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Abstract
1,4-Dioxane is a highly toxic and carcinogenic pollutant found worldwide in groundwater and soil environments. Several 
microorganisms have been isolated by their ability to grow on 1,4-dioxane; however, low 1,4-dioxane tolerance and slow 
degradation kinetics remain obstacles for their use in 1,4-dioxane bioremediation. We report here the isolation and char-
acterization of a new strain, Xanthobacter sp. YN2, capable of highly efficient 1,4-dioxane degradation. High degradation 
efficiency and high tolerance to 1,4-dioxane make this new strain an ideal candidate for the biodegradation of 1,4-dioxane 
in various treatment facilities. The maximum degradation rate of 1,4-dioxane was found to be 1.10 mg-1,4-dioxane/h mg-
protein. Furthermore, Xanthobacter sp. YN2 was shown to grow in the presence of higher than 3000 mg/L 1,4-dioxane with 
little to no degradation inhibition. In addition, Xanthobacter sp. YN2 could grow on and degrade 1,4-dioxane at pH ranges 
5 to 8 and temperatures between 20 and 40 °C. Xanthobacter sp. YN2 was also found to be able to grow on a variety of other 
substrates including several analogs of 1,4-dioxane. Genome sequence analyses revealed the presence of two soluble di-iron 
monooxygenase (SDIMO) gene clusters, and regulation studies determined that all of the genes in these two clusters were 
upregulated in the presence of 1,4-dioxane. This study provides insights into the bacterial stress response and the highly 
efficient biodegradation of 1,4-dioxane as well as the identification of a novel Group-2 SDIMO.

Introduction

1,4-Dioxane has been listed as a Group 2B carcinogen since 
1999 by the International Agency for Research on Cancer 
(IARC). 1,4-Dioxane is highly water soluble while its vola-
tilization from water occurs slowly [1, 2]. This high level 
of water solubility has led to its wide use as an industrial 
solvent. 1,4-Dioxane is also an unwanted byproduct in the 
industrial manufacture of food, medicine, and personal care 
products [3]. High-industrial use has led to 1,4-dioxane pol-
lution of many aquatic environments [4]. High solubility 
and low evaporation rates complicate remediation efforts 
to remove 1,4-dioxane from these environments, thereby 
increasing the threat to public safety [2, 5–9]. One of the 
main sources of 1,4-dioxane entering the environment is via 
industrial sewage. Wastewater treatment plants (WWTPs) 

employing the use of biodegradation processes would be 
a very desirable and cost-effective method to deal with 
1,4-dioxane contamination [10]. A major drawback in the 
use of bioremediation, in this instance, is the lack of highly 
efficient 1,4-dioxane microbial degraders being suitable for 
application.

Kinetic studies of the isolates have demonstrated that they 
may not be ideal for environmental applications. The total 
cell yields of Gram-positive 1,4-dioxane degraders tended 
to be quite low when compared to Gram negatives, thereby 
leading to lower rates of 1,4-dioxane degradation. To date, 
several microorganisms capable of growing on 1,4-diox-
ane have been reported, yet the number of Gram-negative 
isolates is quite small [11–16]. To accelerate growth rates 
and increase cell yields, additional nutrients or analogs of 
1,4-dioxane are necessities in bioremediation applications 
using these strains [16–19]. These additives have the unde-
sirable effect of increasing costs and the possibility of intro-
ducing additional environmental pollution if they are not 
completely mineralized [16, 17, 20]. Therefore, investiga-
tions into the isolation and characterization of 1,4-dioxane 
degraders with higher growth rates and cell yields are criti-
cal to efficient and safe biodegradation of 1,4-dioxane.
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Soluble di-iron monooxygenase (SDIMO) has been 
shown to be the key genes to the degradation of 1,4-dioxane 
[21]. Enrichment of SDIMO genes at 1,4-dioxane-contami-
nated sites has been shown to be directly related to bacterial 
1,4-dioxane degradation activity [22, 23]. To date, only two 
SDIMOs have been confirmed to be involved in metabolic 
degradation of 1,4-dioxane: Group-5 SDIMO gene cluster 
thmADBC [24] and Group-6 SDIMO gene cluster prmABCD 
[25, 26]. Thus, to determine the importance of SDIMOs in 
1,4-dioxane, biodegradation requires further research.

