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Abstract
Enterovirus 71 (EV71) is the main pathogen of the hand, foot, and mouth disease. It was firstly isolated from sputum speci-
mens of infants with central nervous system diseases in California in 1969, and has been repeatedly reported in various parts 
of the world, especially in the Asia-Pacific region. EV71 3C protein is a 183 amino acid cysteine protease that can cleave most 
structural and non-structural proteins of EV71. Based on the analysis and understanding of EV71 3C protease, it is helpful 
to study and treat diseases caused by EV71 virus infection. The EV71 3C protease promotes virus replication by cleaving 
EV71 synthesis or host proteins. Moreover, EV71 3C protease inhibits the innate immune system and causes apoptosis. At 
present, in order to deal with the damage caused by the EV71, it is urgent to develop antiviral drugs targeting 3C protease. 
This review will focus on the structure, function, and mechanism of EV71 3C protease.

Introduction

EV71 is a member of the picornaviridae family and is highly 
infectious in the central nervous system, which causes seri-
ous clinical symptoms including encephalitis, poliomyelitis-
like paralysis, and even death. However, the pathogenesis 
of EV71 remains unclear and there is no effective vaccines 
or drugs to prevent it [1]. The genome of EV71 is a single 
positive-stranded RNA of approximately 7.4 kb in length 
and contains an open reading frame (ORF), encoding a poly-
peptide with 2194 amino acids. The polyprotein is further 
proteolyzed into P1, P2, and P3 precursor proteins. The P1 
precursor protein is proteolyzed into four structural pro-
teins (VP1, VP2, VP3, and VP4). The P2 and P3 precursor 
proteins are proteolyzed into seven non-structural proteins 
(2A–2C and 3A–3D) [2]. Among them, the viral protease 
3C has been proved to be involved in multiple pathological 
processes of EV71. EV71 3C protease can cleave the con-
nection site Gln–Gly of P2–P3 [3]. EV71 3C protease can 
degrade DNA repair enzymes, thereby activating caspase 

and inducing apoptosis of host cells [4]. EV71 3C protease 
can inhibit innate immunity by inhibiting type I interferon 
response [5]. In this article, we will summarize the structure, 
function, and mechanism of EV71 3C protease.

The Structure of EV71 3C Protease

The crystal structure of EV71 3C protease consists of two 
similar β-ribbon folded. The long, shallow groove region 
between the β-ribbon regions is the substrate binding site 
[6]. The β-ribbon exists in the cleft of the picornaviral 
3C protease binding sites to the substrate, and the tip of 
β-ribbon faces the protease active site. We call this β-ribbon 
conformation "closed conformation". Unlike picornaviral 
3C protease, EV71 3C protease is an open conformation of 
β-ribbon between βB2 and βC2 (123–133 aa). The β-ribbon 
flips and the apical end are away from the active site of the 
EV71 3C protease and are located over the substrate binding 
cleft [7]. Gly123 and His133 in the β-ribbon form a hinge 
structure, which plays a key role in the catalytic activity 
and conformational change of β-ribbon [8]. Previous stud-
ies have found that most picornaviral 3C proteases cleave 
Gln–Gly proteins. Similarly, the catalytic center of EV71 
3C protease is Cys–His–Glu [6]. EV71 3C protease contains 
KFRDI motif (positions 82–86) and VGK motif (positions 
154–156) RNA binding domain [3].
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The Role of 3C Protease in the Pathway 
of Induction of Interferon

Most virus-infected cells produce type I interferons (IFN-
α/β) and type III interferons (IFN-λ) or interleukin-28/29 
(IL-28/29) [9]. Type II interferons (IFN-γ) are produced only 
by T cells or NK cells [10, 11]. Picornavirals are mainly 
recognized by three classical pattern recognition receptors: 
Toll-like receptors (TLRs), Retinoic acid-induced gene I-like 
receptors (RLRs), and Nucleotide oligomerization domain-
like receptors (NLRs) [12]. We will introduce the role of 
EV71 3C protease in the three receptor pathways.

