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Abstract
The genotyping of Campylobacter coli was done using three methods, pulsed-field gel electrophoresis (PFGE), Sau-poly-
merase chain reaction (Sau-PCR), and denaturing gradient gel electrophoresis assay of flagellin gene (fla-DGGE) and the 
characteristics of these assays were compared. The results showed that a total of 53 strains of C. coli were isolated from 
chicken and duck samples in three markets. All isolates were clustered into 31, 33, and 15 different patterns with Simpson’s 
index of diversity (SID) values of 0.972, 0.974, and 0.919, respectively. Sau-PCR assay was simpler, more rapid, and had 
higher discriminatory power than PFGE assay. Fla-DGGE assay could detect and illustrate the number of contamination 
types of C. jejuni and C. coli without cultivation, which saved more time and cost than Sau-PCR and PFGE assays. Therefore, 
Sau-PCR and fla-DGGE assays are both rapid, economical, and easy to perform, which have the potential to be promising 
and accessible for primary laboratories in genotyping C. coli strains.

Introduction

Campylobacter coli is one of the most prevalent organisms 
and a major cause of human acute enteritis, which is associ-
ated with foodborne illness. Large numbers of Campylobac-
teriosis cases occur every year, with approximately 200,000 
cases in the European Union and 800,000 in the USA [1, 2]. 
Human Campylobacteriosis are often caused by the spe-
cies of Campylobacter jejuni and C. coli. In general, the 
main symptoms of C. coli that affect most people include 
diarrhea, fever, and abdominal cramps, which may cause 
chronic sequelae in severe cases [3]. Although most Campy-
lobacter infections are caused by C. jejuni, the occurring 
rate of C. coli infections has increased significantly from 
approximately 5% to 15% since 2000 [4, 5]. The main source 
of human infections is considered to be the consumption 
of contaminated poultry meat [6, 7]. Many studies have 

reported a higher rate of C. coli isolated from chicken than 
that of C. jejuni in China [8, 9].

Molecular typing methods are essential tools for the 
epidemiological investigation of C. coli. Pulsed-field gel 
electrophoresis (PFGE) is regarded as a “gold standard” 
fingerprinting method, but it also has disadvantages due to 
being arduous [10]. Moreover, several studies have reported 
some rapid genotyping methods of C. coli strains, includ-
ing multilocus sequence typing (MLST) [11], automated 
repetitive extragenic palindromic polymerase chain reac-
tion (REP-PCR) [12], and whole-genome sequencing (WGS) 
[13]. However, these methods have certain limitations, such 
as the requirement of technical expertise and are expensive.

Sau-polymerase chain reaction (Sau-PCR) is based on 
a genomic DNA enzymatic digestion with the restriction 
endonuclease Sau3AI of amplified fragment length polymor-
phism (AFLP) and subsequent amplification of randomly 
amplified polymorphic DNA (RAPD), which can be consid-
ered for DNA fingerprinting-based analyses with lower costs 
of time and equipment [14]. Nowadays, it has been applied 
to many bacterial species; however, there is no report on the 
application of Sau-PCR to genotype C. coli isolates. Dena-
turing gradient gel electrophoresis assay of flagellin gene 
(Fla-DGGE) which is based on the 5’ and 3’ regions of 
flaA and flaB genes being highly conserved within different 
strains, can separate DNA fragments of equal length with 
different base composition regardless of regions in between 
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flaA and flaB varying significantly [15, 16]. It has been 
applied for subtyping C. jejuni and C. coli in cecal samples 
of broilers without cultivation [17]. Thus, this study aimed to 
apply PFGE, Sau-PCR, and fla-DGGE for genotyping C. coli 
strains from poultry meat, and compare their characteristics.