In this study, Xanthobacter sp. YN2 was isolated from 
sludge of a municipal WWTP for its ability to grow on 
1,4-dioxane. Bacterial characteristics and kinetics of degra-
dation and growth in the presence of various concentrations 
of 1,4-dioxane as well as under various culture conditions 
were investigated. Genomic analysis revealed a gene cluster 
on the chromosome that was predicted to encode a novel 
Group-2 SDIMO, which was phylogenetically distant from 
other previously reported SDIMOs involved in 1,4-dioxane 
degradation. Regulation studies showed that all the genes in 
this new SDIMO gene cluster were constitutive.

Materials and Methods

Reagents and Culture Media

1,4-Dioxane, 1,3-dioxane, tetrahydrofuran, ethanol, n-hex-
ane, cyclohexane, toluene, ethyl acetate, and methanol were 
of analytical grade (J&K Scientific Ltd.). Basal salts medium 
(BSM) and ammonium mineral salts medium (AMS) were 
prepared by the method of Parales et al. [18]. For solid 
media, 1.8% (wt/vol) Nobel agar was added. All experiments 
that involved culture media supplemented with 1,4-dioxane 
were carried out in headspace bottles sealed with Teflon to 
limit volatilization.

Analysis of 1,4‑Dioxane and Total Oxidizable Carbon 
(TOC)

Cultures were filtered through nylon filters (0.45 μm pore 
size), and 1 μL of each sample was analyzed with an Agilent 
7890 gas chromatograph (GC) equipped with an INNOWH4 
column (30 m × 0.53 mm × 1.0 μm) and a flame ionization 
detector (FID). The initial column temperature was 45 °C, 
which was maintained for 3 min, then raised to 70 °C at a 
rate of 15 °C /min. The temperatures of the inlet and the 
detector were 250 °C and 300 °C, respectively. The car-
rier gas was hydrogen/air (400/40), and the flow rate was 
6 mL/min. Total oxidizable carbon (TOC) of filtered sam-
ples was analyzed with an Analytikjena Multi N/S 2100S 
TOC analyzer.

Enrichment, Isolation, and Identification 
of Xanthobacter sp. YN2

The enrichment was started with active sludge from a 
secondary sedimentation basin of a WWTP in Harbin, 
China. Sludge (5 g) was added to 100 mL BSM contain-
ing 200 mg/L 1,4-dioxane and incubated at 30 °C. Dilu-
tions were carried out weekly by transferring 20% of each 
culture into fresh BSM with 200 mg/L 1,4-dioxane until 
1,4-dioxane degradation was observed (approximately 
3  months). Once the 1,4-dioxane was depleted, dilu-
tions into fresh AMS containing 200 mg/L 1,4-dioxane 
were performed, approximately every few days. When 
the rate of 1,4-dioxane degradation stabilized, the cul-
ture was diluted and spread onto AMS plates containing 
200 mg/L 1,4-dioxane to isolate 1,4-dioxane degrading 
single colonies.

The isolate was identified by 16S rRNA gene sequence 
analysis. The sequence of the 16S rRNA gene was deter-
mined by Sangon Biotech Co., Ltd. (Shanghai, China). 
Bacteria genome was extracted using Ezup column bac-
teria genomic DNA purification kit (SK8255) and used 
as the template for PCR. Primer 7F (5′-CAG AGT TTG 
ATC CTG GCT -3′) and primer 1540R (5′-AGG AGG TGA 
TCC AGC CGC A-3′) were used for sequencing. The ther-
mal profile was as follow: initial denaturation at 94 °C 
for 4 min; 30 cycles of denaturation at 94 °C for 45 s; 
annealing at 55 °C for 45 s; extension at 72 °C for 1 min; 
and final extension at 72 °C for 10 min. The 16 S rRNA 
gene sequence was deposited in GenBank under accession 
number MK256301.

Determination of Optimal Growth Conditions

Four different factors involved in growth and degradation 
of 1,4-dioxane were tested: temperature, pH, aeration, and 
initial  OD660 (optical density at 660 nm). All experiments 
were carried out in 50 mL Teflon sealed vials filled with 
10 mL of AMS containing 200 mg/L 1,4-dioxane. Experi-
ments were carried out in duplicate and repeated three 
times.

