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Abstract
Mycobacterium tuberculosis (M. tuberculosis) is an intracellular pathogen causing long-term infection in humans that mainly 
attacks macrophages and can escape from the immune system with the various mechanisms. The only FDA-approved vaccine 
against M. tuberculosis (MTB) is Mycobacterium bovis bacillus Calmette-Guérin (BCG). The protection of this vaccine 
typically lasts 10–15 years. Due to the increasing number of people becoming ill with MTB each year worldwide, the need 
to develop a new effective treatment against the disease has been increased. During the past two decades, the research budget 
for TB vaccine has quadrupled to over half a billion dollars. Most of these research projects were based on amplifying and 
stimulating the response of T-cells and developing the subunit vaccines. Additionally, these studies have demonstrated that 
secretory and immunogenic proteins of MTB play a key role in the pathogenesis of the bacteria. Therefore, these proteins 
were used to develop the new subunit vaccines. In this review, based on the use of these proteins in the successful new 
subunit vaccines, the PPE44, HSPX, CFP-10 and ESAT-6 antigens were selected and the role of these antigens in designing 
and developing new subunit vaccines against TB and for the prevention of TB were investigated.

Introduction

Mycobacterium tuberculosis (M. tuberculosis) as a human 
pathogen is the causative agent of pulmonary Tuberculosis 
(TB). TB is considered as an urgent disease according to the 
World Health Organization (WHO) [1, 2]. The WHO global 
TB report 2020 shows that, approximately, 10 million peo-
ple fell ill with TB worldwide and 1.5 million people died 
from TB in the same year [3]. Additionally, the WHO report 
demonstrates that approximately one-third of the world's 
population infected with TB bacteria [4]. Despite the iden-
tification of the bacterium responsible for the development 

of the disease, as well as excellent therapeutic methods and 
scientific advances, TB still remains an important health-
threatening problem. M. tuberculosis (MTB) grows slowly, 
having a very flexible cell wall, has a highly contagious 
nature and has several strategies to escape the immune sys-
tem [1, 2]. Notwithstanding, directly observed treatment, 
short-course (DOTS, also known as TB-DOTS) control 
strategy and vaccination with BCG, TB still has more patho-
genic factors than other infectious agents [3, 4]. In addition, 
one of the most alarming factors in TB patients, also found 
in patients with HIV, is the emergence of multi-drug resist-
ant species [5]. Many new methods against TB have been 
developed within the last 25 years. Today, the principles 
of the molecular invasion, factors involved in the severity 
of the disease and the activation of TB are also identified 
which are essential for the survival and proliferation of the 
causative agents within macrophage cells [5, 6]. Nowadays, 
vaccination is necessary to control infectious diseases and 
have drastically reduced the rate of mortality caused by 
them throughout the world such as measles, mumps, polio 
and diphtheria. The WHO estimates that 80% of all infec-
tious diseases in the world are related to the deaths of more 
than 20 million people globally [5]. However, vaccines 
play a key role in controlling infectious diseases, which are 
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cost-effective. One of the most successful vaccines produced 
is inactivated/killed vaccines that contain whole bacteria or 
viruses that are killed or functionally altered so they cannot 
reproduce. As it is known, inactivated/killed vaccines do not 
contain any live bacteria or viruses to cause disease, even 
in people with extremely weakened immune systems. The 
killed vaccines have some advantages over the live attenu-
ated vaccines; the most important benefits are as follows: (1) 
producing high-level protection against the specific diseases; 
(2) unlike attenuated vaccines, there is no risk for reversion 
and (3) there is no need to store these vaccines at low tem-
peratures. However, inactivated vaccines have some distinct 
disadvantages including (1) not always elicit strong or long-
lasting immune responses and for this reason, there is a need 
for regular booster injections; (2) the treatment processes 
involved in inactivation of a vaccine is quite expensive com-
paring to other vaccines [7, 8], therefore, no promising killed 
vaccine against TB is developed.

Up till now, old or first-generation vaccines against TB 
were synthesized from live and attenuated microorganisms, 
which had several problems. Some ongoing research projects 
have designed cost-effective vaccines with higher viability 
that can stimulate the immune system against a specific 
pathogen. Currently, the attenuated strain of Mycobacte-
rium bovis (M. bovis) bacillus Calmette-Guérin (BCG) is 
used in many countries to generate immunity. This vaccine 
is the only approved vaccine for humans. The efficacy of this 
vaccine varies widely throughout the world and has shown 
efficacy ranges from 0 to 80% [9, 10].

Additionally, the BCG vaccine induces immunity in 
children, while it has low effects on the prevention of adult 
pulmonary TB. For this reason, the production of new vac-
cines that are more beneficial than BCG is highly required 
for preventing TB. Vaccines, such as viral vectors, DNA 
vaccines, subunit vaccines, attenuated M. tuberculosis and 
the recombinant BCG are among the most important newly 
designed vaccines in the last 20 years [9–12] (Table 1 and 
Fig. 1). Nowadays, bioinformatics and immunoinformatics 
have accelerated the development of novel vaccine candi-
dates against infectious disease [11–13] as well as against 
TB [14, 15].

