)

C. myrica E. coli 11 ± 1 (E); 8 ± 1 (M) [38]
P. aeruginosa 9 ± 0.5 (E); 8 ± 0.7 (M)
Salmonella sp. 8.5 ± 0.5 (M)
S. aureus 10 ± 0.5 (E); 17 ± 1 (M)

C. trinodis E. coli 7 ± 0.5 (E); 10 ± 1.2 (M)
E. faecalis 13 ± 1 (E); 12 ± 2 (M)
P. aeruginosa 9 ± 0.3 (M)
Salmonella sp. 10 ± 0.4 (E); 10 ± 0.4 (M)
S. aureus 11 ± 0.4 (E); 11.5 ± 0.5 (M)
E. coli 8.6 ± 0.5 [43]
P. aeruginosa 8.33 ± 0.5

Family: Lessoniaceae
E. kurome C. jejuni, S. aureus, E. coli, B. cereus, S. 

enteriditis
ND [49]
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Table 1  (continued)

Algal Strains UTI pathogens Antimicrobial activity (ZOI in mm) Reference

E. cava S. aureus MIC: 500 µg/mL (Eo); 250 µg/mL (E) [50]
S. enteritidis MIC: 2000 µg/mL (Eo); 250 µg/mL (E)

E. stolonifera E. coli MBC: 256 µg/mL [51]
B. subtilis MBC: 64 µg/mL
K. pneumoniae MBC: 256 µg/mL

Brown seaweed
Family: Sargassaceae
S. latifolium Salmonella sp.  > 10 (A); 7 (M) [55]

E. coli  > 7(A); 7(M)
P. aeruginosa  > 7 (A); 7 (M)
E. faecalis  > 7 (A); 7 (M)
S. xylosus  > 10 (A); 7 (M)

S. platycarpum Salmonella sp.  > 7 (A); 7 (M)
E. coli  > 7 (A); 7 (M)
P. aeruginosa  > 7 (A); 10 (M)
E. faecalis  > 10 (A); 7 (M)
S. xylosus 7 (A); 10 (M)

S. vulgare P. aeruginosa 11.1 (M); 12.7 (Eo); 12 (C) [20]
K. pneumoniae 13.5 (M); 14 (Eo); 13.9 (C)
C. albicans 11 (M); 11.2 (Eo); 10 (C)
S. typhi 13.7 (M); 10.3 (Eo); 10.3 (C)
S. aureus 12.8 (M); 12.7 (Eo); 11.6 (C)
B. subtilis 10.9 (M); 11.2 (Eo); 11.3 (C)

S. swartzii E. coli 15 ± 0.28 [52]
P. aeruginosa 11 ± 0.48
E. faecalis 10 ± 0.68
Proteus vulgaris 7 ± 0.72
A. hydrophilla 2 ± 0.32
Shigella flexneri 6 ± 0.78

S. wightii E. coli 8 (Eo); 9 (M); 9 (Aq) [53]

Enterobacter sp. 7 (Eo); 10 (M); 11 (Aq)

Proteus sp. 12 (Eo); 9 (M); 10 (Aq)

Pseudomonas sp. 6 (Eo); 8 (M); 8 (Aq)

Klebsiella sp. 6 (Eo); 6 (M); 9 (Aq)

M. luteus 10 (Aq) [33]

E. coli 13 (Aq)

P. aeruginosa 12 (Aq)

P. mirabilis 7 mm (Aq)

K. pneumoniae 10 (Aq)

E. coli 18.6 ± 0.11 (A); 21.5 ± 0.11 (Aq); 25.5 ± 0.86 (M) [54]

Enterococcus sp. 22.5 ± 0.52 (A); 18 ± 0.65 (Aq) 22.5 ± 0.52 (M)

P. mirabilis 21.1 ± 0.25 (A)
12.1 ± 0.15 (Aq); 25.1 ± 0.33 (M)

P. aeruginosa 12.6 ± 0.64 (A); 10.6 ± 0.25 (Aq); 13.0 ± 0.52 (M)

K. pneumoniae 11.3 ± 0.51 (A); 8.5 ± 0.56 (Aq); 12.1 ± 0.33 (M)
S. myriocystum E. coli 10.33 ± 0.5 [43]

P. aeruginosa 8.57 ± 0.5
S. crassifolium S. aureus 20.79 ± 0.82 (E); 21.70 ± 1.77 (DEth); 16.62 ± 0.52 (C); 20.28 ± 0.49 (M) [55]

