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Abstract
Streptococcus agalactiae (GBS) is a colonizing agent in pregnant women, the main cause of invasive neonatal infections, 
and the reason of serious diseases in non-pregnant adults. Several virulence determinants are involved in the pathogenesis. 
These include capsular polysaccharide, surface-localized proteins, and toxins. Penicillin is considered the first choice anti-
biotic for the treatment and prophylaxis; erythromycin, clindamycin and fluoroquinolones are recommended alternatives 
for penicillin-allergic GBS carriers or patients. Our objective was to investigate the virulence genetic characteristics and the 
antimicrobial susceptibility of 162 GBS colonizing and infective isolates recovered in Argentina. Serotypes Ia and III were 
the most prevalent ones, followed by Ib, II, V, IV and non-typeable. In relation to the 13 virulence genes screened, cpsA, cylE, 
hylB, lmb, and scpB were the most prevalent and could be postulated as vaccine epitopes; bca, rib, bac, hvgA, spb1, PI, PI-2a, 
and PI-2b were detected in lesser frequencies. No significant association was found between serotypes or virulence genes 
and colonizing or infective isolates but, on the contrary, significant association was observed between some genes and the 
most prevalent serotypes, la and III. The cluster analysis showed 52 virulence profiles and, antimicrobial resistance tests, 16 
profiles, some with up to 4 resistances. Tetracycline resistance was significantly associated with colonizing isolates. Genes 
tetM and ermB conferring resistance to tetracyclines and macrolides, respectively, were the most commonly identified. Our 
findings show that GBS colonizing and infective isolates circulating in Argentina share similar features in terms of serotype 
and virulence genes and show a high level of antimicrobial resistance.

Introduction

Streptococcus agalactiae, or Group B Streptococcus (GBS), 
is the leading cause of neonatal sepsis and meningitis and 
an important cause of infections in pregnant and nonpreg-
nant adults, particularly among the elderly and those with 
underlying comorbidities [1, 2]. On the other hand, GBS is 
part of the normal gastrointestinal or genitourinary flora of 
healthy adults.

Asymptomatic colonization of pregnant women is the 
leading source of neonatal GBS infection, and has also 
been associated with an increased risk of prematurity and 
stillbirth. The vaginal colonization rate in pregnant women 
is not equal between different geographical areas. The esti-
mated maternal GBS colonization worldwide average is 
18%, with a range between 11 and 35% [3]. In Argentina, 
although information regarding national GBS colonization 
rate is scarce, regional data show that between 1.4 and 18% 
of pregnant women are colonized by GBS [4]. In order to 
prevent this route of transmission, universal screening for 
recto- vaginal GBS colonization is recommended for preg-
nant women between 35 and 37 weeks of gestation and 
carriers receive intrapartum antibiotic prophylaxis (IAP). 
In Argentina, the search for GBS in all pregnant women is 
mandatory since 2008, according to the National Law N° 
26369. IAP has reduced the incidence of early onset neo-
natal disease without a notable impact on the incidence of 
late-onset neonatal disease [5].
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Beta-lactams remain appropriate for first line treatment 
and prophylaxis as GBS is still sensitive to penicillin but iso-
lates with reduced susceptibility have been reported [6, 7]. 
Erythromycin, clindamycin and fluoroquinolones are recom-
mended alternatives for penicillin-allergic GBS carriers or 
patients or when therapeutic failure is suspected. Increased 
frequency of resistance to these non-beta-lactam antibiotics 
has been observed, therefore continued monitoring of anti-
microbial resistance (AMR) is essential [8].

GBS has a variety of virulence factors that facilitate its 
ability to cause disease. Several virulence determinants are 
involved in the adhesion and invasion of host cells, as well 
as in evasion from the immune system [9]. These include 
capsular polysaccharide (CPS), regulatory proteins, sur-
face-localized proteins, and toxins. The CPS is an antigenic 
determinant and a major virulence factor as it interferes 
with complement mediated killing [10]. GBS can be clas-
sified into ten serotypes based on CPS types (Ia–Ib, II–IX) 
[11]. CPS is presented in combination with different surface 
proteins including α-C and ß-C, Rib, Lmb, C5a peptidase, 
HylB, and β-haemolysin, among others [9]. Vaccines target-
ing capsule polysaccharides and common proteins are under 
development. The frequency of the genes that encode them 
varies by origin of the strains, geographic location as well 
as serotypes [12].