M. tuberculosis is a facultative intracellular bacterium 
and the main way that bacterium enters the body is the res-
piratory tract. The primary cells that fight this pathogen are 
the alveolar macrophages and different types of T-cells must 
be activated to overcome bacterial resistance against host 
defense system. CD4+ T-cells have a role in the production 
of various types of cytokines, such as IFN-γ and TNF-α. 
CD8+ T-cells play an important role in inducing appropriate 
immune responses against M. tuberculosis through cytotoxic 
activity and induction of programmed death in infected cells. 
Cellular immunity is the basis of host responses against 
TB infection. Recent studies have also highlighted the 

importance of the innate and humoral immune systems in 
controlling TB infection. By providing accurate knowledge 
about immune systems, novel strategies for the design and 
the development of a new generation of vaccines and drugs 
are attained [26, 27].

Nowadays, different antigens are used to develop various 
vaccines against TB. Among all, subunit vaccines are one 
of the most prominent vaccines to be used here and most 
recent research has focused on the main marker antigens of 
M. tuberculosis such as PPE44, HSPX, ESAT-6 and CFP-10 
for designing these vaccines [23, 28]. This paper investigated 
the role and performance of these antigens in designing vac-
cines against TB.

Selection of the Antigens

Several studies have demonstrated that secretory and immu-
nogenic proteins of M. tuberculosis, such as RV2660c, 
RV1813c, PPE42, PepA, PPE18, EspD, EspC, EspF, EspR, 
Ag85, RV2608, Rv3619, RV1813, RV3620, PPE44, HSPX, 
ESAT-6 and CFP-10 play a key role in the pathogenesis of 
M. tuberculosis [21, 24, 28]. Furthermore, the activation of 
T-cells by these antigens suggests the suitability of these 
antigens as candidates for vaccine production against M. 
tuberculosis. Some of these antigens are used alone or in 
combination to develop subunit vaccines. Although a num-
ber of these vaccines are currently being evaluated in clini-
cal trials, investigation for producing new vaccines is useful 
against this pathogen. Therefore, in this study, we have tried 
to evaluate these antigens (PPE44, HSPX, ESAT-6 and CFP-
10) as far as possible.

An Overview of Antigens

PPE44 is one of the important antigens in vaccination of 
MTB. This protein is a member of PPE (Pro-Pro-Glu) pro-
tein family which is unique to mycobacteria. Named after 
the conserved proline (P) and glutamic acid (E) residues in 
their n‐terminal domains, these proteins are suggested to 
perform wide‐ranging roles in virulence and immune modu-
lation [29, 30]. PPE44 with the Pro-Pro-Glu epitope at the 
n-terminus of the protein that is exclusively detectable by 
MHC I and MHC II and its nucleotide sequence found only 
in MTB complex (MTBC) defined this protein as a potential 
candidate agent for MTB vaccination [31].

Another protein that is suitable for candidate subunit vac-
cines is heat shock protein X (HSPX). Under the stress con-
dition such as nutrient scarcity, the presence of nitric oxide 
and hypoxia and during the lag phase the produced HSPX 
can reach to 25% of the total bacterial protein [32]. This 
protein is able to escape from the host innate immune system 
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by increasing the stability of the proteins. On the other hand, 
the cells overexpressing this gene grow more slowly than 
wild-type cells and are less susceptible to autolysis following 
saturation of the culture in vitro, suggesting that HSPX may 
slow down the growth rate of M. tuberculosis in culture and 
contribute to the spread of TB during macrophage infection 
[33, 34]. Due to the properties of HSPX to activate both 
cellular and humoral immune responses and strong induc-
tion of Th1 cytokines such as TNF-α and IFN-γ [35, 36], 
this protein is a good candidate for vaccination against M. 
tuberculosis.

The 6-kDa early-secreted antigenic target (ESAT-6) of 
M. tuberculosis is one of the important antigens presented 
in this study. This protein was first identified as a potent 
T-cell antigen and now is recognized as a pore-forming toxin 
that is essential for virulence of M. tuberculosis. ESAT-6 
is secreted through the ESX-1 secretion system (Type VII) 
of M. tuberculosis. It has been implicated in mediating 
mycobacterial cytosolic translocation within the host mac-
rophages by rupturing the phagosomal membranes. ESAT-6 
is an abundantly secreted protein of M. tuberculosis which 
considered as an important virulence factor, deactivation 
of which results in lower virulence of MBT. ESAT-6 alone 
or in complex with its chaperone culture filtrate protein-10 
(CFP-10), is known to modulate host immune responses. 
ESAT-6/ESAT-6: CFP-10 can enter the endoplasmic reticu-
lum (ER) where it dissociates Beta-2 microglobulin (β2M) 
from pMHC-I complexes to inhibit cell surface expression 
of MHC-I-β2M complexes, resulting in downregulation of 
class I-mediated antigen presentation [37, 38]. The other 
secreted antigen that is important in vaccination of M. tuber-
culosis is Cyan Fluorescent Protein-10 (CFP-10). This pro-
tein forms a 1:1 heterodimeric complex with ESAT-6. CFP-
10 has been described as a chaperone protein for ESAT-6. 