P. aeruginosa 8.41 ± 0.09 (E); 18.32 ± 0.40 (DEth); 9.62 ± 0.18 (C); 16.79 ± 0.83 (M)
S. oligocystum P. aeruginosa MIC—9.556 ± 0.251 mg/ml [56]

S. aureus MIC—3.175 ± 0.064 mg/ml
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Table 1  (continued)

Algal Strains UTI pathogens Antimicrobial activity (ZOI in mm) Reference

S. hystrix E. coli 8.5 ± 0.5 (E); 11.3 ± 0.3 (M) [38]
E. faecalis 7 ± 1.5 (E); 7 ± 1 (M)
P. aeruginosa 8 ± 0.8 (E); 15 ± 1 (M)
Salmonella sp. 7.5 ± 0.5 (E)
S. aureus 11.8 ± 0.8 (E); 13.8 ± 0.8 (M)

S. dentifolium E. coli 12.3 ± 0.3 (E); 13.3 ± 1.2 (M)
P. aeruginosa 9.8 ± 0.4 (E)
Salmonella sp. 11 ± 0.6 (E)
S. aureus 4.3 ± 0.5 (E); 18 ± 0.5 (M)

Family: Cystocloniaceae
H. valentiae E. coli 9.0 ± 1.0 [43]

P. aeruginosa 10 ± 1.0
H. musciformis M. luteus 12 (Aq) [33]

P. mirabilis 13 (Aq)
P. aeruginosa 12 (Aq)
E. coli 10 (Aq)

Family: Corallinaceae
C. elongata S. aureus 10 (C) [31]

E. coli 11 (C)
Family: Codiaceae
C. tomentosum M. luteus 9 (Aq) [33]

P. mirabilis 8 (Aq)
P. aeruginosa 10 (Aq)
E. coli 10 (Aq)

C. decorticatum C. tropicalis 0.54 ± 0.06 (M); 0.34 ± 0.05 (A) [32]
C. fragile E. coli 11.8 ± 0.3 (E); 14.5 ± 1 (M) [38]

E. faecalis 9 ± 0.7 (E); 9 ± 1 (M)
P. aeruginosa 9 ± 0.8 (E); 7.5 ± 0.5 (M)
Salmonella sp. 10 ± 0.5 (E); 6 ± 0.6 (M)
S. aureus 10 ± 0.2 (E); 11.3 ± 1.3 (M)

Family: Dictyotaceae
D. membranacea P. aeruginosa 12.8 (M); 11.4 (Eo) [20]

K. pneumoniae 16.1 (M); 13.7 (Eo)
C. albicans 10.2 (Eo)
B. subtilis 12.3 (M); 11 (Eo)
S. aureus 14.9 (M); 13.8 (Eo)
S. typhi 13.4 (M); 10.9 (Eo)
C. albicans 11.66 ± 0.4 (Cr); 14 ± 0.5 (Eo); 15.33 ± 0.2 (A) [57]
S. aureus 14 ± 0.4 (Cr); 23.5 ± 0.2 (Eo); 22.5 ± 0.8 (A); 12 ± 0.6 (M)
E. coli 11.5 ± 0.6 (Cr); 13.66 ± 0.2 (Eo); 16.5 ± 0.4 (A)
E. faecalis 13 ± 0.6 (Cr); 12 ± 0.2 (Eo); 13 ± 0.4 (A)
B. subtilis 17 ± 0.1 (Cr); 19.66 ± 1.2 (Eo); 26 ± 0.4 (A)
E. faecium 18.33 ± 1.1 (Cr); 21.66 ± 0.8 (Eo); 24 ± 0.4 (A); 10 ± 0.8 (M)

Mixed culture species
Coelastrum sp., S. 

quadricauda, Sele-
nastrum sp. (mixed 
culture)