Unless otherwise stated, the following experiments were 
carried out at 30 °C, pH 7.0, with initial OD660 = 0.007 
and shaken at 160 rpm. To determine the optimum growth 
temperature, cultures were incubated at 10, 20, 30, or 
40 °C. The optimum pH for growth was determined by 
growth as described above except that the pH of the media 
was adjusted to 5.0, 6.0, 7.0, or 8.0 with 1 M HCl or 1 M 
NaOH if necessary before inoculation, and the pH of each 
culture was checked at the end of growth. Optimum aera-
tion was determined by growing cultures as above with 
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varying shaking speeds (120, 140, 160, or 180 rpm). To 
determine the optimum initial  OD660 for degradation and 
growth, cultures were grown as above but started with an 
initial  OD660 of 0.001, 0.004, 0.007, or 0.011.

1,4‑Dioxane Tolerance

In order to examine tolerance levels for 1,4-dioxane, Xan-
thobacter sp. YN2 was cultivated in AMS containing 
1000 mg/L 1,4-dioxane until mid-exponential phase. This 
culture was then used to inoculate fresh AMS containing 
various 1,4-dioxane concentrations (3, 5, 8, 10, 20, 30, 40, 
50, and 100 g/L) and grown under the optimum conditions 
determined above. Three replicate cultures were grown for 
each concentration and uninoculated vials served as negative 
controls. After 14 days, viability was determined by plating 
onto AMS plates containing 1,000 mg/L 1,4-dioxane.

Growth on and Degradation of 1,4‑Dioxane

Cultures were carried out in duplicate 50 mL headspace 
vials, filled with 10 mL of AMS containing 1,4-dioxane 
under optimum growth conditions. In addition, three sets of 
controls were performed. To determine the effect of volatili-
zation, culture vials with no added bacteria were used. To 
test for bacterial growth on possible contaminants, cultures 
with no carbon source were used. To eliminate the effect 
of bacterial absorption of 1,4-dioxane, autoclaved bacteria 
 (OD660 ≈ 0.3) were also used as controls. All of the growth 
cultures and controls were set up in duplicate and repeated 
three times.  OD660, 1,4-dioxane concentration and TOC 
were monitored during incubation.

Preparation of Resting Cells

Cells were cultivated in AMS with 1000 mg/L 1,4-dioxane 
and harvested by centrifugation when cell growth reached 
mid-exponential phase. Harvested cells were washed twice 
with 0.02 M phosphate buffer (PBS, pH 7) and then resus-
pended in 0.02 M PBS (pH 7) to an  OD660 ≈ 0.2.

Utilization Experiments for Various Substrates

Resting cells (0.5 mL) of Xanthobacter sp. YN2 were inocu-
lated into 20 mL AMS and grown as above in the presence of 
200 mg/L 1,4–dioxane, 1,3-dioxane, tetrahydrofuran, etha-
nol, n-hexane, cyclohexane, toluene, ethyl acetate, or meth-
anol. Utilization of substrates was determined by growth 
(measurement of  OD660). Generation times were determined 
from the slope of  OD660 plotted against time (semi-log) dur-
ing exponential phase. All experiments were carried out in 
duplicate. Growth on a variety of other carbon sources was 

investigated using GEN3 microplates (Biolog) and analyzed 
using Biolog’s Microbial Identification System software.

Total DNA Extraction and Genome Sequencing

Xanthobacter sp. YN2 was grown as above on 1,4-dioxane. 
Cells were harvested by centrifugation and total DNA was 
extracted using the DNA extraction kit for bacteria (Shang-
hai Lifefeng Biotechnology Co., Ltd). The Xanthobacter 
sp. YN2 genome was sequenced by Woosen Biotechnol-
ogy (China) on the PacBio platform. A de novo assembly 
was generated using Canu 1.8 [27]. The resulting contigs 
were then submitted to Genbank under accession number 
CP063362-CP063366 and annotated using RAST 2.0 [28].

RNA Extraction and Quantitative Real‑Time RT‑PCR

Total RNA was extracted from cultures grown at 30 °C on 
liquid AMS with 5 mM succinate or 1000 mg/L 1,4-dioxane 
as the exclusive carbon source.

RNA was extracted using the Maxigen HiPure Total 
RNA Mini Kit according to the manufacturer’s instructions 
(including the optional DNase treatment). Reverse tran-
scription was performed with FastQuant RT Kit (Tiangen 
Biotech, Beijing, China) according to the manufacturer’s 
instructions.

