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Abstract
Wolbachia is capable of regulating host reproduction, and thus of great significance in preventing the spread of insect-borne 
diseases and controlling pest insects. The fruit fly Drosophila melanogaster is an excellent model insect for understanding 
Wolbachia-host interactions. Here we artificially transferred the wCcep strain from the rice moth Corcyra cephalonica into 
D. melanogaster by microinjection. Crossing experiments indicated that wCcep could induce a high level of CI in the phy-
logenetically distant host D. melanogaster and imposed no negative fitness costs on host development and fecundity. Based 
on quantitative analysis, the titres of wCcep and the native wMel strain were negatively correlated, and wCcep could only be 
transmitted in the novel host for several generations  (G0 to  G4) after transinfection. Transcriptome sequencing indicated that 
the invading wCcep strain induced a significant immune- and stress-related response from the host. An association analysis 
between the expression of immune genes attacin-D/edin and the titre of Wolbachia by linear regression displayed a negative 
correlation between them. Our study suggest that the intrusion of wCcep elicited a robust immune response from the host 
and incurred a competitive exclusion from the native Wolbachia strain, which resulted in the failure of its establishment in 
D. melanogaster.

Abbreviations
CI  Cytoplasmic incompatibility
AMPs  Antimicrobial peptides
qPCR  Real-time quantitative polymerase chain 

reaction
GAPDH  Glyceraldehyde phosphate dehydrogenase
Ct  Cycle threshold
WT  Wildtype
IN  Infected

UN  Uninfected
hpi  Hours post-injection.
bp  Base pairs
Kb  Kilobase
DEG  Differentially expressed genes
GO  Gene Ontology
KEGG  Kyoto Encyclopedia of Genes and Genomes
KOBAS  KEGG orthology-based annotation system
FPKM  Fragments per kilobase of transcript per mil-

lion mapped reads
RNA-Seq  RNA sequencing (whole transcriptome shot-

gun sequencing)
SNK  Student Newman Keuls

Introduction

Arthropods harbor a variety of microorganisms, and Wol-
bachia are perhaps among the most commonly occurring 
facultative bacterial endosymbionts [1]. This group of ver-
tically transmitted Gram-negative bacteria attracted more 
and more attention for their capability of manipulating host 
reproduction by causing cytoplasmic incompatibility (CI), 
feminization, male killing, and parthenogenesis induction 
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[2], which is of great significance in pest control and human 
disease transmission [3].

The fruit fly Drosophila melanogaster uses multiple 
innate defense strategies to combat bacterial infection, many 
of which are also used by higher organisms including human 
beings [4]. These defense strategies include physical bar-
riers and immunity: local immune response in the barrier 
epithelia by producing antimicrobial peptides (AMPs) and 
reactive oxygen species, cellular immunity via phagocytosis 
and encapsulation, and humoral immunity by synthesizing 
AMPs in the fat body. The signaling pathways regulating 
the production of AMPs were identified using the Drosoph-
ila model [5]. Seven groups of AMPs were characterized, 
among which Diptericin, Drosocin, and Attacin are highly 
effective against Gram-negative bacteria [6, 7]. On the 
other hand, the cellular encapsulation is a dramatic defense 
response mediated by lamellocytes in Drosophila [8]. Edin 
(elevated during infection) acted as an important determi-
nant of the encapsulation response in D. melanogaster larvae 
[9]. In the past decades, remarkable progresses have been 
made in insect immunity, although the mechanisms under-
lying the insect-Wolbachia interactions are only partially 
understood [10]. Wolbachia are very common in Drosophila 
but they cannot be cultured outside of host cells [11]. Rec-
ognition of bacteria by Drosophila is achieved through the 
sensing of specific forms of peptidoglycan by peptidoglycan 
recognition proteins (PGRPs). The discovery of PGRP-LE 
as an intracellular sensor of Gram-negative bacteria may be 
among the important advances in understanding the immune 
defense of insects to Wolbachia [12]. It was reported that 
the PG-associated lipoprotein (PAL) was located on the 
cell membrane of Wolbachia [13]. PAL was known to spe-
cifically bind diaminopimelic acid (DAP) [14]. Therefore, 
Wolbachia can be recognized by PGRPs which then trig-
ger the Imd pathway and subsequent AMP generation [15]. 
Nevertheless, up to now, the molecular mechanism of insect-
Wolbachia and how the titer is controlled in vivo is poorly 
understood, particularly when multiple infections occur.