Our hypothesis is that GBS is differentiated into subpopu-
lations according to whether they are infective or colonizing 
strains. This study aimed to analyse the virulence profiles 
and antimicrobial resistance of Streptococcus agalactiae 
isolates from the Argentina Pampa region.

Materials and Methods

Isolates Collection

Between 2010 and 2020, we received 189 S. agalactiae 
isolates obtained and identified using standard biochemical 
criteria and sent from health centers (three hospitals and 
three biochemical laboratories) of the Argentinean Pampa 
region of Argentina. The isolates identified by routine diag-
nostics as GBS were classified as infective or colonizing 
strains. Sources of the infective isolates were symptomatic 
non-pregnant people. This group included mostly adults 
of different ages (with the exception of three infants), both 
females and males, with symptomatic disease. We received 
infective isolates recovered from blood, soft tissue, urinary 
and vaginal infections. Sources of the colonizing isolates 
were pregnant women tested between 35 and 37 weeks of 
pregnancy. The isolates were recovered from vaginal swabs 
(according to the Argentinean regulation 26369/2008). Of 
189 isolates received, 162 could be confirmed by amplifying 

a region of the monocopy regulatory gene dltR, specific to 
S. agalactiae [13].

Serotyping and Detection 
of Virulence‑Associated Genes

The capsular type identification, Ia, Ib, II–IX, was deter-
mined by PCR according to Imperi et al. [14]. A total of thir-
teen virulence genes associated with adhesion and coloniza-
tion, invasion, tissue damage and/or immune evasion were 
amplificated by PCR. The genes encoding virulence factors 
analysed were: bca and bac (alpha and beta subunits of pro-
tein C), lmb (laminin-binding protein), rib and spb1 (surface 
proteins), cpsA (capsule component, survival of the patho-
gen in the host), scpB (peptidase C5a), cylE (pore-forming 
toxin β-haemolysin), hylB (enzyme, degradation hyaluronic 
acid) [15–18] and PI1, PI2a and PI2b (pilus structures, 
colonization and invasion of host tissues and formation of 
biofilms) [19]. Also, a 210 bp genetic region encoding the 
S10 domain of the HvgA surface protein, from the gbs2018 
allele, described as specific for ST-17 was amplified [13]. 
The primers used to amplify DNA regions specific to viru-
lence genes in GBS isolates are listed in Suppl. Mat. Table 1. 
The DNA template for PCR assays was obtained by boiling 
frozen bacteria suspended in sterile water for 10 min. The 
PCR products were visualized in 2% agarose gel stained by 
ethidium bromide.

Antimicrobial Susceptibility

Antimicrobial susceptibility to clindamycin (CLI), eryth-
romycin (ERY), levofloxacin (LEV), penicillin (PEN) and 
tetracycline (TET), was tested in 93 isolates by disc diffu-
sion method according to Clinical and Laboratory Standards 
Institute [20]. The interpretation of results for NOR was per-
formed following the recommendations of the Clinical and 
Laboratory Standards Institute [21] (Suppl. Mat. Table 2). 
A bacterial suspension in sterile saline solution from an 
overnight pure culture, adjusted to a turbidity of 0.5 on the 
McFarland scale, was inoculated on a Muller-Hinton agar 
(Britania) plate, supplemented with 5% ovine blood. Anti-
biotic discs (Britania) were placed on the agar surface and 
plates were incubated overnight (16–18 h) at 37 °C in an 
atmosphere with 5% CO2. Antimicrobial resistance (AMR) 
was defined as non-susceptibility to a given antimicrobial 
by combining intermediate (or susceptible with increased 
exposure) and resistant categories into a single category. 
On the other hand, AMR genes were investigated. The mac-
rolide resistance gene ermB, was amplified by PCR accord-
ing to Zhou et al. [22], tetracycline resistance genes tetM and 
tetO, according to Lopardo et al. [23], lincosamide resistance 
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gene linB, according to Bozdogan et al. [24] (Suppl. Mat. 
Table 1).

Data Analysis

The statistical associations between serotypes, virulence 
genes, antimicrobial resistance and isolates source, and 
between serotypes and virulence genes were analysed by 
2 × 2 contingency tables, chi-square test (χ2), and Fisher 
exact test, with a confidence level of 95%, using the software 
Epi Info™ 7.1.5.2.