Quantitative real-time reverse transcriptase-PCR (RT-
qPCR) analyses were performed by amplification of the 
cDNA samples from above using the Bestar SybrGreen 
qPCR Mastermix, according to the manufacturer’s instruc-
tions. Primer sequences are listed in Table S1. Thermocy-
cling conditions were as follows: 2 min at 95 °C, followed by 
45 cycles of 10 s at 95 °C, 1 min at 60 °C, followed by melt-
ing curve analysis. Expression of the 16S rRNA gene was 
used as the reference gene to normalize tested genes. The 
ΔΔCt method with the 16S rRNA gene as the reference was 
used to determine relative abundance of target transcripts.

Accession Numbers

The 16S rRNA gene sequence has been deposited in Gen-
Bank under the accession number of MK256301. The 
genome sequence has been submitted to GenBank under 
accession numbers CP063362-CP063366. The strain, Xan-
thobacter sp. YN2, has been deposited in the China General 
Microbiological Culture Collection Center (CGMCC) under 
the number CGMCC No. 14610. The strain is also being 
deposited at the American Type Culture Collection (ATCC), 
but a culture number is not available at this time.
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Results

Evaluation of 1,4‑Dioxane‑Degrading Strain

Using standard enrichment techniques, we were able to 
obtain a single isolate capable of growing on 1,4-dioxane 
as sole carbon source. No growth or degradation occurred 
in autoclaved controls or carbon-free controls, and no 
decrease of 1,4-dioxane or increase in  OD660 occurred in 
abiotic controls (data not shown). Blast result based on the 
16S rRNA gene showed that the isolate is most related to 
Xanthobacter sp., and as such was labeled Xanthobacter sp. 
YN2. Experiments were carried out to determine optimum 
growth conditions for Xanthobacter sp. YN2 (Fig. 1). The 
optimum growth conditions were determined to be 30 °C, 
pH 7.0, and a shaking speed of 180 rpm. An initial  OD660 
of approximately 0.007 was shown to result in the shortest 
lag phase (Fig. 1). The growth of YN2 on 1,4-dioxane as 
the sole carbon source under the optimum conditions is as 
demonstrated in Fig. 2.

Substrate Range of YN2

YN2 demonstrated the ability to grow on many substrates. 
Generation times of YN2 grown on different substrates are 
shown in Table 1 to display growth rates. YN2 grew on ana-
logs of 1,4-dioxane, including 1,4-dioxene, 1,3-dioxane, and 
tetrahydrofuran and also on ethanol, methanol, and ethyl 
acetate. However, YN2 was unable to grow on 1,4-dioxane-
ol, n-hexane, cyclohexane, or toluene. The absence of a lag 
phase in both growth and degradation of 1,4-dioxane after 
growth on non-inducing substrates such as succinate, pyru-
vate, acetate, and citrate indicated that enzymes involved in 
degradation of 1,4-dioxane are constitutive.

Growth Kinetics

YN2 was capable of growth in the presence of more than 
3000 mg/L of 1,4-dioxane and remained viable even when 
the concentration approached 50 g/L; however, growth rates 
at these higher concentrations were much slower (data not 
shown).

Growth kinetics of YN2 on 1,4-dioxane were determined. 
Cells of YN2 were cultured with 1000 mg/L 1,4-dioxane 
until mid-exponential phase. This culture was then used 
to inoculate fresh AMS supplemented with different con-
centrations of 1,4-dioxane and cultivated under optimum 
growth conditions. The  OD660 of the cultures were mon-
itored every 4 h. The growth kinetics of YN2 were well 
described by Monod kinetics as seen in Fig. 3a. The maxi-
mum specific growth rate (μmax) was calculated to be 0.025/h 
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with the highest cell yield determined as 0.27 mg-protein/
mg-1,4-dioxane.

No growth inhibition was seen when YN2 was grown 
with high 1,4-dioxane concentrations up to 1000 mg/L of 
1,4-dioxane. When grown at these high 1,4-dioxane levels, 
the specific growth rate continued to increase with the sub-
strate concentration; however, when the concentration of 
1,4-dioxane was above 1000 mg/L, the specific growth rate 
of YN2 continued to increase but at a reduced level.