The success of Wolbachia is attributed to efficient mater-
nal transmission and manipulations of host reproduction 
commonly through CI [16]. CI is affected by both host 
and Wolbachia [17, 18]. For instance, CI factor A (CifA) 
encoded by syntenic loci within Wolbachia’s WO prophage 
region played a key role in the rescue of CI [19], which was 
further supported by a recent study using two conspecific 
Wolbachia strains from Drosophila pandora [20]. Moreo-
ver, the strength of CI was correlated with the density or 
titre of Wolbachia [21], which appeared to be influenced 
by both host- and Wolbachia-intrinsic factors [22, 23]. It 
can be expected that the titre of Wolbachia should reflect a 
balanced interaction between host defense (immunity, resist-
ance and tolerance) and Wolbachia anti-defense. Previous 
studies showed that the native Wolbachia strain did not elicit 

an AMP-based immune response in the host, while a strong 
induction of AMP gene expression was observed when Wol-
bachia were introduced into novel hosts [24–26]. Neverthe-
less, the mechanisms underlying the complex interactions 
between host insects and co-existing Wolbachia strains are 
still unclear.

Great advances have been made in Wolbachia genom-
ics. The whole-genome sequence of Wolbachia pipientis 
wMel strain from D. melanogaster provides an ideal system 
for studying the Wolbachia–Drosophila interactions [27]. 
The wMel strain is a typical CI-inducing Wolbachia strain, 
belonging to Supergroup A based on gene sequencing and 
MLST typing [28]. It was successfully transferred into Aedes 
aegypti mosquitoes and blocked transmission of dengue [29, 
30]. What’s more, in an experimental transfection by micro-
injection, the wMel strain established itself in a phylogeneti-
cally distant host insect Bemisia tabaci [31]. It is therefore 
intriguing to explore whether a Wolbachia strain derived 
from a phylogenetically distant host insect can also establish 
itself in D. melanogaster. Here we used a previously charac-
terized Wolbachia wCcep strain from the rice moth Corcyra 
cephalonica [31] to establish a Drosophila/wCcep/wMel 
system. Our purpose was to investigate the multiple inter-
actions between the host and different Wolbachia strains 
and analyze the factors influencing the establishment of a 
Wolbachia strain in a novel insect host. We found that the 
wCcep strain elicited a significant host immune response 
from the novel host, supporting the notion that the exog-
enous bacteria may trigger a robust innate immune response 
that eliminates the intruders [32]. Furthermore, based on 
Wolbachia titre measurement using RT-qPCR, the intru-
sion of wCcep elicited an exclusion reaction from the native 
wMel strain, inconsistent with the theoretical prediction that 
multiple infections favor cooperation between co-existing 
Wolbachia strains [33]. In the present study, we firstly trans-
ferred a Wolbachia strain derived from a distantly related 
host into D. melanogaster, which provides new insights into 
the multiple associations between the host and co-existing 
Wolbachia strains.

Materials and Methods

Insect Rearing and Wolbachia Isolation

The rice moth C. cephalonica was maintained on Maize-
Rice bran–Sugar medium (25 °C, 65% RH and 14L:10D). 
The fruit fly D. melanogaster was maintained on Maize-
Agarose-Yeast medium (25 °C, 60–70% RH and 14L:10D. 
The wCcep strain was isolated from two moths using the 
Percoll density-gradient centrifugation method [31]. The 
purified bacteria were detected using the primers 81F/522R 
targeting wsp of Group B Wolbachia [34].
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Microinjection

A volume of 46 nl bacterial suspension in SPG buffer 
(220 mM sucrose, 4 mM  KH2PO4, 9 mM  Na2HPO4, 5 mM 
l-glutamate, pH 7.4) was injected into the pupa of D. mela-
nogaster using a glass needle on the platform of Nanoliter 
2000 (World Precision Instruments, Sarasota, FL, USA). 
Approximately 100 pupae were injected, which were then 
placed in a climate incubator until eclosion (25 °C, 60–70% 
RH and 14L:10D). The newly emerged adults  (G0) were 
separately maintained in pairs (♀/♂) for establishing isofe-
male lines.