The ESAT-6: CFP-10 complex activates the human neutro-
phils and transiently induces the release of Ca2+ [39, 40].

The ESAT-6 and CFP-10 are expressed by ESXA 
(RV3875) and ESXB (RV3874) genes, respectively. The 
genes encoding these proteins are adjacent to each other and 
are located in the RD1 (Region of Difference1) locus [5, 21].

The ESX family in M. tuberculosis consists of 23 mem-
bers and based on high sequence homology divided into 
three distinct subfamilies. The ESX protein contain about 
100 amino acids [41] and are potently recognized by both 
CD4+ and CD8+ that are very attractive target against TB. In 
addition, as ESAT-6 and CFP-10 seem to be essential for the 
growth and pathogenicity of M. tuberculosis and since some 
of these proteins are omitted in BCG, therefore, this vaccine 
has low efficacy in immunization of animals and humans. 
As, immunizations with a single ESX antigen preparation 
have been inadequate for controlling TB, many studies have 
described that levels of protection and pathogen-specific cel-
lular immunity can be enhanced by combining ESX antigens 
with other TB-associated antigens [41, 42]. The RD1 locus 
is a 9.5-Kbp molecular weight region of the M. tuberculosis 
genome consisting of nine genes (RV3871-RV3879) encod-
ing protective antigens or virulence antigens of the bacte-
rium [5, 21, 43]. The complex of these proteins is degraded 
in the acidic pH of the macrophage phagosome and then 
each of these proteins is coupled to the phagosomal mem-
brane causing lysis. Consequently, it appears that these pro-
teins trigger the entry of bacteria from the phagosome into 
the cytosol and eventually to CD8+ T-cells [22, 44].

In addition to ESAT-6 and CFP-10, several studies have 
demonstrated that other secretory proteins, such as PPE44 
and HSPX play a key role in the pathogenesis of M. tuber-
culosis and are also involved in activation of T-cells, sug-
gesting the suitability of these antigens as candidates for 
vaccine preparation.

Fig. 1   The schematic of attenuated (A), viral (B) and subunit vaccines (C) of M. tuberculosis 
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To increase and stimulate the response of T-cells, several 
subunit vaccines against M. tuberculosis have been studied 
and developed [23]. The advantages of subunit vaccines are 
their safeness, having well-known protein components, their 
ability to be standardized and the applicability of the pro-
tective antigens of M. tuberculosis, leading to the increased 
response of T-cells. Thus, the increase of the antigen diver-
sity in subunit vaccines enhances the vaccine performance 
against TB, it must also ensure that the selected antigens 
are detected by T-cells in different human populations [45].

PPE44 Members and their Role

The PPE family has 69 members with conserved n-terminal 
and variable c-terminal. PE44 is a member of the MTB PPE 
proteins that has consecutive repeated sequences [46]. This 
family contains approximately 10% of the MTB genome 
[47]. The comparative genomic assay reveals that the PPE 
protein is largely restricted to Mycobacterium genus [48], 
particularly in virulent species of Mycobacterium (TB, M. 
bovis, M. ulcerans, M. marinum and M. canis), playing a 
unique role in the virulence-associated sequence and the 
survival of Mycobacterium. Based on the number of repeti-
tions of C regions, the PPE family can be divided into four 
subfamilies:

1	 The PPE-SV family has 24 members containing the con-
ventional motifs of GLY-XX-SER and XX-TRP between 
300 and 350 positions.

2	 The PPE-MPRT family has a repeated sequence of ASN-
X-GLY-X-GLY-ASN-X-GLY and a repeated sequence 
of GCC​GGT​GTTG in the C-terminal separated by 5 bp 
spacers.

3	 The PPE-PPW family has 44 conserved amino acids 
with a conserved sequence of GLY-Phe-GLY-X-TR and 
X-XPRO-X-X-TRP in the C-terminal [49].

4	 The fourth subfamily has 12 members, which has a low 
consistency in the C-terminal region.

It should be noted that the c-terminal region of PPE has 
225 amino acids. The PPE-MPRT protein, which is similar 
to the PE-PGRS gene, contains a motif in n-terminal and 
an amino acid serine A/B for hydrolysis [50]. These hydro-
lyses are required for cell protection and to make cell walls 
impermeable and to enhance the virulence of the bacteria. 
Each type of PPE has a specific alpha helix or random coil 
[51]. PPE family proteins have played an important role in 
the development of antigenic diversity. Immunoassays on 
PPE almost showed the same response as purified protein 
derivative (PPD) to patients’ cell lines [52].

Nowadays, new sciences such as systems biology are very 
influential in designing and developing different purposes. 

One of the methods of systems biology is to find the pro-
tein–protein network (PPI) which can be useful for antici-
pating the role of the targeted protein in biology such as 
determining the biomarker, subunit vaccine, cancers and etc. 
In the PPI network, one of the proteins that are extremely 
important and can interact with other proteins in the network 
is PPE. Understanding the function of this protein is very 
important in the development of the new vaccine such as 
subunit vaccines [53]. PPE44 is a member of the M. tuber-
culosis PPE family that has interaction with ten members of 
this family (Fig. 2).