P. fluorescens ND [58]
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various cell line activities (Fig. 1) [13, 61]. In addition, the 
utilization of polysaccharides derived from microalgae in 
the field of biomedicine has been investigated for the fact 
that these polysaccharides are biocompatible, biodegrad-
able, and nontoxic, in addition to exhibiting specific thera-
peutic capabilities [62, 63]. Moreover, cyanobacteria are 
photoautotrophic and prokaryotic bacteria that are known 
to grow in several habitats. Those can remove nitrogen 
from the atmosphere, make phosphate more soluble, and 
are an excellent source of high-quality chemicals, renew-
able biofuels, and bioactive substances [13, 64]. To avoid 
the need for synthetic antimicrobial substances or sub-
therapeutic doses of conventional antibiotics, microalgae 
biomass cell-free extracts have been evaluated as additions 
to food and feed composition (Table 1) [59]. Excessive 
use of antibiotics, as well as chemotherapeutics to treat 
infectious diseases, causes MDR variations. Microalgae 
are a safe, cost-effective bacterial infection treatment [13]. 
It has been reported that some green algae, Microcystis 
sp., Chlorella sp., Chroococcus sp., Anabaena sp., Oscil-
latoria sp., and Spirulina sp. have antibacterial properties 
[64].

Antibiotic-like compounds may be derived from sea-
weeds; the indicators of antimicrobial active chemicals in 

seaweeds include the synthesis/conglomeration of several 
metabolites. Indeed, antioxidants, antivirals, anti-inflamma-
tories, and anticoagulants are just a few of the biologically 
active chemicals found in abundance in seaweeds [11]. As 
it is, seaweeds contain chemicals with comparatively high 
anti-proliferating and antioxidant action; those are low in fat 
but include a variety of vitamins and bioactive components, 
such as sulphated polysaccharides and terpenoids. Sulphated 
polysaccharides are a promising natural antioxidant without 
any cholesterol that is scarce in land plants [13]. These activ-
ities previously include anticoagulant, anti-hyperlipidemic, 
antiviral, antitumor, and antioxidant activity [65]. Because 
the brown alga Sargassum swartzii produces a natural prod-
uct free of harmful side effects and displays antioxidant 
and antibacterial activity, this natural substance should be 
explored for synthesizing some newer medicines to control 
pathogenic microbes [13]. The bioactive compounds can be 
virulent factors or beneficial medications and chemicals that 
assist in creating industrial commodities. These metabolites 
play a role in determining how humans associate and value 
particular substances. Terpenoids comprise a significant 
portion of this category of natural products. They include 
thousands of structures involved in various biological pro-
cess abnormalities [11].