The Role of 3C Protease in TLRs Pathway

Studies have shown that TLR1,2,4,5,6 exist on the cell 
membrane and TLR3,7,8,9,10,11,12,13 exist in the endo-
somal compartments. TLR4/MD2 (myeloid differentiation) 
complex, TLR1/6, TLR2 and TLR5 recognize LPS, lipo-
proteins, and flagellin to activate NF-κB, and induce type 

I interferon production [13]. TLR7/8 recognizes single-
stranded RNA of RNA virus. TLR9 recognizes unmethyl-
ated cytosine-phosphate-guanosine (CpG) DNA in bacteria. 
TLR3 recognizes viral double-stranded RNA and recruits 
TRIF to induce TRAF3 and activate the TBK1/IKKε com-
plex. Moreover, TRIF also induces TRAF6 to activate the 
TAK1/TAB2/TAB3/TAB1 complex. After activating TBK1/
IKKε, it can phosphorylate IRF7 or IRF3 to induce IFN-I 
production [14]. After activating TAK1/TAB2/TAB3/TAB1 
complex, NF-κB is dimerized and enters into the nucleus, 
thereby producing proinflammatory cytokines [15] (Fig. 1).

EV71 3C protease can cleave the Q312–S313 site of 
toll-like ligand TRIF and affect the IFN-β production and 
NF-κB activation. When the catalytic site H40D of EV71 
3C protease is mutated, it cannot inhibit the activation of 
NF-κB and IFN-β promoters [16]. EV71 3C protease also 
inhibits NF-κB promoter activation by cleavage of the TAK1 
complex by its catalytic activity. EV71 3C protease can cut 
TAK1 complex, including TAK1Q360-S361, TAB1Q414-
G415, Q451-S452, TAB2Q113-S114 and TAB3Q173-G174, 
and Q343-G344. Overexpression of TAB2 inhibits EV71 

Fig. 1   EV71 3C protease is involved in the mechanism of interferon-
inducing pathways. EV71 3C protease, 2A protease is involved in the 
downregulation of type I IFN and proinflammatory cytokines. In the 

figure, both EV71 3C protease and 2A protease are labeled to interact 
with related intracellular signaling molecules
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replication. However, fragmentation of TAB2 has no impact 
on EV71 replication [17]. EV71 3C protease inhibits IRF3 
entry into the nucleus and prevents RIG-I pathway from 
inducing IFN-β production in HT-29 cells [18]. However, 
another study showed that EV71 3C protease cleaves IRF7 
in site of Q189-S190, but had no effect on IRF3 [5]. Fur-
thermore, the 3C protease can cleave purified IRF7, but not 
IRF3. These inconsistencies have not been clarified [19]. In 
summary, these studies have shown that EV71 3C protease 
affects IFN-I production and proinflammatory factor produc-
tion in part through the TLRs signaling pathway.

The Role of 3C Protease in RLRs Pathway

Members of the RLRs family include RIG-I, MDA5, and 
LGP2.LGP2 cannot induce type I IFN because it has no 
CARD structure [20]. RIG-I recognizes double-stranded 
RNA (dsRNA) or single-stranded RNA (ssRNA) virus 
containing 5′-triphosphate structure.MDA5 mainly recog-
nizes double strand (dsRNA) and positive strand RNA [(+) 
ssRNA] viruses [21]. RGI-1 and MDA5 have two N-terminal 
caspase recruitment domains and a C-terminal repressor 
domain (RD).RIG-I and MDA5 recognize RNA viruses, 
cause conformational changes, and expose their N-terminal 
caspase recruitment domains. Subsequently, activated RIG-1 
and MDA5 interact with adaptor IFN promoter-stimulating 
factor 1(MAVS). MAVS binds to IKKα-IKKβ-IKKγ and 
activates the NF-κB pathway (Fig. 1). In addition, MAVS 
also activates the TRADD/TANK/TRAF3 complex, thereby 
activating the TBK1 and IKKε complexes. Activated TBK1 
and IKKε complexes can phosphorylate IRF3/IRF7 and 
induce IFN-I production [22].

EV71 3C protease blocks the binding of RIG-I to IPS-1 
and TBK1 by binding to the caspase recruitment domain 
of RIG-I. EV71 3C protease inhibits IRF3 entry into the 
nucleus and affected IFN-β production. EV71 3C protease 
also binds to MDA5, but does not inhibit MDA5-regulated 
IFN-β production. H40, KFRDI and VDK regions of EV71 
3C protease may bind to RIG-I, resulting in inhibition of 
IFN-β production [5]. EV71-infected cells reduced Lys 
63-linked polyubiquitin chains in the N-terminal CARDs 
region of the RIG-I and inhibit the IFN-I signaling pathway. 
Increasing the level of ubiquitination of RIG-I can promote 
the expression of IFN-β and ISGs [23].