The Mechanism of the Secretion 
and Molecular Structure of PPE Genes

Proving the existence of a large family of PE/PPE proteins 
was an important discovery in the molecular biology. PE/
PPE family genes are commonly considered as a gene com-
plex and have important effects on each other since they are 
cell surface components [54, 55]. Studies have shown that 
PE and PPE genes are transmitted as part of the ESX gene 
secretion system (the details will be discussed later). Fur-
ther evidence is available to determine the PPE position, the 
composition of amino acids and their sequences, indicating 
the composition of amino acids, which will help to predict 
their position on the cell surface [52].

Fig. 2   Protein–protein networks between PPE44 and PPE families 
analyzed with STRING database (https://​string-​db.​org)

https://string-db.org


	 A. Valizadeh et al.

1 3

260  Page 6 of 14

Pajon et al. predicted that the beta proteins in the MTB 
genome included forty PPE proteins with a beta structure 
[56]. Beta proteins (beta-barrel or beta-sheet) are a group 
of surface proteins harbored in the outer membrane of bac-
teria. They are creating a channel by forming anti-parallel 
beta strands which cover all over the outer membrane. These 
proteins have various functions such as transport of ions, 
enzymes, siderophores and structural proteins and mediat-
ing flux of metabolites. As they play an essential role in the 
bacterial virulence, it would be of great interest to use them 
for the development of the vaccines [56, 57]. These obser-
vations support the hypothesis that PPE proteins associated 
with PE proteins are possibly translated on the cell surface. 
The following section in this study regarding evolutionary 
genetic topics noted that the evolution of PPE genes and 
associated genes such as PE was in regions proximate to 
ESX [58].

Genes such as PPE68 are located in an area within the 
ESX-1 region [59]. The PPE68 protein in M. tuberculosis 
has been reported to be strongly associated with the cell 
wall [52, 60].

Additionally, research on PPE68 reported its confronta-
tion with the ESX1 secretion system [60, 61]. Other studies 
suggested that PPE68 acts as an ESX-1 regulator [62] and 
the ESX-1 has the potential role in the secretion of ESX-5; 
moreover, the presence of PE/PPE and the secretion of PPE 
by ESX-5 is demonstrated, while some believe that PPE is 
used by the ESX secretion system [63, 64]. The complex 
structure of PPE demonstrates the potential role of this com-
pound in signal transduction and the PPE protein in this set 
has structural homology with the serine chemoreceptor [65]. 
These findings reveal the possible role of the PPE protein 
and its associated gene, PE, in host immunity and signaling 
[66].

PPE Immunity Review

The PPE protein and its accompanying gene, PE, are 
important factors in virulence enhancement and a possi-
ble source of antigenic variation. PPE can be the first line 
of defense against TB owing to their role in the immune 
system and their ability to modulate macrophages func-
tion. Macrophages have a set of antimicrobial mechanisms 
trying to defend against the microbial agents by produc-
ing IFN-γ and TNF-α, nitrogen, reactive oxygen mediators 
and cytokines [67]. Although macrophages activate T-cells 
against TB to control and eliminate the infection, they can 
also serve as the main host cell for TB growth and sur-
vival [68, 69]. When macrophages infected with TB, some 
cytokines such as TNF-α, IL-12 family, IL-6, IL-1α/β, and 
IL-10 are secreted which are important to control MTB 
infection. Some proteins secreted by MTB such as CFP-10 

and ESAT6, SecA 1/2 proteins and the eukaryotic like ser-
ine/threonine protein kinase G (PknG) interfere with mac-
rophage apoptosis and phagosomal maturation. A few days 
after escaping from macrophages, MTB begins to multiply 
to spread the infection. Some studies have demonstrated 
that region of difference 1 (RD1) and ESAT-6 in the MTB 
are required to escape from phagocytosis [70, 71].

It has not yet been clarified that this PPE protein is 
directly related to the proliferation and intracellular sur-
vival of TB or virulence enhancement by impairing the 
function of the immune system via macrophages [72]. 
Another report showed that the inactivation of PPE46 can 
weaken M. tuberculosis in the body [73]. Moreover, a dif-
ferent study showed that the PPE gene deletion caused 
impairment of MTB growth in macrophages [72].

Various studies reinforce the view that PE/PPE genes 
contribute to the survival of MTB. After conducting sev-
eral studies by analyzing the proteasome and considering 
the microarray results, Brosch et al. revealed the MTB 
response to nutritional stress [74]. Studies on four PPE 
members 24 h after infection have indicated that the pres-
ence of these proteins is necessary to maintain the long-
term survival of bacteria under nutritional stress [61].

In addition, Dillon et al. indicated that the PPE pro-
tein of the RV1196 gene during the infection was better 
expressed in rats vaccinated with RV1196 DNA vaccine 
and had better function to control TB [75].

In another study, the PPE44 protein expressed by the 
RV2770C gene was subcutaneously or intravenously 
injected into BALB/C mice previously vaccinated with 
the BCG vaccine. The results demonstrated that the PPE44 
gene-induced Th2 immune responses and IgG1 and IgG2 
immunoglobulin as well as delayed sensitivity responses 
developed [76].