Table 1  (continued)
ND Not detected; A Acetone extract; Aq Aqueous extract; M Methanol extract; C Chloroform extract; E Ethyl acetate extract; Eo Ethanol extract; 
P Petroleum ether; W Water; D Dimethyl formamide; DEth Diethyl ether; Dich Dichloromethane; H Hexane; Ela Elatol; Iso Iso-obtusol; B 
n-Butanol; tH tris HCl
S. platensis, Spirulina platensis; M. aeruginosa, Microcystis aeruginosa; A. platensis, Arthrospira platensis; A. sphaerica, Anabaena sphaerica; 
A. oryzae, Anabaena oryzae; O. limnetica, Oscillatoria limnetica; O. limosa, Oscillatoria limosa; O. sancta, Oscillatoria sancta; L. birgei, Lyn-
gbya birgei; P. tenue, Phormidium tenue; C. turgidus, Chroococcus turgidus; N. spumigena, Nodularia spumigena; S. pevalekii, Synechocystis 
pevalekii; R. mesenterica, Rivularia mesenterica; W. prolifica, Westiellopsis prolifica; R. gracilis, Romeria gracilis; P. tricornutum, Phaeodac-
tylum tricornutum; C. vulgaris, Chlorella vulgaris; H. pluvialis, Haematococcus pluvialis; O. echinospermum, Oedogonium echinospermum; S. 
crassa, Spirogyra crassa; S. decimina, Spirogyra decimina; S. gratiana, Spirogyra gratiana; S. biformis, Spirogyra biformis; S. condensate, Spi-
rogyra condensate; U. lactuca, Ulva lactuca; E. prolifera, Enteromorpha prolifera; E. linza, Enteromorpha linza; C. antennina, Chaetomorpha 
antennina; C. socialis, Cladophora socialis; V. pachynema, Valoniopsis pachynema; C. taxifolia, Caulerpa taxifolia; C. racemose, Caulerpa 
racemose; H. opuntia, Halimeda opuntia; C. onubensis, Coccomyxa onubensis; D. olivaceus, Desmococcus olivaceus; C. humicola, Chlorococ-
cum humicola: A. spicifera, Acanthophora spicifera; L. papillosa, Laurencia papillosa; L. majuscula, Laurencia majuscula; L. brandenii, Lau-
rencia brandenii; G. lithophila, Grateloupia lithophila; G. filicina, Grateloupia filicina; G. corticate, Gracilaria corticate; G. ornate, Gracilaria 
ornate; G. changii, Gracilaria changii; G. verrucosa, Gracilaria verrucosa; G. spinosum, Gelidium spinosum; A. fragilis, Actinotrichia fragilis; 
D. dichotoma, Dictyota dichotoma; P. tetrastromatica, Padina tetrastromatica; P. gymnospora, Padina gymnospora; S. marginatum, Stoechos-
permum marginatum; P. fascia, Petalonia fascia; T. ornate, Turbinaria ornate; T. triquetra, Turbinaria triquetra; C. myrica, Cystoseira myrica; 
C. trinodis, Cystoseira trinodis; E. kurome, Ecklonia kurome; E. cava, Ecklonia cava; E. stolonifera, Ecklonia stolonifera; S. latifolium, Sargas-
sum latifolium; S. platycarpum, Sargassum platycarpum; S. vulgare, Sargassum vulgare; S. swartzii, Sargassum swartzii; S. wightii, Sargassum 
wightii; S. myriocystum, Sargassum myriocystum; S. crassifolium, Sargassum crassifolium; S. oligocystum, Sargassum oligocystum; S. hystrix, 
Sargassum hystrix; S. dentifolium, Sargassum dentifolium; H. valentiae, Hypnea valentiae; H. musciformis, Hypnea musciformis; C. elongate, 
Corallina elongate; C. tomentosum, Codium tomentosum; C. decorticatum, Codium decorticatum; C. fragile, Codium fragile; D. membranacea, 
Dictyopteris membranacea; S. quadricauda, Scenedesmus quadricauda
E. coli- Escherichia coli; P. mirabilis—Proteus mirabilis; P. aeruginosa—Pseudomonas aeruginosa; P. fluorescens—Pseudomonas fluores-
cens; K. pneumoniae—Klebsiella pneumoniae; C. albicans—Candida albicans; M. luteus—Micrococcus luteus; P. vulgaris—Proteus vulgaris; 
B. cereus- Bacillus cereus; K. aerogenes- Klebsiella aerogenes S. typhi—Salmonella typhi; S. enteriditis— Salmonella enteriditis; S. aureus—
Staphylococcus aureus; G. ornata—Gracilaria ornate; V. cholera—Vibrio cholera; E. faecalis—Enterococcus faecalis; E. aerogenes—Entero-
bacter aerogenes; C. jejuni—Campylobacter jejuni; S. xylosus—Staphylococcus xylosus; A. hydrophilla—Aeromonas hydrophilla; C. tropica-
lis—Candida tropicalis; S. marcescens- Serratia marcescens
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Terpenes

Algae are the most common source of terpenes, a type of 
isoprenoid. These chemicals are responsible for controlling 
the aromas, flavours, and pigments that they produce. Ter-
penes have several different beneficial interactions within 
the body. These might be effective in warding off infections, 
predators, etc. Antibacterial terpenes are produced by cyano-
bacteria in low quantities [96]. Microcoleus lacustri has 
norbietane; Nostoc commune has noscomin and comnostin 
(A, B, C, D, E) had shown antibacterial activity against E. 
coli, S. aureus, B. cereus, and S. epidermidis (Fig. 5) [66, 
67, 77, 89, 91]. Moreover, Udotea flabellum, U. congluti-
nata, Halimeda sp., and Laurencia sp. possess terpenoids 
(udoteafuran, flexilin, halimedatrial), and acetylmajapolene 
A, B, which were effective against S. aureus, P. mirabilis 
and P. vulgaris [75, 97].

Aromatic Compounds

Antibacterial activity was proven against E. coli, S. aureus, 
and Micrococcus luteus by aromatic bioactive compounds 
isolated from Nostoc sp., Fischerella sp., and Eucapsis sp., 
respectively. These compounds include carbamidocyclo-
phanes and ambigol (A, B, C) [66, 67].

