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Abstract
Water and sediment have always been closely tied in aquatic systems. However, little information regarding the full extent of 
microeukaryotic composition in both the two habitats did we know especially in estuaries. In the present study, the microeu-
karyotic abundance, diversity, composition, and their response to environmental factors between sediment and water in the 
Yellow River Estuary (YRE) were investigated. The microeukaryotic 18S rRNA gene abundance ranged from 1.03 × 106 to 
5.48 × 107 copies/g dry for sediment, and 3.01 × 104 to 1.25 × 106 copies/mL for water. The distribution patterns of eukary-
otic microorganisms could be clustered into two different branches. And the compositions of microeukaryotes in the two 
habitats were distinct obviously. Metazoa, Fungi, Streptophyta, Ochrophyta, Cercozoa, and Dinophyta were more abundant 
in sediment. The dominant phyla in water were Dinophyta, followed by Metazoa, Ochrophyta, Cryptophyta, Chloroplyta, 
Cercozoa, Fungi, Katablepharidophyta, Choanoflagellida, and Haptophyta. Interestingly, the eukaryotic microorganisms 
detected in sediment were much less sensitive to environmental variables compared with water. Furthermore, their potential 
co-occurrence networks in particular were also discovered in the present study. As such, we have provided baseline data to 
support further research on estuarine microeukaryotes in both sediment and water, which was useful for guiding the practical 
application of ecosystem management and biodiversity protection.

Introduction

Microbial eukaryotes (protists and single-celled fungi) play 
fundamental ecological roles as primary producers [1–3], 
consumers [4, 5], decomposers, saprotrophs and parasites [6, 
7], as well as maintainers of biogeochemical cycles [8–11]. 

The previous evidence showed that microbial eukaryotes 
were involved in food network interaction in a rice field soil 
[12, 13] and Baltic Sea oxic-anoxic interface ecosystems 
[14, 15]. In addition, the symbiotic interactions and preda-
tory might have a significant impact on biosphere and nutri-
ent cycling [16–19]. Hence, eukaryotic microorganisms are 
crucial to maintain environmental ecological stability.

Both diverse biotic and abiotic factors had been pro-
posed to interfere abundance and diversity of microeukary-
otic communities [20, 21]. Some studies have revealed that 
abiotic factors can influence the distributions of microeu-
karyotic communities, such as pH value [22]; geographical 
distance [23]; depth [24]; phytoplankton taxa, and various 
nutrients [25, 26]. Wang et al. showed that the prokaryotic 
β-diversity was strongly influenced by spatial factors [27], 
while either the spatial factors or physicochemical factors 
being dominant were still controversial [28]. In addition, 
accumulating evidence had demonstrated that biotic fac-
tors also played a very important role in the distribution 
of microeukaryotes. Previous study revealed that ciliate 
communities were not only controlled by abiotic factors 
but also shaped by biotic factors [29, 30]. Instead of liv-
ing apart, microbes interact to form ecological networks 
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that perform ecosystem functions [31, 32]. Therefore, the 
expounding and predicting the variation in network struc-
ture is a high-priority issue of microbial ecology [33]. The 
microeukaryotic communities can be impacted by various 
factors, especially in complex environment; therefore, the 
effect of influences on eukaryotic microorganisms is still a 
question that need further investigation. The Yellow River 
Estuary (YRE), located at the interface of the Yellow River 
and the Bohai Sea, is a typical oxic/anoxic transition zone. 
Previous studies on estuarine microbes have mostly focused 
on single habitat, as sediment [34–36] or water [37–39]. Our 
previous study had reported the distinct distribution patterns 
of prokaryotic microorganism between sediment and water 
column of the Yellow River Estuary [40]. However, the 
study performed on the distribution of eukaryotic microor-
ganisms between water and sediments needed further study. 
To fulfill our prime objective, the specific aims were to: 
(1) compare the different composition patterns of microeu-
karyotic community between sediment and overlying water, 
(2) reveal the key environmental factors influencing the dis-
tribution of eukaryotic microorganisms between sediment 
and water habitat, (3) investigate the co-existing eukaryotic 
microorganisms between water and sediment. The results 
will provide novel insights for comprehensively understand-
ing of microeukaryotic communities, their relationships with 
environmental factors and assessing the eukaryotic ecology 
in estuary ecosystems.