Some studies indicate that the PPE18 (RV1196) similar 
to PPD triggers the T-cell response which in turn stimulates 
T helper cells and macrophages to produce IL-10 and IL-12, 
respectively [73].

Other studies have revealed that PPE44 and PPE18 some-
times trigger the response of Th2 cells under certain condi-
tions expressing IL-10, 1L-12 cytokines by modulating the 
levels of macrophages. The evidence refers to their role in 
enhancing virulence. The genes encoding polymorphic PPE 
proteins have been demonstrated to cause extensive anti-
genic changes in Mycobacterium [73, 77]. The frequency of 
variation in these proteins is very high which help them to 
escape from the immune system [78].

Heat shock protein X (HSPX) or M. tuberculosis 
α-Crystallin is a protein with a molecular weight of 36.1 kDa 
encoded by the RV2031c gene [79]. It acts as an impor-
tant antigen in the latent phase of M. tuberculosis and is 
expressed mainly by non-replicating bacilli. HSPX keeps 
the bacteria alive in the latent period of the disease as well 
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as infection and is able to induce stronger immune responses 
in patients with latent TB [79].

HSPX, known as M. tuberculosis alpha-crystalline, is a 
protein with high immunogenicity that is a potent stimulant 
for Th1 responses in individuals exposed to TB [79]. This 
protein acts as a molecular chaperone similar to its human 
analog. Furthermore, the high production of this protein in 
hypoxia and microaerophilic conditions suggests that it also 
plays a role in developing TB granuloma [80]. Molecular 
chaperons have different functions in bacteria, including 
proper folding of newly synthesized proteins, protein tran-
sitions and inhibition of aggregation during thermal shock, 
degradation and reduction of aggregated proteins and recov-
ery of the proteins that are damaged or have inappropriate 
folding due to stresses. Therefore, molecular chaperones 
play a pivotal role in proteome control by interacting, stabi-
lizing and remodeling various proteins [81].

HSPX protein is expressed only in M. tuberculosis and is 
extremely important in the pathogenesis of bacteria. In vitro 
studies show that HSPX is expressed in hypoxia, causing 
bacterial stability inside the macrophages. Recently, efforts 
have been made to produce a vaccine containing this anti-
gen. For example, Roupe V et al. investigated the efficiency 
of DNA vaccines encoding RV1733c, RV1738, RV2029c, 
RV2031c HSPX, RV2032 (acg), RV2626c, RV2627c and 
RV2628 proteins. This vaccine was injected into BALB/c 
and B6D2 (F1) mice. The results indicated the develop-
ment of strong humoral and cell-mediated immune (CMI) 
responses to TB in all antigens except for RV1738. In addi-
tion, the strongest CMI response (the production of IFN-γ, 
IL-2) was related to RV2031c (HSPX) and RV2626c anti-
gens. These findings suggest that latent phase proteins of 
M. tuberculosis can also be used as antigens to produce the 
DNA vaccine against TB [82].

Role of HSPX in Immunization

Yuan et al. designed DNA vaccine expressing the fusion pro-
tein of Ag85B-ESAT-6-HSPX and studied its performance 
in mice. In this study, the multi-dose vaccine was injected 
into BALB/C mice. Two weeks after the last injection, the 
concentration of IgG, IgG1 and IgG2a antibodies was meas-
ured via ELISA. The level of specific anti-HSPX IgG anti-
bodies and the IgG2a/IgG1 ratio were significantly higher 
than those of antibodies of other proteins. The activation of 
Th1 cell (CD4+ and CD8+ T-cells) responses suggest that 
the increased production of IFN-γ and TNF-α is owing to 
activation of protective cell-mediated immunity [83].

In addition, in another study, recombinant rBCG strains 
expressing HSPX and HSPX DNA vaccine were injected 
into mice and guinea pigs through the prime-boost tech-
nique. Immunological assessments demonstrated that the 

levels of IL-12, TGFβ, IL-10 cytokines were elevated and 
the microbial load in the lung was reduced [84].

It has been proven that the mycobacterial infection 
induces CD4+ and CD8+ T-cells responses. CD8+ T-cells are 
activated by peptides presented by Major Histocompatibility 
Complex-I (MHC-I) on the surface of infected cells [85].

Shi et al. conducted one study on the recombinant vac-
cine expressing the HSPX protein (rBCG). According to 
their findings, HSPX protein epitopes in patients with TB 
are detected by CD4+ and CD8+ T-cells. Furthermore, mice 
immunized with the DNA vaccine containing HSPX had a 
strong Th1 immune response induced by this antigen. They 
suggested that immune responses against HSPX antigen 
were effective in controlling the M. tuberculosis infection 
[80]. In addition, Shi et al. in another survey detected the 
anti-HSPX antibodies in 77% of patients with chronic tuber-
culosis [86, 87]. They surveyed the HSPX antigen and its 
epitopes finding that the HSPX gene deletion reduced the 
virulence of the pathogenic strain of M. tuberculosis. They 
reported that attenuated strains, including strains reducing 
HSPX expression, could be used as anti-tuberculosis vac-
cines. According to their studies, HSPX (16.3 kDa) is a 
potentially important component ensuring the survival of 
M. tuberculosis in the latent phase of human infection [86].