Material and Methods

Identification of Campylobacter coli

A total of 81 fresh slaughtered poultry samples were col-
lected from three retail markets (A, B, and C) in Guangzhou, 
China. All samples were transported to the laboratory within 
2 h on ice packs and then processed immediately. Briefly, 
the epidermis was removed with a sterile knife and the sub-
cutaneous muscle was taken to exclude environmental con-
tamination. Ten grams of samples and 10 mL of 0.1% pep-
tone water were placed in a sterile filter stomacher bag and 
subjected to 30 s of homogenization with a BagMixer lab 
blender 400 (Bio-Rad, USA), then 1 mL filtered liquid was 
transferred into 4 mL Bolton broth enrichment (Oxoid, UK) 
and 4 mL Preston broth enrichment (Oxoid, UK), respec-
tively, and incubated at 37 ℃ for 24 h. After that, a loop-
ful of the enrichment was streaked onto modified charcoal 
cefoperazone deoxycholate agar (mCCDA) (Oxoid, UK) and 
Skirrow selective medium (Oxoid, UK) plate, respectively, 
then cultured at 37 ℃ for 48 h under microaerophilic con-
ditions (85% N2, 10% CO2, and 5% O2). Two presumptive 
colonies in each plate were picked to grow at 25 ℃ and 
42 ℃, then tested for indole acetate, hippuric salt, oxidase, 
catalase and Gram stained. The isolates with typical colony 
characteristics were subjected to a Campylobacter PCR test 
kit (TaKaRa, Japan). Based on the PFGE results, if there 
were typologically consistent isolates in each sample, only 
one of them was retained. The identified C. coli isolates were 
stored at − 80 ℃.

PFGE Analysis

The isolates were subjected to molecular typing by PFGE, 
which was performed using the standardized protocol 
described by PulseNet (http://​www.​cdc.​gov/​pulse​net/​
proto​cols.​htm). Briefly, all isolates were grown on Muel-
ler–Hinton agar (Oxoid, UK) with 5% laked horse blood, 
then diluted to the required concentration and made aga-
rose-embedded plugs, then digested with SmaI restriction 
enzyme. The digested plugs were run in Seakem agarose 
gel (Bio-Rad, USA) with 0.5 × Tris–Borate EDTA (TBE) 
buffer to separate the bands with a CHEF Mapper PFGE 
system (Bio-Rad, USA) by running for 18 h at 14 ℃ switch-
ing directions every 6.76 s and ending with 35.38 s. Gels 
were stained with ethidium bromide solution and destained 

with distilled water, then DNA bands were visualized under 
UV illumination.

Sau‑PCR Analysis

For Sau-PCR, the assay was designed and modified as pre-
viously described in Corich et al. [14]. The DNA (200 ng) 
was subjected to digestion at 37 ℃ for 5 h with 5 U Sau3AI 
in a final volume of 20 μL. Primers SAUA, SAUT, SAG, 
STG, and SGAG were used for preliminary examination 
(Supplementary Table S1). The amplification reaction was 
performed in a 25 μL reaction volume containing 2.5 μL of 
10 × buffer (1.5 mM MgCl2), 0.5 μL dNTP (10 mM), 5 μL 
primer SAG (10 μM), 0.5 U Taq polymerase, 20 ng template 
DNA, and ddH2O. PCR reactions were carried out with an 
iCycler Thermal Cycler (Bio-Rad, USA) using the follow-
ing amplification conditions: 25 ℃ for 5 s, ramp to 60 ℃ at 
0.1 ℃/s, 60 ℃ for 30 s, 2 cycles of 94 ℃ for 1 min, 50 ℃ for 
15 s, ramp to 25 ℃ at 0.1 ℃/s, ramp to 50 ℃ at 0.1 ℃/s, 50 
℃ for 30 s, 35 cycles of 94 ℃ for 15 s, 48 ℃ for 1 min, 65 
℃ for 2 min, and the final extension at 65 ℃ for 5 min, then 
stored at 4 ℃. The amplification products were subjected 
to 2% agarose gel and detected by staining with ethidium 
bromide, then photographed and analyzed with a Universal 
Hood II system.

Fla‑DGGE Analysis

The experimental design and modifications for the fla-
DGGE assay were based on prior work done by Yu and 
Morrison [18]. Primers CF03 and CF02 were used in this 
assay (Supplementary Table S1). The amplification reac-
tion was performed in a 50 μL reaction volume contain-
ing 1.25 U Taq polymerase, 5 μL of 10 × PCR buffer, 1 μL 
dNTP (10 mM), 20 ng template DNA, 3 μL of each primer 
(10 μM), and ddH2O. PCR reactions were carried out with a 
PCR amplifier using the following amplification conditions: 
5 min at 94 ℃ (initial step), 35 cycles of 30 s at 94 ℃, 30 s 
at 56 ℃, 30 s at 72 ℃ and a final extension of 7 min at 72 
℃. The gradient of the chemical denaturant was adjusted to 
5%–35%. Amplicons were separated in 8% polyacrylamide 
gel in 1 × Tris–Acetate-EDTA (TAE) with a Dcode appa-
ratus (Bio-Rad, USA), and the operating conditions were 
20 V at 60 ℃ for 15 min and then 200 V at 60 ℃ for 3 h. 
The amplification products were subjected to 2% agarose 
gel and detected by staining with ethidium bromide, then 
photographed and analyzed with a Universal Hood II system 
(Bio-Rad, USA).