Degradation Kinetics

The relationship between the degradation rate and the con-
centration of 1,4-dioxane was studied using resting cells. As 
expected, no increase in biomass was observed throughout 
these experiments. In order to compare with other reported 
1,4-dioxane degraders, the experiments were performed 
at concentrations between 100 and 1000 mg/L. The deg-
radation kinetics for YN2 were well described by Monod 
kinetics. The maximum specific degradation rate (kmax) and 
half-saturation concentration (Ks) were calculated as 1.10 
mg-1,4-dioxane/h mg-protein and 410.91 mg/L, respectively 
(Fig. 3b).

Genome Sequence Analysis

The genome of YN2 was found to have a size of 
6,650,818 bp with a 67.95% G + C content spread over 
6 contigs. N50 and N90 values were 5,964,455 bp and 
312,888 bp, respectively. The genome consisted of 5 rep-
licons, including the chromosome (6.2 Mb), plasmid 1 
(circular, 147 kb), plasmid 2 (circular, 144 kb), plasmid 
3 (circular, 51 kb), and plasmid 4 (linear, 30 kb). Auto-
mated annotation by RAST identified 6,585 protein-coding 
sequences and 58 RNA genes in the YN2 genome. The 
genome annotation revealed two SDIMO gene clusters 
(Fig. 4) that may be involved in 1,4-dioxane metabolism, 
both located in the chromosome, each encoding six pro-
tein components: a monooxygenase α, β and γ subunit, a 
ferredoxin, a coupling/effector protein, and a reductase. 
The sequences of the two clusters had extremely high-
sequence homology to each other and are located distantly 
in the chromosome. Blast results showed that the protein 
sequences of the two gene clusters had high similarity 
with toluene monooxygenase genes of Sinirhodobacter 
hungdaonensis (84%) [29], Bradyrhizobium sp. ORS 375 
(84%) [30] and Pseudooceanicola lipolyticus (84%) [31]. 
However, YN2 was not capable of utilizing toluene, but 
it could grow on tetrahydrofuran. Thus, the YN2 open-
reading frames were designated as thmABCDEF.

Upregulation of thmABCDEF by 1,4‑dioxane

The SDIMO gene clusters were shown to be expressed when 
cells were grown on either 1,4-dioxane or succinate, indicat-
ing that the genes are constitutively expressed. In addition, 
all six genes were significantly upregulated by 1,4-dioxane 
when compared to succinate (Fig. 5). Since the sequences 
of the two gene clusters are highly similar to each other, 
little to no sequence differences existed between the two 
gene clusters; therefore, their expression products were not 
distinguishable at present.

Previous studies have grouped SDIMOs into six groups 
based on sequence similarity and substrate range [32–34]. 
Sequence comparisons based on pairwise identity place the 
SDIMOs of YN2 into Group-2. According to the phyloge-
netic tree of amino acid sequences of α subunits of reported 
SDIMOs (Fig. 4), ThmA of YN2 is distant from PrmA of 
Mycobacterium sp. PH-06 and ThmA of Pseudonocar-
dia dioxanivorans CB1190. Among SDIMOs of Group-2, 
ThmABCDEF is the first that appears to be involved in the 
metabolism of 1,4-dioxane.

Discussion

The 1,4-dioxane-specific degradation rate of YN2 
(1.1 mg-1,4-dioxane/h mg-protein) is the highest of all 
Gram-negative 1,4-dioxane-degrading bacteria reported 
to date. It is only second to P. dioxanivorans CB1190 
(0.92–1.98 mg-1,4-dioxane/h mg-protein), the highest 
of Gram-positive 1,4-dioxane degraders so far reported 
(Table 2). However, the half-saturation constant of YN2 
is also very high, suggesting that the strain prefers higher 
concentrations of 1,4-dioxane and may not perform well 
at low dioxane concentrations. At a 1,4-dioxane concen-
tration of 100 mg/L, there are 4 degraders showing higher 
specific degradation rates than YN2; with 1,4-dioxane 
concentrations higher than 100 mg/L, only CB1190 and 
PH-06 possess higher specific degradation rates than YN2 
(Fig. S1). Nonetheless, the actual performance of CB1190 
and PH-06 is severely hindered by their low cell yield 
[18, 25, 35]. Comparatively, the growth rate of YN2 (as 
measured by cell yield) is relatively high (Table 2). Cell 
yield may play a major factor in the biotreatment of pol-
lutants [12]. Utilization of 1,4-dioxane is generally con-
comitant with growth of degraders [36, 37]. Typically, 
Gram-negative organisms are easier to grow and have 
higher cell yields than those of Gram-positive organ-
isms as shown in Table 2. Among all reported 1,4-diox-
ane degrading isolates, Gram-positive CB1190 has the 
highest kmax of 0.92–1.98 mg-1,4-dioxane/h mg-protein 
[18, 38]. However, the cell yield of CB1190 is relatively 
low (0.09 mg-protein/mg-1,4-dioxane) [38]. To achieve 
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higher cell yield, additional substrates are often required to 
enhance the growth of degraders, which increases the cost 
of bioremediation efforts [15]. Acinetobacter baumannii 
DD1 is reported to have a high cell yield, but its degrada-
tion performance is relatively poor (11 days to degrade 
concentrations of 1000 mg/L 1,4-dioxane starting with 
low biomass) [13]. To date, YN2 is the only 1,4-dioxane-
degrading isolate with both a high cell yield and a high 
1,4-dioxane degradation rate, demonstrating that YN2 is 
a good choice for 1,4-dioxane bioremediation.