Quantitative Analysis of Wolbachia Titre

The relative titres of wMel and wCcep were measured using 
real-time quantitative polymerase chain reaction (qPCR) 
in D. melanogaster over 8 generations after microinjec-
tion. The primers 81F/522R specifically targeting wCcep 
(B-Wolbachia) [34] and the primers wspQ384/wspQ513 
targeting both wMel and wCcep [28] were used in qPCR 
analysis, with GAPDH as the internal reference (Table S1). 
The stability of primers was judged by the cycle threshold 
(Ct). Three adult flies were extracted for one DNA sample 
(50 ng/µl). The reaction was performed in a total volume of 
20 µl containing 10 µl  AceQ® qPCR  SYBR® Green Mas-
ter Mix (Vazyme, Nanjing, China), 0.4 µl of each primer 
(10 µM), 1 µl gDNA (50 ng) and 8.2 µl  ddH2O. The ther-
mocycling program was 50 °C for 2 min, 95 °C for 5 min,  
40 cycles of 95 °C for 10 s, 60 °C for 30 s. The relative titre 
was calculated using the  2−ΔΔCt method [35]. All samples 
were assayed in triplicate on an ABI 7500 (Applied Biosys-
tems, Carlsbad, CA, USA).

Crossing Experiments

The native strain was removed by tetracycline (0.25 mg/ml) 
for two consecutive generations. The uninfected flies were 
then injected with wCcep solution (46 nl) and female iso-
lines were constructed. Infected (IN) and uninfected (UN) 
flies from the 4th generation  (G4) were used for recipro-
cal crossing: UN♀ × UN♂; UN♀ × IN♂; IN♀ × UN♂, and 
IN♀ × IN♂. The newly emerged adults were used for mating 
in a tube (Φ2.2 cm) for 48 h, and the inseminated females 
were then placed individually in a petri dish (Φ3.5 cm). The 
number of eggs per female, hatching rate and developmental 
durations were calculated, and the level of CI was assessed 
according to the hatching rate of eggs.

Transcriptome Sequencing

The sequencing libraries were constructed from the pupae 
of fruit fly. Total RNA was extracted from approximately 30 

pupae for each treatment: 24 h or 48 h post-injection (hpi) 
with wCcep (46 nl) or the same volume of SPG buffer (nega-
tive control), with two repetitions. The cDNA libraries were 
established by Illumina Truseq RNA Sample Preparation Kit 
(NEB, San Diego, USA) with 2 μg RNA for each sample. 
Then, the Illumina MiSeq platform was used to produce 300-
bp paired-end sequences. After the high-quality clean data 
were achieved, the genome sequences of D. melanogaster 
downloaded from NCBI (https ://www.ncbi.nlm.nih.gov/
genom e/47) were used as the reference for identifying 
unigenes using Bowtie v2.0.6, TopHat v2.0.9 and HTSeq 
v0.5.4p3; the DESeq R package was used to characterize 
the differentially expressed genes (DEGs) (the corrected P 
value < 0.005; the  log2 (fold change) > 1).

Functional Annotation of DEGs

The Gene Ontology (GO) enrichment analysis of DEGs [36] 
was conducted on the GO seq R package; the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway analysis 
[37] was carried out using the KEGG orthology-based anno-
tation system (KOBAS). The significantly enriched GO and 
KEGG pathway terms were determined using the hypergeo-
metric test (P < 0.05). The DEGs related to host immunity, 
detoxification and stress responses against Wolbachia inva-
sion were classified [4].