Taking into account the combinations of the genes 
detected in the present study, virulence profiles were defined. 
A cluster analysis was carried out using the UPGMA clus-
tering method. The dendrogram was generated using the 
BioNumerics v.6.6 software.

Results

Molecular Identification, Virulence and Serotypes 
of S. agalactiae

Among the 162 isolates, the percentages of colonizing and 
infective isolates were 78% and 22%, respectively. Six sero-
types and non-typeable isolates were detected. Serotypes Ia 
and III were the most prevalent ones (38% and 30%, respec-
tively) followed by Ib, II, and V (Fig. 1a). Also, among colo-
nizing isolates a serotype IV isolate was detected, mean-
while among infective isolates, an isolate was non-typeable. 
No significant association was found between the serotypes 
and colonizing or infective GBS isolates (p > 0.05) (Fig. 1b).

In relation with virulence-associated genes screened, 
cpsA, cylE, hylB (100%), lmb (98%), and scpB (91%) were 
the most prevalent, meanwhile, the other ones were detected 
in lesser frequencies, PI-2a (73%), bca (66%), PI-1 (50%), 
rib (32%), bac (23%), PI-2b (14%) and spb1 (12%). The 
genes bac, rib and PI-2a predominated in colonizing iso-
lates over infective ones, and on the contrary, spb1, PI-1 
and PI-2b predominated in infective isolates. However, no 
significant association was found between virulence genes 
and colonizing or infective strains (p > 0.05) (Table 1).

The genes rib and PI-2b were detected only in serotypes 
III, Ia, and II, meanwhile spb1, in III and Ia isolates (Fig. 2). 
The hvgA gene (reported as specific for the ST-17) was 
detected in 33 isolates (20%). The majority (82%) of the 
hvgA-positive strains were from colonizing samples. Sur-
prisingly, in addition to amplifying in serotype III isolates 
(73%), it was detected in some Ia and Ib colonizing isolates. 
On the other hand, hvgA-positive infective isolates belonged 
only to serotype III.

Significant association was observed between the pres-
ence of virulence genes and the most prevalent serotypes, la 
and III. The bca and PI-2a genes were significantly associ-
ated with serotype Ia (OR 2.54, p < 0.05; OR 3.61, p < 0.05, 
respectively) compared to isolates of serotype III; and, rib, 
spb1, PI-1 and PI-2b were significantly associated with 
serotype III, compared to serotype Ia (OR 56, p < 0.05; OR 
15.93, p < 0.05; OR 3.75, p < 0.05; OR 19, p < 0.05, respec-
tively). The bac gene was not significantly associated with 
either serotype.

The cluster analysis taking into account the virulence 
genes showed 52 profiles, being 31 of them unique and 
the remaining 21 shared by 2 to 24 isolates. Each profile 
comprised 4 to 12 genes. The principal profile was bca-
lmB-hylB-cylE-scpB-PI-2a-cpsA (n = 24, 15%), followed 
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Fig. 1   Distribution of serotypes among GBS Argentinean isolates, general (a) and by source (b). No significant association was found between 
serotypes and colonizing or infective isolates (p > 0.05). NT non-typeable
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by bca-bac-lmb-hylB-cylE-scpB-PI2a-cpsA/bca-bac-lmb-
hylB-cylE-scpB-PI-1-PI-2a-cpsA (n = 13, 8% each one), 
lmb-hylB-cylE-scpB-PI2a-cpsA (n = 12, 7%), and bca-lmb-
hylB-cylE-scpB-PI-1-PI-2a-cpsA (n = 11, 7%). No one of 
these mentioned profiles could be associated with a particu-
lar serotype (Fig. 3).