YN2 was shown to have the unique ability to maintain its 
degradation rate at extremely high concentration levels of 
1,4-dioxane. For example, YN2 was shown to completely 
degrade 1000 mg/L 1,4-dioxane in 40 h, whereas in simi-
lar experiments, Pseudonocardia sp. N23 takes 108 h and 
Mycobacterium sp. PH-06 takes 15 days to achieve the same 
result (which also started with 1000 mg/L 1,4-dioxane and 
relatively low biomass) [35, 39]. This is unique among pre-
viously reported 1,4-dioxane degrading isolates. The specific 
growth rate of YN2 was positively correlated to 1,4-dioxane 

concentrations up to 3000 mg/L, which is already much 
higher than the tolerance of most reported degraders 
(Table 2). Since transformation products of 1,4-dioxane may 

Fig. 1  Effects of incubating temperature (a), inoculation amount (b), 
rotation speed of shaking (c), and pH (d) on growth and degradation 
of YN2 with 1,4-dioxane as sole carbon source. Columns represent 

degradation ratio of 1,4-dioxane; open circles represent  OD660. Cre-
ated using ORIGIN 2018. The error bars represent the range of triplicates

Fig. 2  Removal of 1,4-dioxane during growth of YN2. Open triangles 
represent  OD660; solid triangles represent 1,4-dioxane concentration; 
open diamonds represent total organic carbon concentration. Created 
using ORIGIN 2018. The error bars represent the range of triplicates
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be toxic to the monooxygenase enzyme and/or the cells [38], 
this indicates that YN2 may produce non-toxic intermediates 
or not accumulate them at high enough levels to be toxic. 
The mechanisms underlying the unique high tolerance of 
YN2 to 1,4-dioxane is unknown at this time and will require 
further research. Possessing an extremely high tolerance to 
high levels of 1,4-dioxane makes YN2 an appropriate choice 
for field applications in bioremediation of large scale indus-
trial spills.

Genomic analysis of YN2 indicated it belongs to the 
genus Xanthobacter. Another 1,4-dioxane degrading Xan-
thobacter, X. flavus DT8, was also isolated in China [36]. 
Both were isolated from wastewater treatment plants located 
about 1,700 km away from each other, suggesting that Xan-
thobacter may be an important 1,4-dioxane degrading 
genus present in wastewater treatment plants. Interestingly, 
although both strains belong to the Xanthobacter genus, 
YN2 could grow at extremely high 1,4-dioxane levels with 
no apparent decrease in growth rate, whereas the growth rate 
of X. flavus DT8 decreases significantly as the concentration 
of 1,4-dioxane was raised above 50 mg/L due to serious sub-
strate inhibition [36]. 1,4-Dioxene is a product of metabolic 
degradation of 1,4-dioxane by DT8 [36]. YN2 was unable 
to grow on 1,4-dioxene suggesting that YN2 has a different 
dioxane degradation pathway than DT8.