In another study, Yuan et al. evaluated the immunogenic 
and protective effects of the fusion protein of Ag85B: ESAT-
6: HSPX in mice. They found that the vaccine containing 
the mentioned recombinant proteins was a strong stimulant 
of humoral immune responses and acted as a strong T-cell 
inducer. They also measured IgG levels using ELISA two 
weeks after the last immunization of mice and observed 
that antibody level was significantly higher in the vaccine 
group than in other groups. To evaluate cell-mediated immu-
nity, the frequency of CD4+ and CD8+ T-cell in peripheral 
blood and γδ T-cells was investigated two weeks after the 
last immunization. Their findings demonstrated that immu-
nization of mice with fusion protein significantly induced 
CD4+ and CD8+ T-cells. Furthermore, an assessment of M. 
tuberculosis colony counts in the spleen of different groups 
of mice revealed that recombinant proteins induced Th1 
response and inhibited the growth and proliferation of M. 
tuberculosis compared to BCG [83].

Martinus et al. conducted one study to evaluate the pro-
tective effect of Ag85A and HSPX on controlling TB pro-
gression. They concluded that Ag85A and HSPX antigens 
were able to induce IFN-γ which is the main cytokine in 
the development of immunity against TB. They stated that 
when the combination of the two above-mentioned antigens 
in mice was applied, the IFN-γ response was stronger than 
the sole antigens. They found that the combination of these 
antigens significantly reduced the bacterial count in the lung 
and spleen of the mouse. Therefore, Ag85A and HSPX are 
suitable candidates for vaccine production [88].
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Further, Niu et al. developed and evaluated a multi-stage 
subunit vaccine consisted of Mtb10.4: HSPX. According 
to their reports, the obtained recombinant protein is able 
to induce higher levels of immune response. To evaluate 
the immunogenic effect, they injected each molecule with 
an emulsified adjuvant to the mice, showing that the IFN-γ 
and IL-17 production levels are much higher than the lev-
els when BCG is used. To evaluate the humoral immune 
response, they measured the serum level of IgG antibodies 
against HSPX by ELISA and the IgG level was much higher 
than that of the BCG vaccine [89].

HSPX (HSP16.3( and its Role in Vaccine 
Design

HSPX (or the HSP16.3) is a latency-related antigen for mul-
tistage vaccines. Small heat shock proteins (sHSPs) are one 
of the five families of proteins acting as a molecular chaper-
one. sHSPs possess a universally conserved alpha-crystallin 
domain, hence, also known as the alpha-crystallin family. 
HSPs, play a key role in handling damaged proteins or intra-
cellular protein accumulation and their association with 
virulence of bacteria, including M. tuberculosis, has been 
studied. Expression of many of them increases under stress 
conditions in TB disease. The role of HSP in the introduc-
tion of antigen is to activate lymphocytes and macrophages 
[90]. The virulence of M. tuberculosis depends on several 
genes using the macrophage system and its modification for 
its successful survival. Therefore, the use of HSPs can be 
important to treat TB [46] and HSPX is one of the most 
prominent HSPs in this case. HSPX in TB was primarily 
identified as 14-kDa and 16-kDa antigens and then classified 
as a molecular chaperone known as alpha-crystalline. These 
small HSPs prevent the accumulation and denaturation of 
proteins and wrong folding under stress conditions [90].

Later, Cunningham et al. investigated and reported the 
major role of this HSP in MTB. They stated that HSPX was 
able to produce a strong CMI response and delayed-type 
hypersensitivity (DTH) in mice and guinea pigs [90, 91]. 

HSPX is produced as the dominant protein in the station-
ary and latent phases of TB infection and in response to the 
increased stress [83]. These proteins are one of the most 
important antigens expressed by granulomas which stimulate 
the immune responses. HSPX is a heat-sensitive intramem-
brane protein expressed under the control of the transcription 
factor SigH. This transcription factor is responsible for some 
genes produced in response to heat or oxidative shock. Stud-
ies have indicated that the HSPX gene is the most important 
gene expressed in the latent form of the bacteria. Therefore, 
it is called the hypoxia reporter gene (HRG). There is a sero-
logical test using an antibody to detect the latent form of the 
bacterium against this protein. Accordingly, subunit vaccines 
appear to be suitable to be used against the latent form of 
the disease [33].

ESAT‑6 and CFP‑10 Antigens

The M. tuberculosis strain H37Rv genome comprises 
4,411,529 base pairs including about 4000 genes and 
approximately 3900 proteins that are isolated from the bac-
terial culture supernatant [92]. This genome consists of 36 
regions of differences RDs (region of differences) [1, 2] and 
among these regions, the RD1 locus plays a key role in the 
virulence of the bacterium. Although, this region of the gene 
is present in the pathogenic strains of M. tuberculosis and 
M. bovis, it has been deleted in the BCG vaccine strain. The 
RD1 locus is a 25.3-Kbp molecular weight region of the 
M. tuberculosis genome consisting of nine genes (RV3871-
RV3879) encoding protective antigens or virulence antigens 
of the bacterium [14].