Cylindromatosis (CYLD) is a deubiquitinating enzyme 
that removes Lys 63-linked polyubiquitin chains from 
RIG-I. CYLD can inhibit the production of IRF3 pathway 
and IFN-β production [24]. MiR-526a can downregulate 
the mRNA and protein of CYLD, which increases the 
expression levels of IFN-I. However, EV71 3C protease 
downregulated the expression of miR-526a, thereby inhib-
iting RIG-I regulated interferon type I production [25]. In 
addition, EV71 encoded-2A protease can cleave MDA5 

and MAVS, and then inhibit the IRF3 pathway to mediate 
IFN-β production [26, 27]. Therefore, EV71 2A protease 
and 3C protease regulate the activity of MDA5 and RIG-I, 
thereby affecting the innate immune response.

The Role of 3C Protease in NLRP3 Pathway

In human, there are 22 Nucleotide-binding and oligomeri-
zation domains (NOD)-like receptors (NLRs).NLRs recog-
nize pathogens such as bacteria and viruses, and produce 
activated inflammatory factors such as interleukin-1β (IL-
1β) and interleukins-18 (IL-18).Therefore, NLRs can kill 
or eliminate invading pathogens to maintain the body’s 
immune system balance [28]. The NLRP3 inflammasome 
is an important component of the NLR inflammatory 
pathway. Classical NLRP3 inflammasome activation is 
stimulated by two signals. The first signal activates TLR4 
signal pathway, promotes nuclear transcription factor κB 
(NF-κB) activation and activates the production of precur-
sors such as IL-1β and IL-18. The second signal promotes 
the assembly of the NLRP3/ASC/pro-caspase-1 protein 
complex. Pro-caspase-1 self-cuts into an activated form. 
Activated Caspase-1 also helps pro-IL-1β, pro-IL-18 
matures into IL-1β, IL-18 [30] (Fig. 1). The activation 
of Non-classical NLRP3 inflammasome does not depend 
on the activation of TLR4 signaling pathway. The latest 
research shows that caspase-11 directly recognizes intra-
cellular LPS, initiates the activation of NLRP3 inflamma-
some, promotes the activation and release of gasdermin D, 
and mediates cell death [29, 31].

After EV71 infection, human primary monocyte-
derived macrophages (MDMs) induce proinflammatory 
cytokines, such as IL-1, IL-6 and tumor necrosis factor a 
(TNF-a) [32]. Several studies revealed that children with 
EV71 infection have increased levels of cytokines such as 
IL-6, IL-10 and IL-13 [33]. Sendai virus and influenza A 
virus can activate NLRP3 inflammasome [34]. EV71 2A 
protease specifically cleaves NLRP3 G493-L494. EV71 
3C protease specifically cleaves Q225-G226 of NLRP3, 
but has no cleavage effect on ANL2, ASC, caspase-1, 
and IL-1β of NLRP3 signaling pathway. Thus, NLRP3 
pathway loses regulation of IL-1β and IL-18 production, 
and does not inhibit EV71 replication. In this review, it is 
proposed that the patient infection period is divided into 2 
stages. Initially, EV71 protein and RNA activates NLRP3 
to regulate interleukin production against infection. How-
ever, in the later stage, EV71 replicate and produce a large 
amount of 3C protease and 2A protease. 3C protease and 
2A protease specifically cleaves NLRP3, which hinders 
immune activity [35]. (As shown in Fig. 1, we summarized 
that EV71 3C protease is involved in the mechanism of 
interferon-inducing pathways).
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The Role of 3C Protease in Interferon Signal 
Transduction Pathway

Type I IFNs (IFN-α/β) and type II IFN (IFN-γ) are widely 
expressed in the cell as the first line of defense. These 
cytokines are capable of combating viral infection and 
inhibiting virus replication [36]. There are 14 types of type 
I interferon (IFN-α) in mice, 13 in humans, and one type 
of β (IFN-β) [37]. Most cells can produce IFNβ. But IFNβ 
is mainly produced by hematopoietic cells, especially 
plasma cell-like dendritic cells [38]. The type I interferon 
(IFN-α/β/ω) receptor is mainly composed of two subu-
nits, IFNAR1 and IFNAR-2. The intracellular domains of 
IFNAR-1 and IFNAR-2 can bind to Jak1 and Jak2 and acti-
vates Jak signaling pathway, resulting in phosphorylation 
of STAT1 and STAT2. Activated STAT1/STAT2 and IRF9 
(p48) form the transcription factor complex interferon-
stimulated gene factor 3 (ISGF3). ISGF3 and IFN-stimu-
lated regulatory elements (ISREs) responsible for inducing 
transcription of related target genes (Fig. 2).