We report here the substrate specificity of YN2 which 
is found to be similar but not identical to other 1,4-dioxane 
degrading strains (Table 3). Monooxygenases have been 
confirmed to participate in degradation of 1,4-dioxane in P. 
dioxanivorans CB1190 [24] and Mycobacterium sp. PH-06 
[25, 40], which are both Gram-positive organisms. However, 

the detailed functions of monooxygenases and other related 
enzymes are still uncertain. 1,4-Dioxene was detected as a 
product during metabolic degradation of 1,4-dioxane by X. 
flavus DT8 [36], but it is not found in cultures of any other 
1,4-dioxane degrader, and it could not be utilized by YN2. In 
addition, 1,4-dioxane-ol has been reported to be a degrada-
tion product of some strains [35, 41]. YN2 was shown not 
to grow on 1,4-dioxane-ol, suggesting that this compound 
is not an intermediate of YN2.

As mentioned above, monooxygenases have been 
reported to play an essential role in 1,4-dioxane degradation 
by metabolism in P. dioxanivorans CB1190 [41] and Myco-
bacterium sp. PH-06 [35]. The genome sequence of YN2 
revealed the unique presence of two chromosomally encoded 
soluble di-iron monooxygenase (SDIMO) gene clusters of 
Group-2. Group-2 SDIMOs not only predominantly function 
as aromatic monooxygenases but also exhibit great variance 
in substrate range [42]. Currently, Group-2 SDIMOs include 
phenol, toluene, benzene and alkene monooxygenases [32, 
43–45]. A great majority of Group-2 members presently 
reported are toluene monooxygenases, as is shown in Fig. 4, 
and most of them are able to degrade 1,4-dioxane by come-
tabolism. Group-2 toluene monooxygenases of Azoarcus sp. 
DD4 [45–47], Pseudomonas mendocina KR1, Pseudomonas 
pickettii PKO1, and Burkholderia cepacia AA1 are able to 
oxidize 1,4-dioxane after induction by toluene [38]. Simi-
larly, Group-1 toluene monooxygenase of Burkholderia 
cepacia G4 [38] can also oxidize 1,4-dioxane. In spite of 
being similar to toluene monooxygenases of DD4, KR1, and 
G4, the Group-2 toluene monooxygenase of Pseudomonas 
stutzeri OX1 cannot oxidize 1,4-dioxane [45].

Fig. 3  Growth kinetics (a) and degradation kinetics (b) of YN2 on 
1,4-dioxane. Open circles represent specific growth rates; solid cir-
cles represent specific degradation rates; the dotted line represents 
nonlinear curve fitting result of specific growth rates (a) or specific 

degradation rates (b) at each concentration using Monod equation by 
minimizing the least absolute residuals. Created using ORIGIN 2018. The 
error bars represent the range of triplicates
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Although SDIMOs groups are defined more by operon 
structure and composition than by the substrate range or 
the phylogenetic classification of the respective bacteria 
[32], there seems to be a phylogenetic pattern of charac-
teristics among the strains. For example, Xanthobacter sp. 
Py2 belongs to the same genus of YN2, and it expresses 
a Group-2 SDIMO that can metabolize alkene [44]. Sim-
ilarly as YN2, Py2 does not grow on toluene [44]. Inter-
estingly, another strain of the same genus of YN2, Xan-
thobacter sp. Strain ENV481, is not able to grow on or 

degrade 1,4-dioxane, but it can grow on a common product 
of 1,4-dioxane degradation, 2-hydroxyethoxyacetic acid 
(2HEAA) [24, 48]. For other species, a strain may possess 
several SDIMOs of the same or different groups [25, 45, 
49]. It is not rare to find more than one SDIMO of the same 
group in the genome of a strain with high pairwise sequence 
identity [32]. To our knowledge, ThmABCDEF of YN2 is 
the first Group-2 SDIMO reported to hypothetically degrade 
1,4-dioxane by metabolism.

Fig. 4  Two SDIMO gene clusters of YN2 and phylogenetic tree 
of ThmA of YN2 with α subunit genes of other SDIMOs and their 
classification. Numbers below gene designations indicate the gene 
lengths in bp. Numbers above and below hash marks at the termi-
nals of the clusters represent the locations within the chromosome 
of YN2. Phylogenetic tree of ThmA of YN2 with α subunit genes of 
other SDIMOs and their classification. Each group is marked with 