Data Analysis

For the data, Chi-Square test, t-tests, and ANOVA were 
employed to assess the significant differences of C. coli in 

http://www.cdc.gov/pulsenet/protocols.htm
http://www.cdc.gov/pulsenet/protocols.htm
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chickens and ducks sampled in different markets using SPSS 
26.0 software, and P value less than 0.05 was considered a 
statistically significant difference. The dendrograms were 
drawn with the Numerical Taxonomy System of Statistic 
(NTSYS) software, using the Dice correlation coefficient and 
the unweighted pair group mathematical average (UPGMA) 
clustering algorithm to determine the phylogenetic relation-
ships of strains. The single numerical index of Simpson’s 
index of diversity (SID) was used to compare the typing 
methods [19]. The formula for calculating SID is:

 where ‘N’ is the total number of isolates, ‘s’ is the total 
number of patterns described, and ‘nj’ is the number of 
isolates belonging to type j. In addition, the concordance 
between the typing methods was assessed using the adjusted 
Rand index (AR) and adjusted Wallace (AW) coefficient. 
The AR shows the proportion of agreement, whereas the 
AW indicates the probability that two isolates assigned to the 
same type by one method will also be classified as the same 
type when using the other method [20–22]. The calculation 
of SID, AR, and AW coefficients was performed using the 
online tool at the Comparing Partitions website (http://​www.​
compa​ringp​artit​ions.​info/).

Results

Isolation of C. coli

In this study, 81 samples of fresh poultry meat from three 
markets were tested. The results showed that 44/81 (54.3%) 
of the samples were positive for C. coli, and a total of 53 
C. coli strains were isolated. The prevalence of C. coli 
in poultry meat from 3 markets is shown in Table 1. The 
overall proportion of positive samples in poultry meat was 
54.6% (95% CI 44.5–64.6), with a higher proportion of duck 
samples (60.6%) than the chicken samples (50.0%), and a 

D = 1 −
1

N(N − 1)

s
∑

j=1

nj
(

nj − 1
)

,

higher proportion in market A (63.4%) than B (48.8%) and C 
(51.6%). The overall prevalence of C. coli was 49.8% (95% 
CI 26.6–73.0) and 59.4% (95% CI 38.2–80.6) in chicken 
and duck samples, respectively. There was no significant 
difference in the prevalence of C. coli between chicken and 
duck samples (χ2 = 0.887, P > 0.05). The mean and stand-
ard deviation of C. coli from three markets were as follows: 
market A (8.5 ± 0.707), B (7.0 ± 4.243), and C (6.5 ± 2.121). 
There was no significant difference in the overall mean 
of C. coli between chicken and duck samples (t = 0.658, 
P = 0.547 > 0.05), and no significant difference was found 
in the overall mean of C. coli from three markets (F = 0.283, 
P = 0.772 > 0.05). In addition, the overall separation rate of 
C. coli isolates was 50.0% (95% CI 29.8–70.2), with the 
highest rate recovered from chicken samples in market B, 
and the lowest rate recovered from duck samples in market 
B.

PFGE Analysis

A total of 53 C. coli isolates were classified into 31 pulso-
types with similarity ranging from 60 to 100% (Fig. 1). The 
SID value of PFGE was 0.972. Groups P4, P8, and P31 were 
the three predominant ones, each group consisted of 4 or 5 
isolates, and those isolates were all recovered from market 
A. The number of types varied in different markets, A 10/22 
(45.5%), B 14/16 (87.5%), and C 9/15 (60.0%). Some iso-
lates of the same type originated from different sources, such 
as P1 included 1 isolate from chicken and 2 isolates from 
duck in market A, P4 included 2 isolates from chicken and 
2 isolates from duck in market A, and P31 included 1 isolate 
from chicken and 3 isolates from duck in market A. Some 
isolates of the same type originated from different markets, 
for example, P10 included 2 isolates of chicken from markets 
B and C. In addition, P28 originated from different sources 
and markets, which included 1 isolate of chicken from mar-
ket B and 2 isolates of duck from market C.