Antimicrobial Susceptibility

Regarding antimicrobial resistance (AMR), 93 isolates could 
be tested using a disc diffusion method. All analysed isolates 
were susceptible to penicillin. The resistance rates meas-
ured for clindamycin, erythromycin, norfloxacin, levofloxa-
cin, and tetracycline were 14, 22, 41, 13, and 76% of the 
isolates, respectively (Table 2). No significant association 
was found between penicillin, clindamycin, erythromycin, 
norfloxacin, and levofloxacin resistances and colonizing or 
infective strains. On the contrary, tetracycline resistance was 
significantly associated with colonizing isolates (OR 4.5, 
p < 0.05). Norfloxacin resistance was present in all the sero-
types, except in NT. Serotype Ia isolates presented mostly 
resistance to TET (30/36) and NOR (13/36); serotype III 
isolates, to TET (26/32), ERY (9/32) and CLI (7/32), and 
serotype Ib, to LEV (8/19), NOR (12/19), TET (11/19), ERY 
(3/19) and CLI (1/19). All isolates resistant to levofloxacin 
were resistant, also, to norfloxacin (N = 12).

Results showed 16 AMR profiles, some of them with 
resistance to up to 4 antibiotics and only four isolates were 
susceptible to 100% of the tested antibiotics. Among colo-
nizing isolates, the profile TET-resistance (44%), followed 
by the profile NOR-TET-resistance (18%) predominated. 
Among the infective isolates, TET-resistance and LEV-
NOR-resistance profiles (19% each one) predominated, fol-
lowed by NOR-TET-resistance, CLY-ERY-TET- resistance, 
and NOR-resistance (13% each one) (Suppl. Mat. Table 3).

Detection of Antimicrobial Resistance Genes

In order to investigate genetic resistance mechanisms, all 
isolates (N = 162) were screened by PCR for some genes 
accounting for resistance to several antibiotics. In relation 
to erythromycin resistance, the ermB gene was detected in 
27% of the total isolates (43/162) and in 80 and 77%, of 
ERY and CLI-resistant isolates (according to phenotypic 
analysis), respectively. The gene linB was not detected in 
clindamycin-resistant isolates. In relation to tetracycline 
resistance, the ribosomal protection genes tetM and tetO 
were detected in 51% (83/162) and in 9% (15/162) of the 
total isolates, respectively, and in the 96% and 13% among 
TET-resistant isolates (according to phenotypic analysis), 
respectively.

Discussion

GBS colonizes the lower genital tract of approximately 
18% of women globally as an asymptomatic member, but 
established in other host niches, however, GBS is highly 
pathogenic [3]. Also, this pathogen is able to colonize mam-
mary glands and cause bovine mastitis [25]. The present 
study characterizes circulating GBS isolates that predomi-
nate among colonized pregnant mothers as well as infective 
cases in a region of Argentina.

GBS is encased by a capsular polysaccharide, based on 
which ten serotypes are distinguished. Among the Argen-
tinean GBS isolates studied, six serotypes (Ia, III, Ib, II, IV, 
and V) were detected. Serotypes Ia and III together com-
prised almost 70% of the total number of isolates. Only one 
colonizing isolate showed serotype IV. Our results are some-
what similar to a recent study carried out on strains from 
pregnant women of Misiones province but not in terms of 
the frequencies of each one of them. The authors detected 

Fig. 2   Distribution of virulence-
associated genes in Argentinean 
GBS by serotype. The genes 
rib and PI-2b were detected 
only in serotypes III, Ia, and II, 
meanwhile spb1, in III and Ia 
isolates
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Fig. 3   Cluster analysis of GBS 
isolates from Argentina based 
on virulence-associated genes 
profiles. The presence (black) 
or absence (white) of genes, 
the isolate name, serotype, 
source, and isolation date of 
the isolates are shown. The 
antimicrobial resistance profiles 
are indicated on the right. The 
dendrogram was carried out by 
the UPGMA clustering method, 
and was generated using the 
BioNumerics v.6.6 software. 
NT non-typeable, CLI clinda-
mycin, ERY erythromycin, LEV 
levofloxacin, ND no data, PEN 
penicillin, S susceptible to all 
tested antimicrobial agents, TET 
tetracycline
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serotype Ia (33%) as the most frequent one followed by III 
(19%), Ib (15%), II (14%), V (7%), and IX [4]. A previ-
ous study, also in strains from Misiones pregnant women, 
showed a serotype distribution of Ia (40%), III, V, II, Ib, 
and IX [26]. On the other hand, in Argentinean multi-center 
studies, serotypes Ia, III and Ib (85% of the total) were the 
most frequently recorded serotypes among GBS strains from 
urinary infections [27], meanwhile Ia and III followed by 
serotypes II and IV were recorded among strains from inva-
sive diseases [28]. A recently published study [29], with 
emphasis on Argentinean invasive strains collected during 
1 year (2014–2015), reported results concordant with ours 
in relation in that serotypes Ia and III were the most frequent 
ones in colonizing and invasive isolates recovered from neo-
nates; in invasive isolates from adults, on the other hand, 
serotypes Ib and Ia prevailed.