a different color, with their names listed on the right. Blocks on the 
right side are schemes of the whole clusters encoding each α subu-
nit, with black blocks representing α subunit genes, and gray blocks 
for the remaining genes. The numbers below the blocks indicate the 
lengths (bp) of the genes. YN2 ThmA is marked with the black circle; 
toluene monooxygenases are marked with black triangles. Created 
using EVOLVIEW v2 [52]
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Group-2 SDIMOs play a very important role in bioreme-
diation for 1,4-dioxane [38, 45–47]. The process can happen 
cometabolically or metabolically, depending on the SDIMOs 
involved. 1,4-Dioxane degradation by Group-2 SDIMOs 
via cometabolism is the most reported [38, 45–47]. How-
ever, cells cannot benefit from the reaction of cometabo-
lism, and competition against growth substrates can hinder 
cell growth, which reduces the efficiency of cometabolic 
degraders with more favorable kinetic properties and higher 
affinity for the substrate [50]. The expression of SDIMOs 
can be constitutive or inducible. It is essential to maintain 
the activity of desired enzyme during bioremediation [42], 
so amendment of toluene or other analogs are unavoidable 

in application of Group-2 SDIMOs that are cometabolic or 
inducible [45]. RNA analyses demonstrate that expression 
of the YN2 SDIMO gene clusters is constitutive. It is in 
agreement with the observation that YN2 did not need to 
be pregrown on 1,4-dioxane to have maximum 1,4-dioxane 
degrading activity. Therefore, ThmABCDEF of YN2 as a 
constitutively expressed SDIMO is the optimum for biore-
mediation of 1,4-dioxane. Also, many SDIMO gene clus-
ters in other 1,4-dioxane degrading organisms are found on 
plasmids, which leads to higher risk of gene loss [25, 51]. 
In comparison, thmABCDEF is located in the chromosome, 
indicating that degradation ability loss caused by plasmid 
curing would not happen during field application of YN2.

This study demonstrates that the unique characteristics 
of YN2 (high growth rate on 1,4-dioxane, high 1,4-diox-
ane degradation rate, and tolerance to high concentrations 
of 1,4-dioxane) make it an ideal candidate for use in the 
bioremediation of 1,4-dioxane. This study also sets a solid 
foundation for future studies exploring the elucidation of the 
entire 1,4-dioxane degradation pathway in YN2 and other 
1,4-dioxane degrading organisms.

Conclusion

YN2 has the ability to grow on and degrade 1,4-dioxane 
at higher concentrations than 3000 mg/L with no substrate 
inhibition and is also capable of degrading several 1,4-diox-
ane analogs metabolically. Of particular note is that the tol-
erance of YN2 to 1,4-dioxane (50 g/L) far exceeds those of 
all other reported degraders, and is six times higher than 
the highest tolerance reported previously. Furthermore, 
both degradation and growth kinetics of YN2 are well 
described by Monod kinetics, and the strain exhibits higher 

Table 3  Substrate range of 
1,4-dioxane degraders

a “ + ” able to degrade the substrate
b “−” unable to degrade the substrate
c “ + *” induced by pre-growing on 1,4-dioxane
d “/” not reported

Substrates YN2 Xanthobacter 
flavus DT8 [14]

Acinetobacter 
baumannii DD1 
[13]

Pseudonocardia 
dioxanivorans CB1190 
[18]

Mycobacterium 
sp. PH-06 [35, 
40]

1,4-Dioxane  + a  +  +  +  + 
1,3-Dioxane  +  +  +  +  + *c

Tetrahydrofuran  +  +  +  +  + *
Ethanol  +  +  +  + /
n-Hexane −b −  + / /
Cyclohexane − − / −  + *
Toluene − −  + − /
Ethyl acetate  +  + / / /
Succinate  + /d / −  + 

Fig. 5  Upregulation of thmABCDEF in a pure culture of YN2 grown 
on 1,4-dioxane relative to succinate. The 16S rRNA gene was used as 
the housekeeping gene for error control. Created using ORIGIN 2018
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degradation ability compared to other reported 1,4-dioxane 
degraders, by means of its high cell yield (0.27 mg-protein/
mg-1,4-dioxane) and maximum specific 1,4-dioxane degra-
dation rates (1.10 mg-1,4-dioxane/h·mg-protein), indicating 
that YN2 is suitable for bioremediation applications. This 
is also the first report of constitutive Group-2 SDIMO gene 
clusters upregulated by 1,4-dioxane.

Supplementary Information The online version of this article (https ://
doi.org/10.1007/s0028 4-021-02347 -6) contains supplementary mate-
rial, which is available to authorized users.
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