Association Analysis Between Gene Expression 
and Wolbachia Titre

Six treatments were carried out: 24 hpi with SPG buffer, 48 
hpi with SPG buffer, 24 hpi with wCcep, 48 hpi with wCcep, 
24 hpi with twice wCcep (48 h apart), and 48 hpi with twice 
wCcep (48 h apart). The expression of attacin-D and edin 
and the titre of wCcep were measured using real-time qPCR, 
but the DNA templates were different: cDNA for the former 
and gDNA for the latter. Total RNA and gDNA were suc-
cessively isolated from approximately 30 whole fruit flies 
using Trizol (TransGen Biotech, Beijing, China) [38]. The 
cDNA was synthesized using 0.5 μg total RNA and reverse 
transcriptase  (HiScript® II One-Step RT-PCR Kit, Vazyme 
Biotech, Beijing, China) according to the supplier’s instruc-
tions. The primers used (Table S1), the reaction system and 
thermocycling program for qPCR analysis were the same 
as described above. A linear regression analysis was per-
formed to identify the association between gene expression 
and Wolbachia titre.

Data Analysis

The statistical differences were analyzed using One-way 
AVOVA followed by Student Newman Keuls (SNK) test at 
0.05 and 0.01 levels on SPSS v.20.0 (SPSS Inc., Chicago, 

https://www.ncbi.nlm.nih.gov/genome/47
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IL, USA). Linear regression analysis was performed on 
Microsoft Excel v.1903.

Results

Quantitative Analysis of Wolbachia Titre

The results showed that the reference GAPDH was quite sta-
ble over different generations (Fig. S1). Quantitative analysis 
indicated that wCcep could be transmitted over four gen-
erations but it was undetectable after  G4 (Fig. 1). Specifi-
cally, the titre of wCcep climbed during the early stage after 
microinjection (24hpi-G0), but then declined rapidly, even 
undetectable at  G3; surprisingly, it showed a sudden rebound 
at  G4, but then returned to an undetectable level  (G5 and 
later). In comparison, wMel dropped immediately (24–48 
hpi) and remained at a low level till  G4, but then began to 
rise  (G5 and later).

Crossing and CI

The crossing experiments showed that there was no signifi-
cant difference in the developmental durations among dif-
ferent crossing types (SNK, P = 0.731) (Table S2); no sig-
nificant difference was observed in the number of eggs laid 
per female (SNK, P = 0.662). However, a highly significant 
difference existed in the hatching rate between UN♀ × IN♂ 
and the other crossing types (SNK, P < 0.001) (Table 1). The 
significantly lower hatching rate in UN♀ × IN♂ indicated a 
strong CI induced by wCcep.

Host Responses to Wolbachia Intrusion

Transcriptome sequencing identified 240 DEGs (173 
upregulated; 67 downregulated) at 24 hpi; 295 DEGs (183 

upregulated; 112 downregulated) at 48 hpi, and 497 DEGs 
(254 upregulated; 243 downregulated) when comparing 24 
hpi with 48 hpi (Fig. S2). KEGG analysis of DEGs identified 
a variety of induced biological pathways. Interestingly, more 
pathways were activated at 48 hpi than at 24 hpi (Fig. S3). 
Functional annotations revealed that wCcep intrusion elic-
ited typical immune reactions, including the Toll and JAK/
STAT signaling pathways (Table S3), humoral and cellular 
immunity (Table S4). The majority of antimicrobial pep-
tides (AMPs) were downregulated, whereas the lysozymes 
were upregulated. In addition, host detoxification and stress 
responses were also regulated (Table S5). The raw sequence 
data are available upon request.

Association Between Expression of Attacin‑D/Edin 
and Wolbachia Titre

The results showed that the gene expression and Wol-
bachia titre varied considerably among different treat-
ments (Table 2; Fig. S4). A general trend was that the 

Fig. 1  The dynamics of the 
titres of wMel and wCcep 
strains in D. melanogaster dur-
ing different stages after transin-
fection. Data are represented as 
means ± SE of three repetitions. 
WT wildtype, hpi hours post-
injection

Table 1  Fecundity and hatchability in different crossings between 
wCcep-infected (IN) and antibiotic-treated uninfected (UN) fruit flies