Material and Methods

Sample Collection and Physicochemical Analysis

The details of the sampling collection and physicochemical 
characteristics have been described in our previous study and 
performed in Table S1 [40]. Briefly, surface sediment cores 
(0–5 cm) were collected at each site using a professional 
sediment sampler (Wildlife Supply Company, USA) and 
were transferred into sterile polypropylene bags (approxi-
mate 1 kg sediment each site). The overlying water samples 
were collected using a water sampler (Wildlife Supply Com-
pany, USA) at a depth of 0.5 m from each site. After being 
evenly mixed of three replicates, the water was transferred 
into sterile glass bottles and total of 3 L water was collected 
in each site. The sediment cores and water samples were 
transported on ice to the laboratory, immediately.

DNA Extraction and Quantitative PCR

Extraction and purification of DNA from water and sedi-
ment samples for each site were extracted using the 
E.N.Z.A.™ Water DNA Kit and E.N.Z.A.™ Soil DNA Kit 
(Omega, USA) according to the manufacturer’s instructions, 

respectively. The extracts were quantified using Nanodrop 
2000 Spectrophotometer (Thermo Scientific, USA) and 
the integrity of the extracts were assessed on a 1.0% (w/v) 
agarose gel. DNA extracts obtained from water and sedi-
ment samples were done in duplicate for parallelism and 
homogenized storing at − 20 °C for further analysis. The 
PCR primers and the amplification conditions were listed in 
Table S2. The standard curves were generated using serial 
dilutions of known copy number of plasmids containing the 
18S rRNA gene fragments, exhibiting a linear response with 
a high correlation coefficient (R2 = 0.995), and these gene 
fragments were linear from gene 8.1 × 102 to 8.1 × 108 cop-
ies/μL for microeukaryotes (E = 95.6%). In order to prove 
the validity, all experiments were performed based on a PCR 
assay of three replicates.

DNA Pyrosequencing and Raw Pyrosequencing 
Reads Analysis

The pyrosequencing data were processed following a previ-
ous described study [40]. The primers and reaction condi-
tions were illustrated in Table S2. Pyrosequencing was per-
formed with a Quanti-Fluor™-ST Fluorometer (Promega) 
on a Roche 454 GS FLX platform by the Majorbio Bio Tech 
Co. Ltd (Shanghai, China). Raw data were processed and 
analyzed using QIIME v.1.9.0 and other programs (e.g. 
Mothur v.1.34.4) [41, 42]. The processing of sequences 
included: quality filtered, chimera checked, clustering, sin-
gletons filtered. Quality filtering reserved sequences satisfied 
the following criteria: (i) quality score > 19 when averaged 
across the read after trimming adapters and primers, (ii) no 
sequencing mismatches within the PCR primer regions, (iii) 
minimum sequence length of 300 bp and (iv) homopolymers 
smaller than six nucleotides. Primer sequences and barcode 
were also removed prior to further analysis. Above all, to 
compare the eukaryotic biodiversity by 454-pyrosequencing, 
the final sequences processed to the lowest read number was 
applied to the level of unity for normalizing the different 
sequencing depths.

Analysis of Microeukaryotic Community

The estimator of microeukaryotic community Chao1 rich-
ness index, Shannon diversity index and Shannon indexes-
based rarefactions were calculated using the Mothur soft-
ware (Table 1 and Fig. S2). Heat maps and correlative 
clustering analyses were generated using Heatmap Illus-
trator (HemI) software. Canonical Correspondence Analy-
sis (CCA) between microeukaryotic communities and the 
environmental factors was performed using CANOCO 
5 software (Microcomputer Power, USA) on the strength 
of the result of detrended correspondence analysis (DCA) 
with 9999 Monte Carlo permutations for the significance 
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tests. Principal co-ordinates analysis (PCoA) was performed 
by R software (REF) based on Bray–Curtis distances. The 
co-occurrence networks among microeukaryotic microor-
ganisms were constructed using Cytoscape version 3.5.1. 
Welch’s t test was to check for significant differences of 
microeukaryotic community between sediment and water, 
using the software STAMP. The differences of microeukary-
otic taxa between sediment and water were performed at 
different taxonomic levels based on the Linear Discriminant 
Analysis (LDA) Effect Size (LEfSe) method (https ://hutte 
nhowe r.sph.harva rd.edu/lefse /) [43].