One of the proteins encoded by the RD1 region but the 
early secretory antigenic target-6 (ESAT-6) and CFP-10 
are encoded by the RV3875 (ESXA) gene and the RV3874 
(ESXB) gene, respectively (Fig. 3). These two genes form a 
heterodimer complex with a ratio of 1: 1 [93].

On the other hand, a number of studies suggest that the 
secretory proteins of ESAT-6 and CFP-10 play a crucial 
role in the pathogenesis of M. tuberculosis. Furthermore, 

Fig. 3   The location of esat-6 and cfp-10 genes on RD1 locus
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the activation of T-cells by these antigens proves their suit-
ability for the vaccine [79].

The CFP-10 activates and aggregates cytotoxic T lym-
phocytes and extends the granuloma tissue in humans and 
mice infected with M. tuberculosis [83].

The secretory proteins of ESAT-6 and CFP-10 are pro-
duced only in the early stages of TB infection. Deletion 
of genes encoding secretory proteins of the pathogenic 
strains is proven to reduce bacterial virulence [80]. To 
date, more than 20 different immunodominant antigens 
have been identified in M. tuberculosis. The use of recom-
binant protein viruses and viral vector vaccines induces 
relative protections against TB [81].

Recently, several immunogenic regions of CFP-10 have 
been identified in humans. Specifically, CFP-10 peptides 
are capable of stimulating and producing IFN-γ, result-
ing in the activation of cytotoxic T-cells. The CD4+ T-cell 
plays a crucial role in developing immune responses 
against TB in humans. Moreover, the use of appropriate 
antigens from M. tuberculosis causing proper protective 
responses, leads to a better understanding of designing an 
optimal vaccine against TB [69, 70]. The human immune 
response against TB depends on several factors of which 
the Th1 response is of great importance. Moreover, it is 
essential to stimulate and produce IFN-γ [81].

Several studies indicate that M. tuberculosis expresses 
different proteins during different stages of infection that 
are specific to each stage. In fact, the immune system of 
people with active TB may identify and respond to anti-
gens specific for the acute phase of infection and those 
infected with latent TB can identify and respond to latent 
antigens of M. tuberculosis. For example, ESAT-6 and 
CFP-10 proteins are accurately detected in individuals 
with active TB. Accordingly, it is desirable to use multi-
stage latent acute phase antigens in designing a vaccine 
against TB [5]. Additionally, the results of recent studies 
suggest that new TB vaccines should contain proliferat-
ing bacteria and latency-associated multi-stage antigens 
[81]. Okkels et al. reported that the secretory proteins of 
ESAT-6 and CFP-10 were capable of producing cytotoxic 
T-cells in response to IFN-γ production. They also stated 
that the main immunogenic antigen was related to the M. 
tuberculosis detected by T-cells in individuals infected 
with TB. Recent studies have reported that several immu-
nogenic regions of the CFP-10 antigen are identified for 
humans. For example, CFP-10 peptides are capable of 
stimulating and producing IFN-γ and activating cytotoxic 
T-cells [60]. This study did not respond to some questions 
posed by researchers including, do inflammatory reactions 
cause damage to the living creature owing to the cytotoxic 
T-cells stimulated by IFN-γ production? Does the inflam-
matory effect prevent the sustained effect of the vaccine?

Maue et al. demonstrated that administration of ESAT-6: 
CFP-10 DNA vaccine induced an effective immune response 
in calves infected with M. bovis. This study showed that admin-
istration of the BCG vaccine together with ESAT-6: CFP-10 
DNA vaccine induced more severe immune responses com-
pared to BCG alone [94]. The researcher suggested that the 
presence of ESAT-6: CFP-10 as a booster can be combined 
with BCG to increase the responsiveness of immune mediators 
in the body.

The current research team also examined the protective 
and immunoglobulin effects of a DNA vaccine expressing 
CFP-10 in mice. The results of this study proved that the 
CFP-10 protein stimulated cytotoxic T lymphocytes. In addi-
tion, this vaccine is able to prevent the proliferation of M. 
tuberculosis in the lung and spleen [94].

Kamath et al. reported that the secretory protein of CFP-
10 was able to stimulate T lymphocytes. They also stated 
that some CFP-10 epitopes were capable of stimulating and 
producing IFN-γ and activating cytotoxic T-cells [81]. The 
effects of these antigens on the stimulation of B-lympho-
cytes need to be addressed in this paper.

Dietrich et al. showed that vaccination with the ESAT-
6: Ag85B fusion protein induced highly effective immune 
responses. This effect has been studied in animal and non-
human primate models. This fusion molecule is also effec-
tive even as a DNA vaccine. Intranasal administration of the 
Ag85B: ESAT-6 combination vaccine with LTK63 mucosal 
adjuvant was also tested. Vaccination with LTK63/Ag85B: 
ESAT-6 resulted in a strong Th1 response, followed by 
IFN-γ secretion from TCD+4 cells and thus sustained pro-
tection against TB infection [95].