A characteristic of GBS strains is that most of the genes 
associated with the virulence encode proteins necessary for 
bacteria-host-cell interaction in the process of pathogenic-
ity [30]. In relation to the virulence genes screened in this 
study, all of them were detected in some percentage. All 
isolates possessed cpsA, hylB, and cylE, at least one variant 
or a combination of the two pili island and nearly all isolates 
possessed lmb, scpB. These would suggest that these factors 
are crucial for colonization in humans.

The GBS hyaluronate lyase (HylB) degrades hyaluronic 
acid, the main component of human connective tissue, 
facilitating bacterial spread and immunity evasion [31]. 
This gene and cylE were detected in 100% of the strains, 
both infective and colonizing ones. Haemolytic activity in 
GBS is produced by the gene products of the cyl operon, 
and cylE, which encodes an N-acyl transferase, is necessary 
for pigment production [32]. This β-haemolysin is, also, a 

pore-forming toxin, involved in tissue damage, balance the 
pro- and anti-inflammatory responses of the infected host 
and the systemic spread of bacteria [33, 34].

The major strategy that GBS employs to colonize the 
lower genital tract is adherence to epithelial cells via sur-
face-associated adhesins. A common ability conferred by 
these adhesins is GBS binding to components of the extra-
cellular matrix. The laminin-binding protein (Lmb) medi-
ates the union to laminin, a major component of the base-
ment membrane in human tissues [35]. The peptidase C5a, 
encoded by the gene scpB, interferes with the recruitment 
of leukocytes at infection sites and binds to fibronectin to 
promote bacterial invasion of epithelial cells [36].

GBS encodes pili encoded in islands-1 and -2, (PI-1 and 
PI-2, respectively), with PI-2 comprising 2 variants [37]. 
The most common pilus here detected was PI-2a, agreeing 
with results from other groups [38].

The hypervirulent GBS adhesin (HvgA) is a critical viru-
lence trait of neonatal GBS-associated-disease and serotype 
III has been found to exhibit specific neurotropism through 
expression of it [39] Gene hvgA was mostly present but not 
restricted to serotype III. It was also detected in Ia and Ib 
serotypes meanwhile McGee et al. [40] detected it in sero-
type IV isolates.

No significant association was found between virulence 
genes and colonizing or infective strains but, on the other 
hand, significant association was observed between some 
virulence genes and the most prevalent serotypes, la and III. 
The bca and PI-2a genes were significantly associated with 
serotype Ia (compared to isolates of serotype III) meanwhile 
rib, spb1, PI-1, and PI-2b were significantly associated with 
serotype III. The gene bca encodes the α-C surface protein, 

Table 2   Distribution of antimicrobial resistance in GBS and association analysis between antimicrobial resistance and source

*No significant association was found between penicillin, clindamycin, erythromycin, norfloxacin, and levofloxacin resistance and colonizing or 
infective strains (p > 0.05). Tetracycline resistance was significantly associated with colonizing isolates (OR 4.5, p < 0.05)

Antimicrobial agent No. (%) of isolates Association between antimicrobial resistance and 
source*

Resistant isolates 
(N = 93)

Colonizing isolates 
(N = 77)

Infective isolates 
(N = 16)

OR (95% CI) p

Beta-lactams—Peni-
cillin

0 (0) 0 (0) 0 (0) – –

Lincosamides—
Clindamycin

13 (14) 9 (12) 4 (25) 0.39 > 0.05

Macrolides—Eryth-
romycin

20 (22) 14 (18) 6 (38) 0.37 > 0.05

Quinolones—Nor-
floxacin

38 (41) 30 (39) 8 (50) 0.63 > 0.05

Quinolones—Levo-
floxacin

12 (13) 8 (10) 4 (25) 0.34 > 0.05

Tetracyclines—Tet-
racycline

71 (76) 63 (82) 8 (50) 4.5 < 0.05
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which plays an important role in virulence when the bacte-
rium joins the eukaryotic cell [41].