IFN-γ receptor also contains two subunits, IFNGR-1 
and IFNGR-2. IFN-γ activates Jak1 and Jak2 pathway 

and subsequently activates the STAT1/STAT1 complex. 
STAT1/STAT1 and IRF1 form a homodimer GAF (IFN-γ 
activating factor) into the nucleus. IFN-γ activating factor 
combines with GAS elements to induce ISGs transcription 
[39]. ISGs induce transcription products: including oli-
goadenylate synthase (OAS), protein kinase R (PKR), and 
interferon-induced GTP-binding protein Mx (MX) [40, 
41]. OAS and PKR can regulate virus replication. RNAase 
L and MX can inhibit viral transcription [42] (Fig. 2).

3C Protease Affects Type I Interferon‑Induced 
Signaling Pathway

There are a lot of evidence that IFNs have a strong antiviral 
effect and can be used to treat patients [43, 44]. However, 
only high concentration of type I IFNs can control EV71 
infection and replication. In mice, IFNs pretreatment can 
avoid infection of EV71. If mice are injected with IFNs after 
infection with EV71, the antiviral effect of IFNs is small 
[45]. Studies showed that EV71 reduced the expression of 
type I interferon receptor IFNAR1, which affects the produc-
tion of ISGs [46]. However, Liu et al. revealed that EV71 did 
not significantly downregulate the expression of IFNAR1, 

Fig. 2   EV71 3C protease is involved in the interferon signal transduction pathway. EV71 3C protease, 2A protease affects the antiviral effect of 
the type I IFN signaling pathway. Both EV71 3C protease and 2A protease participate in related intracellular signaling molecule interactions
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but downregulate the expression of JAK1 [47]. Wang et al. 
indicated that EV71 did not downregulate the expression of 
JAK1 and IFNAR1 [48].

In conclusion, EV71 blocks IFN signaling probably not 
by downregulating IFNAR1 and JAK1 expression. Hung 
et al. revealed that the 3C protease of EV71 had a cleaving 
effect on IRF9, and the C147S point mutation of 3C protease 
had no cleaving effect on IRF9 [49]. In general, it may be 
that EV71 3C protease affects the effect of type I interferon 
by cleaving IRF9, which promotes EV71 replication in the 
host cells. Thus, it is necessary to further explore the mecha-
nism of EV71 blocking interferon signal transduction.

Effect of 3C Protease on Type II Interferon‑Induced 
Signaling Pathway

Several studies have shown that pulmonary edema and 
encephalitis resulting from EV71 infection are associated 
with gene polymorphism and expression of IFN-γ [50, 51]. 
The mice lacking A129 (IFN-α/β receptor deficient) has a 
higher mortality rate than AG129(IFN-α/β, γ receptor defi-
cient) [52]. Moreover, the knockdown of the interferon type 
II receptor and STAT1 in mice increased the EV71 lethality 
[53]. It indicates that type II interferon may also play an 
important role in antiviral activity.

Wang et al. showed that EV71 2A protease and 3D pro-
tease prevented IFN-γ induction of IRF1 activation, resulting 
in failure of STAT1 phosphate nucleation [54]. Therefore, 
EV71 attenuates IRF1 activation in the IFN-γ signaling 
pathway and promotes replication in the host cells (as shown 
in Fig. 2, we summarized that EV71 3C protease is involved 
in the interferon signal transduction pathway).

The Role of EV71 3C Protease in Host Cell 
Apoptosis

Picornaviral 3C protease can activate caspase and induce 
apoptosis of host cells. EV71 3C protease triggers cell DNA 
degradation and apoptotic bodies [55]. Li et al. reveals that 
the 3C protease can degrade poly (ADP-ribose) polymerase, 
a DNA repair enzyme. This study showed that 3C protease 
can activate caspase and induce apoptosis in SF268 cells. 
Caspase inhibitors (DEVD-fmk and VAD-fmk) can block 
apoptosis caused by 3C protease [4]. It has been reported 
that EV71 3C protease affects the polyadenylation of host 
mRNA by cleaving CstF64 [56]. EV71 3C protease relies on 
its protease activity to cleave GSDMD, a significant compo-
nent of pyroptosis, resulting in cell pyroptosis [57]. Li et al. 
demonstrated that EV71 3C protease promotes apoptosis 
through cleaving pinx1, a telomere binding protein. What’s 
more, 3C protease cleaves the pinx1at the site of Q50-G51 
pair, and accelerates EV71 release [58]. Chen et al. recently 

confirmed that SUMO E2-conjugating enzyme Ubc9 pro-
motes ubiquitination of EV71 3C protease, which helps to 
reduce EV71 replication and cell apoptosis [59]. The ubiq-
uitination of EV-A71 3C protease inhibits viral replication 
and host cell apoptosis.