Alkaloid

Most of the antibacterial alkaloids that have been identified 
from cyanobacteria are compounds that contain indole. The 
antibacterial activity of alkaloids (ambiguine, hapalindole, 
laminarin, nostocarboline, and tjipanazole D) isolated from 
cyanobacteria Fischerella sp., Hapalosiphon fontinalis, 
Nostoc sp., and Westiellopsis sp., as well as brown algae, 
Ascophyllum nodosum, and Laminaria hyperborea were 
effective against pathogenic bacteria revealed the presence 
of brominated indoles and norharman. These two types of 
indole alkaloids were effective against harmful microorgan-
isms (Fig. 5) [59]. Many compounds in the hapalindole class 
exhibit potent antibacterial action against Gram-positive and 
negative bacteria. It was revealed that the antibacterial activ-
ity of 12-epi-hapalindole E isonitrile was due to the ability 
of the compound to block the RNA polymerase of bacteria. 
It was found that the cyanobacterial alkaloid calothrixin A, 
which was isolated from the cyanobacterium Calothrix sp., 
blocked bacterial RNA polymerase [13].

Lipids

It was found that certain fatty acids derived from marine 
algae possessed antimicrobial properties. The lipids had anti-
bacterial properties, and those also acted as QS inhibitors. 

The fatty acids coriolic acid, -linolenic acid, and -dimor-
phecolic acid isolated from Fischerella sp. and Oscillatoria 
sp. could inhibit the growth of the pathogenic bacteria M. 
flavus and S. aureu`s [93].

Proteins

Some methods are mainly extracting proteins like conven-
tional protein extraction methods, current protein extraction 
methods, and enrichment methods—membrane filtration, 
previously reported [99]. Moreover, marine algae are an 
excellent source of proteins, mainly green and blue-green 
alga, which have 40–60 percent proteins and offer various 
health benefits to men and animals. The proteins C-phy-
cocyanin and phycobiliprotein derived from Anabaena sp., 
Spirulina sp., Westiellopsis sp., Synechocystis sp., and Strep-
tomyces sp. were active against E. coli, K. pneumoniae, and 
Pseudomonas sp. [63].

Peptides

Peptides inhibit the growth of bacteria and are an essen-
tial functioning component of the immune system. Cyclic 
peptides are either ribosomally synthetically produced and 
post-translationally altered (RiPPs) or non-ribosomal pep-
tides resembling a significant class of bioactive cyanobacte-
rial bioactive molecules. RiPPs are made by ribosomes, and 
RiPPs are modified post-translationally. The cyanobactins 
constitute the most prominent family of RiPPs, and most of 
its members have undergone post-translational alterations, 
such as the formation of a macrocyclic core structure [89]. 
Kawaguchipeptins A and B, discovered from Microcystis 
aeruginosa are two particularly antimicrobial examples. 
Antibacterial properties were demonstrated by bioactive 
peptides such as tiahuramide (A, B, and C) and borophy-
cin, which were derived from Lyngbya sp. and Nostoc sp. 
Respectively (Fig. 5). These peptides had promising activity 
on M. luteus and E. coli. Antibacterial activity was dem-
onstrated by muscoride A, a linear peptide, as well as by 
schizotrin A and scytonemin A, lipopeptides derived from 
Nostoc sp., Schizothrix sp., and Scytonema sp. Respectively 
(Table 2). In addition, lyngbyazothrin, pahayokolide, scyp-
tolin, and tenuecyclamide can potentially prevent bacterial 
infection growth in vitro [17, 80].

Polyphenols

Algae are responsible for the production of polyhalogenated 
compounds (PHCs), such as the chlorinated ambigols A, 
B, and C, which have been isolated from Fischerella ambi-
gua and had potent activity against Gram-positive bacteria 
and mammalian cancer cell lines (Table 2). The cyano-
bacterium Leptolyngbya crossbyana was used to isolate 
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Table 2  Inhibition of UTI using of phycocompounds

Algal species Compounds Class Activity on UTI pathogens Reference

N. commune Noscomin Diterpenoids S. epidermidis, E. coli [62]
Comnostin (A, B, C, D) Terpene E. coli [63]

Nostoc sp. Carbamidocyclophane Aromatic S. aureus, E. coli, S. albus, P. 
aeruginosa, M. flavus,

[62]
Fischerella sp. Ambiguine I isonitrile Alkaloids

Hapalindole T
M. lacustris Norbietane Diterpenoid
N. muscorum Phenolic compound Phenols
O. redeki Fatty acids Lipids
C. taxifolia Endophytic actinomycetes E. coli, P. mirabilis, P. aeruginosa, 

K. pneumonia
Enterobacter sp.

[37]

Chlorella sp. Chlorellin E. coli, P. aeruginosa [64]
Anabaena sp. C-Phycocyanin Protein E. coli, K. pneumonia [65]
F. ambigua Ambigol A Aromatic E. coli [66]
Fischerella sp. Ambigol B Aromatic M. luteus, E. coli, P. mirabilis, K. 