Moradi et al. evaluated the protective effect and immuno-
genic activity of novel recombinant fusion protein from M. 
tuberculosis consisting of ESAT-6 and the short domain of 
the c-terminus of the HSP70 thermal shock protein after its 
expression in the mouse model. The results showed that the 
level of IFN-γ and titer of specific antibodies in the fusion 
protein was higher than that in ESAT-6 alone. Therefore, 
this fusion protein (E6H70c) was suggested as a candidate 
for vaccine preparation [96]. CFP-10 and ESAT-6 proteins 
are produced only in the early stages of TB infection. It is 
proven that deletion of the relevant genes in pathogenic 
strains reduces bacterial virulence.

Conclusion

Most researchers declare that complete eradication of TB 
is only possible with an effective vaccine, particularly in 
developing countries with a high incidence of TB and lim-
ited financial resources to access the treatment. During the 
past two decades, the research budget to develop TB vac-
cine has quadrupled up to over half a billion dollars. Based 
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on the results of various studies, recombinant proteins and 
DNA vaccines have immunodominant characteristics and 
are capable of inducing a long-term immunological memory. 
To evaluate the immune response and protective efficacy 
of subunit vaccines based on PPE44, HSPX, ESAT-6 and 
CFP-10 several studies have been carried out. Table 2 dem-
onstrated the results of these studies.

Various studies on recombinant vaccines against TB have 
demonstrated that PPE44, HSPX, ESAT-6 and CFP-10 anti-
gens can generally play a role in the following items:

1.	 It has the ability to induce a Th1 lymphocytes-mediated 
immune response, which is an important criterion to 
evaluate the efficacy of vaccines against TB.

2.	 In designing a subunit vaccine against TB, it is impor-
tant to select an immunodominant antigen that can pro-
vide appropriate protective immune responses.

3.	 It causes a protective immune response in animal cells 
during conducting various studies, such as vaccination 
with Mycobacterium smegmatis (M. smegmatis) and DNA 
vaccines containing PPE44, HSPX, ESAT-6 and CFP-10 
antigens.

4.	 Studies have indicated that the levels of immune media-
tors such as INF and IL-12 in mice vaccinated with these 
antigens are significantly higher than those in other com-
pared groups.

5.	 Activation of the immune system by the mentioned anti-
gens demonstrates that there is always a Th1 protective 
response accompanied by a response with a lower level 
induced by Th2. This low level response is reported in 
various studies that can prevent immunopathological 
effects of a potent protective CMI system. Furthermore, 
it may create balance in the immune system after elimi-
nating the infection.

6.	 Studies have demonstrated that the use of these antigens 
along with BCG is highly effective in boosting the immu-
nological memory of BCG, suggesting the use of these 
recombinant proteins to enhance the efficacy of BCG.

7.	 Based on recent reports and studies conducted on animal 
models, it has been found that IFN-α is produced from 

Th1 cells; as a result, these antigens are the most impor-
tant and effective protection against M. tuberculosis. The 
produced IFN activates macrophages to kill and elimi-
nate the reproducing bacteria. The production of IL-12 
by macrophages and dendritic cells plays a major role in 
the differentiation of intact T-cells to Th1 lymphocytes. 
Therefore, increasing the diversity of antigens in subu-
nit vaccines leads to improved efficacy of the vaccine 
against TB, ensuring that selected antigens will be iden-
tified by T-cells of different human populations. Among 
these, ESAT-6, CFP-10, HSPX and PPE antigens have 
been employed as the major antigens for subunit vac-
cines in various studies. Various articles confirm that 
these antigens have been able to apply their own anti-
tuberculosis effectiveness in designing new vaccines. It 
is hoped that in the near future, these antigens will play 
a role as subunit vaccines in the different phases of clini-
cal trials to achieve a vaccine with long-term viability. 
Findings from this review article provide an avenue for 
future researchers interested in vaccine development 
against TB

Author Contributions  AV, AAI and AK designed the study. AV, 
HS, MM and EGM wrote the manuscript. HS and EB revised the 
manuscript.

Funding  This research did not receive any specific grant from funding 
agencies in the public, commercial, or nonprofit sectors.

Declarations 

Conflict of interest  The authors declared that they have no conflict of 
interest.

Ethical Approval  This is a review articles and it does not contain any 
with human participants or animals performed by any of the authors.

Table 2   The immune responses and the protective efficacy of the PPE44, HSPX, ESAT-6 and CFP10

Antigen Immune responses Protective efficacy References

PPE44 Cellular and humoral immune responses, 
induced Th1 immune response, IFN-γ 
and TNF-α

Protective efficacy is comparable to BCG [97]

HSPX Increased the production of IFN-γ HSPX subunit vaccine alone provide weaker protection than BCG but in 
combination with another protein such as Ag85 provide stronger protection 
than BCG

[84, 98]

ESAT-6 Increase the level of IFN-γ/IL-4 express-
ing T-cells and IL-2 and CTL upon 
antigen-specific stimulation

Provide stronger protection than BCG [99]

CFP-10 Increase the level of IFN-γ, IL-4 and Il-2 In combination with ESAT-6 has the protection efficacy similar to that of BCG [100]
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