Sau‑PCR Analysis

In the preliminary examination of Sau-PCR, the results 
showed that primer SAG generated more and clearer bands 
than primers SAUA, SAUT, STG, and SGAG (data not 
shown). The results of three repeated experiments were con-
sistent. Sau-PCR analysis of 53 isolates yielded between 4 
and 10 DNA fragments, and they were classified into 33 
pulsotypes with similarity ranging from 54 to 100% (Fig. 2). 
The calculated SID value of Sau-PCR was 0.974. Group 
S8 was the predominant one, which consisted of 6 isolates. 
The number of types varied in different markets, A 13/22 
(59.1%), B 13/16 (81.3%), and C 10/15 (66.7%). Some iso-
lates of the same type originated from different sources, such 
as S1 included 1 isolate from chicken and 2 isolates from 

Table 1   Prevalence of C. coli in slaughtered poultry meat in Guang-
zhou, China

Market Source No. (%) of positive 
samples

No. (%) of isolates

A Chicken 60.0% (9/15) 54.5% (12/22)
Duck 66.7% (8/12) 45.5% (10/22)

B Chicken 47.6% (10/21) 75.0% (12/16)
Duck 50.0% (4/8) 25.0% (4/16)

C Chicken 41.7% (5/12) 33.3% (5/15)
Duck 61.5% (8/13) 66.7% (10/15)

http://www.comparingpartitions.info/
http://www.comparingpartitions.info/
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duck in market A, and S13 included 2 isolates from chicken 
and duck in market B. Some isolates of the same type origi-
nated from different markets, for example, S33 included 2 
isolates of chicken from markets B and C. In addition, some 
isolates of the same type originated from different sources 
and markets, such as S8 included 2 isolates of chicken and 2 
isolates of duck from market A, and 2 isolates of duck from 
market C, S9 included 1 isolate of duck from market A and 
2 isolates of chicken from market B.

Fla‑DGGE Analysis

A total of 53 isolates were classified into 15 subtypes 
by fla-DGGE, and the SID value was 0.919. Fla-DGGE 
analysis of each isolate yielded one band, and the 

electrophoretic bands of 15 different types of some C. coli 
isolates by fla-DGGE are shown in Fig. 3. The number 
of types varied in different markets, A 9/22 (41.0%), B 
8/16 (50.0%), and C 7/15 (46.7%). Groups F1, F9, and F10 
were the predominant ones. Some isolates of the same type 
originated from different sources, for example, F1 included 
3 isolates from duck and 6 isolates from chicken in market 
A. In addition, some isolates of the same type originated 
from different sources and markets, such as F8 included 3 
isolates of chicken from market C and 1 isolate of chicken 
from market B and 2 isolates of duck from market A, F9 
included 2 isolates of duck from market C and 3 isolates of 
chicken from market B and 1 isolate of duck from market 
B, F10 included 1 isolate of chicken from market A and 
3 isolates of chicken from market B and 1 isolate of duck 
from market B and 2 isolates of duck from market C.

Fig. 1   The genotyping results of 53 C. coli isolates by PFGE, Sau-
PCR, and fla-DGGE. The UPGMA-dendrograms based on PFGE 
methods of from poultry meat. The dendrogram axis represents the 
coefficient of similarity between isolates

Fig. 2   UPGMA-dendrograms based on Sau-PCR methods of C. coli 
isolates from poultry meat. The dendrogram axis represents the coef-
ficient of similarity between isolates
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Comparison of Three Methods

Genotyping was performed by PFGE, Sau-PCR, and fla-
DGGE, a total of 53 isolates were clustered into 31, 33, 
and 15 different patterns with SID values of 0.972, 0.974, 
and 0.919, respectively. The results of the analysis of the 17 
isolates by the three typing methods were highly consist-
ent (Fig. 4). For example, the subtyping results of strain 
CYC1, CYC3, and CYC4 were all in the same group by three 
methods, CYC47, CYC48, and CYC49 were all in another 
identical group. Using the Sau-PCR assay, PFGE groups P4, 
P8, P22, P28, and P31, comprising 2–5 isolates, were further 
divided into 2 to 3 Sau-PCR types, respectively. Using the 
fla-DGGE assay, PFGE groups P4, P6, P8, P10, P11, P28, 
and P31, comprising 2–5 isolates, were further divided into 
2 to 3 fla-DGGE types, respectively.