The fruit flies are taken from  G4. The data are represented as 
means ± SE. The same lowercase and uppercase letters indicate no 
significant difference at P < 0.05 and P < 0.01 levels, respectively, and 
different uppercase letters indicate significant difference at P < 0.01 
level using one-way AVOVA followed by Student Newman–Keuls 
(SNK) test

Cross type (♀ × ♂) No. of 
crosses 
(n)

No. of eggs per 
female

Percentage of 
hatchability (%)

UN × UN 11 92.33 ± 2.73a 89.57 ± 1.04A

UN × IN 9 92.67 ± 3.84a 67.93 ± 1.65B

IN × UN 10 87.75 ± 2.17a 86.35 ± 0.49A

IN × IN 10 91 ± 4a 86.69 ± 2.78A
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injection of wCcep downregulated gene expression; sur-
prisingly, twice injection of wCcep drastically reduced 
the expression of attacin-D and edin. Linear regression 
indicated that a significant negative correlation existed 
between the titre of wCcep and the expression of atta-
cin-D (R2 = 0.8157; P = 0.00082) and edin (R2 = 0.8825; 
P = 0.00034) (Fig. 2).

Discussion

Our studies suggested that the exogenous wCcep strain 
from the moth could infect the fruit fly D. melanogaster and 
induce a high level of CI, but could only be transmitted for 
four generations  (G0 to  G4) in the novel host. Moreover, the 
intruding wCcep strain should have suffered a competitive 

Table 2  The relative expression 
levels of attacin-D and edin 
and the relative titres of wCcep 
strain in D. melanogaster under 
different treatments

Data are means ± SE of three repetitions. The different lowercase and uppercase letters within the same 
column indicate significant difference at P < 0.05 and P < 0.01 levels, respectively, using One-way ANOVA 
followed by Student Newman–Keuls (SNK) test. hpi, hours post-injection; 24 hpi and 48 hpi with twice 
wCcep: twice injections are performed 48 h apart

Relative expression 
of attacin-D

Relative expression of edin Relative titre of wCcep

24 hpi with SPG 1.505 ± 0.059Aa 1.451 ± 0.247Aa 0.368 ± 0.064De

48 hpi with SPG 1.288 ± 0.058Aa 1.635 ± 0.205Aa 0.295 ± 0.056De

24 hpi with wCcep 1.057 ± 0.059Ab 1.002 ± 0.032Ab 1.081 ± 0.086Cd

48 hpi with wCcep 0.547 ± 0.077Bc 0.839 ± 0.034Bc 2.754 ± 0.332Bc

24 hpi with twice wCcep 0.569 ± 0.047Bc 0.610 ± 0.022Bd 6.307 ± 0.234Ab

48 hpi with twice wCcep 0.180 ± 0.112Cd 0.087 ± 0.016Ce 8.697 ± 0.700Aa

Fig. 2  Linear regression analy-
sis between the relative titre of 
wCcep strain and the relative 
expression level of attacin-D (a) 
and edin (b) in D. melanogaster 
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exclusion from the native wMel strain, as their tires were 
negatively correlated during the invasion process. Further-
more, the recipient host imposed a remarkable immune 
suppression against the wCcep strain. All of these reac-
tions caused the failure of the establishment of wCcep in 
D. melanogaster.

Although Wolbachia are common in Drosophila, the 
mechanisms underlying the host-Wolbachia interactions 
are only partially understood due to its unculturability. 
Microinjection is an ideal method for deciphering the 
interactions between the host and Wolbachia [39]. The 
wCcep strain native to the rice moth C. cephalonica had 
previously been shown to establish itself in the hemipteran 
pest insect B. tabaci through microinjection [31]. D. mela-
nogaster is known to harbor the wMel strain [27], and thus 
it is expected that the invading wCcep strain should actively 
interact with the novel host and native wMel strain [40, 41]. 
The interactions may be viewed from the change in the titre 
of Wolbachia and the expression levels of immune genes. 
Our quantitative analysis of Wolbachia titre showed that 
wCcep was negatively correlated with wMel in their titres, 
indicating that there might exist a competitive relationship 
between the two co-existing strains. Indeed, the existence 
of a competition between the novel and native strains can 
partially explain why wCcep could only be transmitted in 
the new host for a relatively short period of time (four gen-
erations). Several previous studies investigating the interac-
tions between co-existing Wolbachia strains by comparing 
their titres (or densities) achieved mixed results: Wolbachia 
titre was highly strain-specific and unaffected by the pres-
ence of other strains in some parasitoid wasps and moths 
[42], whereas competition obviously existed between co-
occurring strains in the beetle Callosobruchus chinensis and 
Acromyrmex leafcutter ants [43–45]. These results suggest 
that the interactions between the invading strain, host insect 
and native strain may be influenced by a complex of factors 
that need to be identified.