aerogenes, P. aeruginosa
[63]

Ambigol C Aromatic
Tjipanazole D
12-epi-hapalindole E isonitrile Alkaloids
γ-Linolenic acid Lipid
Hapanidole A Alkaloids

H. fontinalis Hapanidole A Alkaloids E. coli, K. pneumoniae, P. morga-
nii, M. luteus, P. vulgarisHapanidole C

Hapanidole E
Hapanidole I

Lyngbya sp. Tiahuramide A, B and C Peptide M. luteus, E. coli
N. harveyana Norharmane-HCl (9H-pyrido(3,4-

b) indole-HCl)
Alkaloid E. coli, P. aeruginosa

Scytonema sp. Scytoscalarol E. coli
Spirulina sp. C-Phycocyanin Protein E. coli, K. pneumoniae, P. aerugi-

nosa
Westiellopsis sp. C-phycocyanin Protein Pseudomonas sp., E. coli

Hapanidole A (R) Alkaloid
A. nodosum Laminarin Alkaloid E. coli [67]
Amphidinium sp. Amphidinodile Q E. coli [68]
S. fusiformis Phycobiliproteins Protein E. coli [69]
L. hyperborea Laminarin Alkaloid E. coli [67]
Synechocystis sp. Phycobiliproteins Protein E. coli [69]
S. platensis C-phycocyanin Protein K. pneumoniae [70]
Laurencia sp. Acetylmajapolene A and B Halogenated sesquiterpenes P. mirabilis, P. vulgaris [71]
L. majuscule Halogenated compounds E. coli, K. pneumonia, Pseu-

domonas sp., Salmonella sp., S. 
epidermis

[44]

S. cinereum Methanol extract Alcohol S. typhi, P. aeruginosa, Klebsiella 
sp.

[72]

M. lacustris Abietane Diterpenoid ND [73]
F. ambigua Ambigol (A, B) (R) Aromatic Biological activities [74]

Ambiguine Indole alkaloid B. anthracis [75]
Ambiguine (A, B, C, D, E, F, H, I, 

K, M) Isonitrile
N. linckia, N. spongiaeforme Borophycin Peptide ND [76]
Calothrix sp. Calothrixin A Indolophenanthridine Antibacterial activities [77]
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Nostoc commune; Microcoleus lacustris; Nostoc muscorum; Oscillatoria redeki; Caulerpa taxifolia; Hapalosiphon fontinalis; Nodularia har-
veyana; Ascophyllum nodosum; Spirulina fusiformis; Laminaria hyperborean; Streptomyces platensis; Laurencia majuscule; Sargassum 
cinereum; Microcoleous lacustris; Nostoc linckia; Nostoc spongiaeforme; Leptolyngbya crosbyana; Microcystis aeruginosa; Lyngbya majus-
cula; Microcoleus lacustris; Nostoc spongiaeforme; Scytonema hofmanni; Scytonema pseudohofmanni; Nostoc spongiaeforme; Fischerella 
ambigua; Tolypothrix nodosa; Scytonema ocellatum; Tolypothrix conglutinate; Ecklonia cava; Ecklonia kurome; Ecklonia stolonifera; Lauren-
cia brongniartii; Turbinaria ornate; Sargassum wightii
S. albus—Staphylococcus albus; M. flavus—Micrococcus flavus; P. mirabilis—Proteus mirabilis; P. aeruginosa—Pseudomonas aeruginosa; K. 
pneumoniae—Klebsiella pneumonia; M. luteus—Micrococcus luteus; C. jejuni—Campylobacter jejuni; S. enteriditis—Salmonella enteriditis; 
K. aerogenes—Klebsiella aerogenes; P. morganii—Proteus morganii; P. vulgaris—Proteus vulgaris; B. cereus—Bacillus cereus; B. subtilis—
Bacillus subtilis,

Table 2  (continued)

Algal species Compounds Class Activity on UTI pathogens Reference

Nostoc sp. Carbamidocyclophane (A, B, C, 
D, E)

Cyclophane Cytotoxic activities [78]