The congruence among methods was determined by 
comparing the calculated AR and AW coefficients. The AR 
coefficient between PFGE and Sau-PCR showed a moder-
ate congruence (AR = 0.500), AWSau-PCR→PFGE = 0.487, 
AWPFGE→Sau-PCR = 0.514, which meant if two isolates were 
in the same type by PFGE, they had about 48.7% chance 
of being identified as the same Sau-PCR type, while con-
versely, the chance was 51.4%. In addition, the AR coeffi-
cient between PFGE and fla-DGGE was 0.207, and between 
Sau-PCR and fla-DGGE was 0.142. The AW coefficient 
among methods is shown in Table 2.

Discussion

According to previous studies, the prevalence of C. coli in 
poultry or raw poultry meat ranged from 7% to 87.8% in 
China [[22] (n markets = 3); [23] (n markets = 25); [24] (n 
markets = 14); [25] (n markets = 5)]. In this study, the preva-
lence of C. coli in poultry samples ranged from 41.7% to 
66.7%. The incidence of C. coli was higher in duck (60.6%) 
than in chicken (50.0%), but there was no significant differ-
ence in the prevalence between chicken and duck, which was 
similar to our previous study [22]. The results showed that 
44 (54.3%) samples (n = 81) were positive for C. coli and 
53 strains were isolated, which was less than the previous 
study where 53 (60.2%) samples (n = 88) were positive for 

Fig. 3   The electrophoretic bands of 15 different types of some C. coli 
isolates by fla-DGGE

Fig. 4   Comparison of the genotyping results of Sau-PCR, fla-DGGE, 
and PFGE for some strains. The dendrograms on the left and right 
represent Sau-PCR and PFGE clusters, respectively. The dendrogram 
axis represents the similarity between isolates

Table 2   Comparison of the 
global congruence [Adjusted 
Wallace Coefficient (95% 
confidence interval)] of three 
methods

a The first column of the table represents the primary typing method, and the remainder of the row shows 
the secondary typing methods to which the primary method is compared

Methoda PFGE Sau-PCR Fla-DGGE

PFGE 0.487(0.316–0.627) 0.427(0.233–0.621)
Sau-PCR 0.514(0.361–0.668) 0.305(0.145–0.464)
Fla-DGGE 0.137(0.032–0.242) 0.092(0.000–0.187)
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C. coli and 68 isolates were detected [22]. There were 20.5% 
(9/44) of the poultry samples contaminated by 2 types of 
C. coli in our study. Due to only two suspicious colonies in 
each sample being picked for identification in this study, the 
actual contamination rate of C. coli in these samples may be 
underestimated. In addition, three typing method results all 
showed that some isolates of the same type originated from 
different sources and markets, which indicated the samples 
may be cross-contaminated through multiple pathways. Mar-
kets A, B, and C are located in the same district and close 
to each other. Poultry in the same market may have been 
transported from the same source or raised on the same farm 
before being slaughtered. The association between Campy-
lobacter outbreaks and poultry products has been reported 
in several studies. The contaminated poultry products may 
lead the Campylobacter outbreaks [6, 26, 27]. People are 
likely to get illnesses such as diarrhea, fever, and abdominal 
pain from contaminated poultry products. Therefore, more 
interventions should be implemented to prevent the occur-
rence of poultry contamination.

Any typing method that produces a SID value higher 
than 0.900 is appropriate, while methods that produce a SID 
value of 0.950 can be considered as more or less ‘ideal’ [12, 
28]. In the present study, the SID values of PFGE, Sau-PCR, 
and fla-DGGE were 0.972, 0.974, and 0.919, respectively, 
indicating that the three methods were all appropriate for 
genotyping C. coli. However, discriminatory power is not 
the only criterion for judging the usefulness of a technique. 
Optimal typing methods need to have appropriate discrimi-
natory power and must be assessed for the turnaround time, 
throughput, cost, and technical difficulty of the typing meth-
ods [29].