In addition, endoplasmic reticulum-associated degrada-
tion (ERAD) component p97 can participate in EV71 rep-
lication. EV71 3C protease induced Ubc6e cleavage may 
be a key mechanism for EV71 to inhibit ERAD [60]. In 
conclusion, EV71 3C protease facilitates EV71 replication 
by affecting endoplasmic reticulum molecules.

EV71 3C Protease Inhibitors and Potential 
Treatment for EV71 Infection

The 3C protease play important roles in EV71 replication 
and apoptosis of host cells. Thus, the development of antivi-
ral drugs targeting 3C protease has become a hot spot. EV71 
3C protease has no homology with mammalian proteases, 
so 3C proteases can be used as antiviral targets. Accord-
ing to the specificity of 3C protease structure, anti-EV71 
drugs were designed, such as inhibitors of 3–5 amino acids 
and aldehyde peptides, which can form irreversible covalent 
bonds with the 3C protease active site.

Broad‑Spectrum Inhibitors of 3C Protease

Rupintrivir (AG7088) has extensive antiviral activity against 
HRV and a variety of enteroviruses. EV71 3C protease 
catalytic structural amino acid residues (His40, Glu71 and 
Cys147) are strictly conserved. Rupintrivir can covalently 
bind to the active site of EV71 3C protease. Studies have 
shown that this binding mode is relatively stable. Yeast two-
hybrid cell experiments also demonstrated that Rupintrivir 
effectively binds to EV71 3C protease. Besides, Ruprintrivir 
does not reduce the frequency of the common cold, but has a 
significant antiviral effect in the common cold [61].

Modified Peptide Inhibitor of 3C Protease

Based on the covalent combination of Rupintrivir and 3C 
protease, a series of highly inhibitory drugs have been devel-
oped, such as substance-based peptidomimetics, aldehydes 
and derivatives. Kuo et al. found that Rupintrivir enhanced 
antiviral activity by replacing the unsaturated ester with 
the aldehyde at the P1’ position [7].The EV71 3C protease 
inhibitor, pseudopeptide aldehyde 5×, has strong inhibitory 
activity and low cytotoxicity [62]. Wang et al. reported that 
Peptide NK-1.8k inhibits EV71 3C protease activity and 
EV71 proliferation [63]. α-Keto amide exhibits good inhi-
bition of 3C protease activity and relatively low cytotoxicity, 
so it can be used as an inhibitor of EV71 3C protease [64]. 
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And the experimental results show that if the inhibitor has 
a rotatable ester bond, it can enhance the interaction of 3C 
protease at the substrate binding site of S4 and increase the 
antiviral activity [65].

Natural Medicine and Other Inhibitors

Hung et al. found that Rupintrivir and interferon have a syn-
ergistic effect on the inhibition of EV71. Fisetin and rutin 
have been reported to inhibit EV71 3C protease with an 
IC50 value of 85 μM and 110 μM, respectively [66]. CPI 
(Diisopropyl chrysin-7-yl phosphate) can bind toEV71 3C 
protease and inhibits its activity. The main component of 
the CPI, chrysin, can be extracted from natural flavonoids 
in many plants [67]. Due to the excellent inhibitory activity 
of Cyanohydrin on 3C protease, Cyanohydrin derivatives 
can be used as EV71 3C protease inhibitors [68]. Adenosine 
analog (NITD008) inhibits EV71 replication. Its EC50 value 
is 0.67 mM, but it has relatively high cytotoxicity (CC50 
1/4 119.97 mM) [69].It is reported that EV71 3C protease 
inhibitor DC07090 exhibited the inhibition potency with an 
IC50 value of 21.72 ± 0.95 mM without apparent toxicity 
(CC50 > 200 mM) [70].

Conclusion

EV71 is the leading cause of severe hand, foot and mouth 
disease, which is a serious threat to the world, especially 
in the Asia-Pacific region. Studies have shown that EV71 
3C protease plays important roles in its pathogenesis. The 
research on EV71 3C protease has made great progress. 
The crystal structure of 3C protease has been determined, 
the catalytic active site and RNA binding site have been 
found. The innate immune system, as the body’s first line 
of defense, plays key roles in the fight against microbial 
infections, especially the type I interferon response. EV71 
attenuates interferon signaling, allowing EV71 to evade 
immune mechanisms. However, the EV71 escaping mecha-
nism has not been fully elucidated. The 2A and 3C protease 
of EV71 have cleavage inhibition on some important linker 
molecules. Research on anti-EV71 3C protease drugs has 
made some progress. The role of EV71 in the pathogenic 
mechanism still needs further study. The targeting medicines 
against 3C protease are still needed to be further explored.
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