To investigate the effects of wCcep on host developmental 
duration, fecundity (fitness effects) and CI level, crossing 
experiments were conducted using flies treated with antibiot-
ics to obviate the effect of the native strain and then injected 
with or without wCcep. The results suggested that wCcep 
could induce a strong unidirectional CI in D. melanogaster, 
confirming the infection capability of wCcep. Crossings also 
indicated that wCcep infection imposed no significant fitness 
costs on the host as no obvious changes were observed in 
the developmental durations and the number of eggs laid per 
female. This is consistent with our previous results achieved 
in B. tabaci, where transinfection of wCcep had no signifi-
cant effect on the fecundity of the whitefly [31].

Transcriptome sequencing via RNA-seq coupled with 
functional annotations identified a host of genes involved 
in insect-Wolbachia interactions, including humoral and 

cellular immune responses, detoxification and stress resist-
ance. One interesting finding is that sampling at 48 hpi 
identified more DEGs, while no substantial change was 
detected at 24 hpi. Another finding is that many immune-
related DEGs (including the majority of AMPs such as 
attacin-D) were downregulated in response to wCcep 
infection. One possible explanation is that the host has 
shut down these genes to provide protection for the native 
Wolbachia strain due to unknown fitness-related benefits. 
Nevertheless, massive doses of exogenous Wolbachia 
might be a possible factor causing the apparent suppres-
sion of many immune-related genes as observed in Aedes 
albopictus, D. melanogaster, D. simulans and Tetranychus 
urticae [46–48]. It seems that the immune- and stress-
related genes played a subtle role in regulating the host 
insect-Wolbachia associations. This is further supported 
by our association analysis between the expression of atta-
cin-D/edin and the titre of wCcep, in which the expression 
of attacin-D/edin was significantly negatively correlated 
with the titre of wCcep. This finding revealed that attacin-
D/edin are two determinants of wCcep titre. Considering 
Attacin-D and Edin are key components of insect innate 
immunity, our results suggest that Attacin-D and Edin play 
important roles in the host defense against the invading 
Wolbachia strain.

From an evolutionary perspective, coevolution is expected 
to favor low fitness cost, low level of CI, and high transmis-
sion rate. Conversely, the intrusion of an exogenous bacte-
rial strain (e.g., injection of Wolbachia) into a novel host 
is expected to lead to negative fitness effect, high CI level, 
and low transmission rate [49]. In the present study, we did 
not measure the transmission rate, but the neutral fitness 
effect and high CI level measured for wCcep are partially in 
agreement with the theoretical prediction. Thus, for future 
research, the Drosophila/wMel/wCcep system is expected to 
be useful for investigating the coevolution between Drosoph-
ila and wMel, the competitive interaction between wMel and 
wCcep and the functional genes involved in the defense and 
anti-defense interactions between Drosophila and wCcep.

In conclusion, the wCcep strain can induce a high level 
of CI in the phylogenetically distant host D. melanogaster 
after infection, but can only be transmitted in the novel 
host for several generations. The invading Wolbachia 
strain imposed no significant fitness costs on the novel 
host, but suffered a robust immune response from the host 
and incurred a competitive exclusion from the native Wol-
bachia strain, which resulted in the failure of its establish-
ment in D. melanogaster. Our data indicate that D. mela-
nogaster and wMel might have established a symbiotic 
relationship after a long-term coevolution.
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