It is commonly accepted that PFGE is one of the most 
easily accessible methods for typing C. coli. Previously, 
a study genotyped C. coli strains that were isolated from 
live broilers and retail broiler meat by PFGE, and the SID 
value was 0.910 [12]. Other studies have shown the SID 
value of PFGE in C. coli reached 0.980 [22, 30]. The SID 
value of PFGE in the current study was within the range of 
those previously observed. However, due to the complex 
and time-consuming operation procedures, it is undesirable 
to genotype large numbers of samples by PFGE. Moreover, 
compared to other methods, the apparatus and reagents, such 
as proteinase K and SmaI restriction enzyme used in PFGE 
were expensive. When using PFGE for genotyping C. jejuni, 
some strains may still not be typeable due to genetic vari-
ations [31].

Sau-PCR fingerprints are created based on the restric-
tion sites of the Sau3AI enzyme in the bacterial genome, 
which means that Sau-PCR is a simple and fast technique. 
To the best of our knowledge, the Sau-PCR assay has been 
applied to genotyping of 10 bacterial species since 2005, 
such as Listeria monocytogenes, Burkholderia cepacian, 

and others [32, 33]. A study showed Sau-PCR was use-
ful in investigating the distribution of Lactococcus gar-
vieae strains in the environment, and the discriminatory 
power was 0.798, which was lower than our study [34]. 
Another study genotyped Legionella strains in a hospital 
in Italy, which described Sau-PCR showed greater dis-
criminative power than PFGE [35]. Sau-PCR was used 
to subtype Burkholderia cepacia and the fingerprinting 
results were reproducible [33]. Sau-PCR was also applied 
to Starmerella bacillaris and Staphylococcus xylosus [36, 
37]. However, there is no report on the application of Sau-
PCR for genotyping C. coli isolates, and only a few stud-
ies on Sau-PCR have been reported so far. In the present 
study, the Sau-PCR assay was used to genotype C. coli, 
and the results of the DNA fingerprint were reproducible. 
The SID value of Sau-PCR was 0.974, which was slightly 
higher than PFGE. Additionally, the results of C. coli gen-
otyping could be generated within one day because of its 
rapid and simple operating procedure.

The principle of DGGE is that the double-stranded DNA 
molecules have different denaturation temperatures during 
gel electrophoresis and remain in different positions on the 
gel, forming separate bands [38]. It is possible to separate 
DNA fragments of the same size and different base com-
positions, even with only one base difference [39]. The 5ʹ 
and 3ʹ regions of flaA and flaB genes are highly conserved 
within different strains, while the sequences in between 
can vary significantly [15]. Primers CF02 and CF03 were 
designed according to these features, which were favorable 
for fla-DGGE typing. Fla-DGGE can detect C. coli and C. 
jejuni without needing the pathogen to be cultured, which 
can save time and be cost-effective as microaerobic strains 
are difficult to culture. In addition, fla-DGGE can illustrate 
the number of contaminants of C. coli and C. jejuni with-
out needing to culture pathogens, which is one of the most 
important differences as compared to other methods. The 
SID value of fla-DGGE was lower than Sau-PCR and PFGE, 
however, its discriminatory power could be improved if PCR 
products were sequenced.

To evaluate the reliability of the typing methods, sev-
eral characteristics were assessed to compare the analy-
sis results obtained by the three methods. Among all 
AR and AW coefficients, between PFGE and Sau-PCR 
were the highest (AR = 0.500, AWSau-PCR→PFGE = 0.487, 
AWPFGE→Sau-PCR = 0.514), suggesting that Sau-PCR had a 
moderate level of agreement with PFGE. The AR and AW 
coefficients between fla-DGGE and other methods were 
low, indicating that fla-DGGE had a low level of agreement 
with other methods. The degree of congruence between the 
results of two or more typing methods varies with sample 
size, even for different samples from the same population 
[40, 41]. Although the present results may differ from a 
similar analysis using different strains of C. coli, the high 
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congruence between PFGE and Sau-PCR data may be repro-
ducible in other studies.

Conclusion

The present study found that the proportion of C. coli posi-
tive samples from poultry meat was high. PFGE, Sau-PCR, 
and fla-DGGE were able to genotype C. coli strains. Sau-
PCR assay was simpler, more rapid, and had higher dis-
criminatory power than PFGE assay. Fla-DGGE assay could 
detect and illustrate the number of contamination types of 
C. jejuni and C. coli without cultivation, which saved more 
time and cost than Sau-PCR and PFGE assays. Therefore, 
Sau-PCR and fla-DGGE assays are both rapid, economic, 
and easy to perform, which have the potential to be promis-
ing and accessible for primary laboratories in genotyping 
C. coli strains.
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