O. redekei Coriolic acid Fatty acid B. subtilis, M. flavus, S. aureus [79]
L. crosbyana Crossbyanol (A, B, C, D) Polyphenyl ether MRSA bacteria [80]
M. aeruginosa Kawaguchipeptin (A, B) Cyclic undecapeptide S. aureus [81]
Lyngbya sp. Lyngbyazothrin (A, B, C, D) Cyclic undecapeptide B. subtilis, E. coli, P. aeruginosa [82]
L. majuscula Malyngolide Polyketide hybrid Biological activities [83]
N. muscorum Muscoride A Linear peptide ND [84]
M. lacustris Norbietane Diterpenoid Pharmacological activities [85]
N. harveyana Norharmane Indol alkaloid Biological activities [86]
N. commune Noscomin Diterpenoid E. coli, S. epidermidis, B. cereus [87]
Nostoc sp. Nostocarboline Alkaloid ND [88]
N. spongiaeforme Nostocine A Extracellular pigment ND [89]
Nostoc sp. Nostocyclyne Polyketide Antimicrobial activities [90]
Lyngbya sp. Pahayokolide (A, B) Cyclic peptide ND [91]
Schizothrix sp. Schizotrin A Lipopeptide E. coli, P. fluorescens [92]
S. hofmanni Scyptolin A Cyclic depsipeptides C. albicans [93]
S. pseudohofmanni Scytophycin A Marcrolide ND [94]
Scytonema sp. Scytonemin A Lipopeptide ND [95]
S. pseudohofmanni Scytophycins C Macrolide Antifungal activities [96]
N. spongiaeforme Tenuecyclamide (A, B, C, D) Cyclic hexapeptides ND [76]
F. ambigua Tjipanazole D (R) Alkaloid E. coli [74]
T. nodosa Tolyporphin J Porphinoid Antibacterial activities [97]
S. ocellatum, T. conglutinate Tolytoxin Macrolide Biological effects [98]
N. commune 1,8-dihydroxy-4-methyl anthraqui-

none
Polyketide E. coli, S. epidermidis, B. cereus [87]

O. redekei α-dimorphecolic acid Fatty acid B. subtilis, M. flavus, S. aureus [79]
N. commune 4-hydroxy-7-methyl indan-1-on Indane E. coli, S. epidermidis, B. cereus [87]
E. cava Eckol Phlorotannins S. aureus [50]
E. kurome Phloroglucinol Phlorotannins C. jejuni, S. aureus, E. coli

B. cereus, S. enteriditis
[49]

Eckol
Dieckol
8,8′—bieckol

E. stolonifera Dieckol Phlorotannins E. coli, B. subtilis, K. pneumoniae [51]
E. kurome Phlorofucofuroeckol A Phlorotannins S. aureus, E. coli, B. cereus, S. 

enteriditis
[49]

N. commune Comnostin (E, D, C, B, A) Diterpenoids E. coli, S. epidermidis, B. cereus [87]
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polybrominated crossbyanols. Crossbyanol B, which has two 
sulfo substituents, was the only chemical that demonstrated 
substantial effectiveness in the brine shrimp lethality test and 
against MRSA [86].

Polyketides

The three different kinds of polyketide synthases (PKSs) 
contribute to the production of polyketides, leading to nat-
ural products with a wide range of chemical possibilities. 
Moreover, PKSs gene clusters responsible for producing 
these chemicals in cyanobacteria have been discovered. In 
a recent study, cyanobacteria were designed to create pol-
yketides. The biosynthesis of alkylresorcinols is a chemical 
family that has received the most attention. Nostocyclyne 
A, 1,8-dihydroxy-4-methyl anthraquinone, carbamidocy-
clophanes, and cylindrocyclophanes are examples of other 
members of this chemical family with antibiotic activity 
(Table 2) [61]. The above compound could prevent the 
growth of several Gram-positive human pathogenic strains, 
such as Streptococcus pyogenes, Staphylococcus aureus, 
and Bacillus subtilis; it also had antiplasmodial activity. 
Malyngolide was the first polyketide antibiotic isolated from 
cyanobacteria in 1981 from Lyngbya majuscule [95].

The less recent research was focused on isolating alkyne-
containing polyketides, synthesizing them, and determining 
whether these are effective against MRSA. These instances 
illustrate the possibility that cyanobacterial polyketides 
could be used to treat infections caused by resistant strains 
[97].

Other Classes

In addition to chlorellin from Chlorella sp., endophytic 
actinomycetes from Caulerpa sp., Turbinaria sp., and Sar-
gassum sp., and halogenated compounds from Laurencia sp. 
demonstrated antibacterial action against E. coli, K. pneu-
moniae, and Pseudomonas sp. in vitro [11, 59].