In order to have a global view of antimicrobial suscep-
tibility occurrence, some isolates were tested against six 
antimicrobial agents. In Argentina, according to our results 
and previous information [27, 29, 42], GBS continues to 
be susceptible to penicillin. However, an important level of 
RAM for other antibiotics, in both colonizing and infective 
strains, was detected. Macrolide and lincosamide antibiotics 
are often used as an alternative in penicillin-allergic patients, 
and the emergence of resistance among GBS is an increasing 
problem in many parts of the world [8]. Recent reports on 
ERY and CLI susceptibility among isolates from infections 
in Argentina informed resistance rates between 17 and 24% 
and between 16 and 18%, respectively [29, 42]. In relation 
to resistance detected in colonizing isolates from Misiones, 
a recent publication revealed ERY and CLI-resistance rates 
of 6% and 5%, respectively [43]. Our results taking into 
account the total number of strains show similar average 
resistance rates (22 and 14%, respectively); considering only 
colonizing ones, our data are similar (18 and 12%, respec-
tively) to those obtained from other geographical areas in 
South America [17, 44].

Resistance against macrolides and lincosamides among 
GBS may be occurring through two mechanisms, target 
site modification encoded by erm gene and through an 
active efflux pump [45]. In this study the ermB gene was 
detected in 80% of ERY-resistant isolates and, 77% of CLY-
resistant isolates, explaining, at least partially, the resist-
ance by a ribosome methylase which alter the binding of 
the antibiotic target site. The detection of linB (among other 
resistance determinants) in clindamycin-resistant isolates 
would explain the resistance observed to lincosamides, not 
explained by macrolides, however the linB gene was not 
detected in this study.

In relation to fluoroquinolones, an important therapeutic 
alternative, Arias et al. [29, 46] detected a LEV-resistance 
rate of approximately 15% in invasive GBS isolates. The 
authors discussed that the resistance percentage detected was 
higher than the latest reports from Argentina and the rest of 
the world, except Korea, China and Japan. In this study, the 
general percentage of resistance found was similar (13%).

No significant association was found between penicillin, 
clindamycin, erythromycin, norfloxacin, and levofloxacin 
resistances and colonizing or infective strains. On the con-
trary, tetracycline resistance was significantly associated 
with colonizing isolates. Resistance to tetracycline could be 
attributed, at least partially, to tetM and, tetO, genes encoded 
ribosome protection. High rates of tetracycline have been 
found previously in Argentinean infective GBS isolates 
[23], and rates even higher than those found by us have been 
detected for other geographical areas [47]. It is known that 
tetracycline resistance in GBS is ubiquitously high, and has 

been proposed that the acquisition of resistance genes tetO 
and tetM by a subset of GBS clones has led to their selection 
and expansion [48]. According to our data, those tetracy-
cline resistant clones would have spread mainly among the 
colonizing strains.

GBS leads a double life as both an asymptomatic colo-
nizer and a potent pathogen. Although most people who are 
colonized with GBS do not experience invasive disease, 
invasion of GBS into host niches outside of the gastrointesti-
nal and/or vaginal mucosa causes severe damage to the host, 
resulting in severe outcomes, especially in new-borns [49]. 
Our findings show that both colonizing and infective isolates 
share similar features in terms of capsular serotype and viru-
lence genes, suggesting that there are no a GBS subpopula-
tion with a particular propensity to cause disease in adults. 
This research contributes to epidemiological surveillance in 
public health and provides data of interest about GBS strains 
circulating in Argentina. Data on serotypes and virulence 
genes, particularly those encoding surface proteins, can be 
useful to evaluate the effectiveness in the region of a GBS 
vaccine; data on antimicrobial resistance are necessary to 
evaluate which would be the best prophylactic/therapeutic 
option.

Conclusions

This is the first time that the virulence profiles of GBS 
colonizing and infective Argentinean strains have been 
investigated and compared. Genes cpsA, cylE, hylB, lmb, 
and scpB were the most prevalent and could be postulated 
as vaccine epitopes. Also, this work highlights the genetic 
diversity of GBS isolates circulating in the Pampean region 
of Argentina.

Penicillin-resistant GBS was not found, but resistance 
levels to tetracycline, fluoroquinolones, macrolides, and lin-
cosamides were high. Our and worldwide reports on emerg-
ing multi-drug resistant GBS isolates reinforce the need for 
continued surveillance.
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