Challenges for Phycocompounds

Microalgae are a rich source of valuable active bio-com-
pounds such as carotenoids, C-phycocyanin, phenolics, 
amino acids, polyunsaturated fatty acids, sulphated polysac-
charides, pigments, lipids, phlorotannins, polysaccharides, 
peptides, terpenes, polyacetylenes, sterols, indole alkaloids, 
these chemicals, which were associated with various phar-
macological actions, such as the control of bacteria, viruses, 
tumors, inflammation, and allergies (Table 2) [30]. The fact 
that these compounds are only found in trace amounts in the 
extracts is one of the limitations. It is essential to study the 
many approaches that can be taken to boost the synthesis of 
these compounds [13].

Since algal slow-growth, periodicity, and low extraction 
yields are additional fundamental limitations, one of the 
significant issues in this area is the sustainable synthesis of 
these chemicals to supply enough for preclinical, clinical, 
and future commercialized drugs. By such a need, the whole 
chemical synthesis can ensure the long-term and steady pro-
duction of the bioactive molecules, given the expansion of 
the scope of their uses [87].

Future Prospective

New methods in molecular biology, such as CRISP/ Cas9 
and genomic research, could make it possible to obtain 
larger quantities of compounds without the need for many 
reagents or a significant amount of time, which would result 
in a reduction in the cost related to the mass production of 
these molecules [7, 59].

To design novel extraction processes, explore untouched 
marine sources with hidden medicinal values, and investi-
gate structural interactions between active constituents from 
the same and multi-source. The elucidation of intermedi-
ate interactions of bioactive cofactors and their potential 
applications for marine-derived bioactive compounds shall 
be considered in the future [13]. As the source of several 
therapeutically beneficial chemicals, cyanobacteria have sig-
nificant therapeutic potential. Numerous studies have been 
conducted on the pharmacological activities of cyanobac-
teria, including their bioactive components [62]. However, 
more in vivo and in vitro investigations employing various 
animal models and clinical studies will be required to bring 
cyanobacteria with their bioactive constituents into the 
translational mode for society.

Further research is required to assess the compounds 
in more intricate biological systems, such as in vivo mod-
els. The potential for 3D chemical structure modeling 
approaches to be used in the search for new biological tar-
gets for algae-derived chemicals has yet to be fully realized 
[11]. Furthermore, the potential of medicinal co-adjuvants 
generated from algae should be studied. Some algae-derived 
substances have limits that could be mitigated, and their effi-
cacy could be enhanced by applying cutting-edge techniques 
like nanotechnology to create novel nano-formulations. 
However, more advanced technologies are required to verify 
whether their antimicrobial efficacy could be improved in 
nano-formulations [98].

Despite the literature addressing female UTIs and their 
risk factors, much remains to be learned. Methods to reduce 
the danger of UTIs are under scrutiny. Strategies for man-
aging several essential issues, including pregnancy, diabe-
tes, anaemia, etc., are still being researched and developed. 
Despite growing interest from public health groups, research 
into public education about UTIs and their causes has been 
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sparse. There should be more nontoxic antibacterial through 
which MDR microorganisms can be controlled [6].

Conclusion

The gargantuan types of secondary metabolites produced 
by algae have the potential to serve as a rich source of new 
entities that can lead to the formulation of new medications. 
Those metabolites can also have peptides, alkaloids, indole 
alkaloids, polyketides, and terpene chemical structures, and 
many of these molecules have a wide range of pharmaco-
logical properties. The enormous chemical diversity and 
biological activities of algal products have prepared those 
sources an appealing candidate for developing novel drugs 
for application in various therapeutic domains; nonetheless, 
the historical underappreciation of algae compared to other 
microbial sources of natural products. Thus, the pharma-
cological potential of algae advantages increased attention 
from the scientific community and research that draws from 
various fields. In addition, the diverse algal strains originat-
ing from environments that still need to be well investigated 
can be promising candidates for use in the pharmaceutical 
industry.

The oxygenic photosynthetic blue-green algae are found 
in various biological niches worldwide. Over the past two 
decades, researchers have recognized algae as a promising 
resource for developing novel therapeutic lead compounds 
due to the wide range of actions displayed by the bioac-
tive molecules isolated from them. Because it can be grown 
with relatively inexpensive inorganics, cyanobacteria offer 
another benefit as the microbiological source for drug 
development. As a result, the blue-green algae may treasure 
broader application in drug research.
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