Accession Number and Data Availability

The raw pyrosequencing data have been submitted to the 
Sequence Read Archive(SRA) of the NCBI under a specific 
accession number: SRP 057857.

Results

Microeukaryotic Abundance in the Sediment 
and Water Habitats

Fluorescence quantitative PCR was used to detect the abun-
dance of 18S rRNA genes of microeukaryotes in water and 
sediment habitats. The microeukaryotic 18S rRNA gene 
abundance in each sediment site ranged from 1.03 × 106 to 
5.48 × 107 copies/g dry sediment (1.45 × 107 copies/g for 
average) (Fig. 1a and c). Nevertheless, microeukaryotic 18S 
rRNA gene abundance varied from 3.01 × 104 to 1.25 × 106 
copies/mL water (5.61 × 105 copies/mL for average) (Fig. 1b 
and d). Comparing all the samples, sediment samples had 
highest abundance at site A, followed by D and C, with the 
lowest abundance at site E and B. Comparatively, in water 
samples, the highest abundance was at site B, followed by 
D, A, the lowest abundance being at site C and E.

Microeukaryotic Diversity and Community 
Composition Between the Sediment and Water 
Habitats

In order to reveal the diversity of microeukaryotes in water 
and sediment, high-throughput sequencing of samples was 
performed. The Shannon index-based (Fig. S2) rarefac-
tion curves indicated the sequencing depth was enough to 
evaluate the microeukaryotic diversity. Eukaryotic microor-
ganisms in sediment and water samples performed by 454 
high-throughput sequencing showed that the OTU number 
in sediment (78–136 OTUs) was higher than water (75–105 
OTUs) in each site except D site. Chao1 index were higher 
in water compared with sediment samples except site A. 

Table 1  Microeukaryotic diversity estimators for samples in the Yel-
low River Estuary

Sample types Sample ID OTU Chao1 Shannon

Sediment SA 136 386 3.68
SB 90 120 3.63
SC 133 177 4.33
SD 78 98 3.09
SE 108 131 3.97

Water WA 105 248 3.48
WB 88 195 2.7
WC 75 304 2.14
WD 92 264 2.98
WE 100 249 3.41

Fig. 1  Histogram and jitter plot of 18S rRNA gene copies in sediment (a) and water (b), in which red color represents sediment, blue color rep-
resents water

https://huttenhower.sph.harvard.edu/lefse/
https://huttenhower.sph.harvard.edu/lefse/
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Shannon diversity index was significantly higher in sediment 
than that in water (Wilcoxon rank-sum test, p = 0.032). It 
could be seen that diversity did not indicate the clear trend. 
The OTU-based PCoA results exhibited distinct distribu-
tion patterns of microeukaryotic community composition 
between sediment and water samples (Fig. S5). Although 
water sample E was separated from other four water sam-
ples, forming obvious outlier, sediment samples, and water 
samples could separate distinctly.

Microeukaryotic Community Composition Between 
the Sediment and Water Habitat

To illuminate the microeukaryotic community dissimilari-
ties and similarities between sediment and water habitats, 
microeukaryotic community compositions in the water and 
sediment samples were analyzed at different classification 
levels. From phylum to order level, the two habitats indeed 
had some differences. At the phylum level (Fig. 2), the sam-
ple WE was separated distinctly from the other samples 
(including samples SA to SE and WA to WD) and the other 
samples could also be clustered into two separate branches, 
a sediment branch (SA to SE) and a water branch (WA to 
WD). For community composition, Metazoa (0–45.3%), 
Fungi (23.15–47.15%), Streptophyta (1.1–35.2%), Ochro-
phyta (6.3–19.2%), Cercozoa (1.6–15.9%) and Dinophyta 
(1.65–78.02%) were more abundant in sediment than that 
of water. The dominant phyla Dinophyta (1.65–78.02%), 
followed by Metazoa (0–45.3%), Ochrophyta (1.4–20.3%), 
Cryptophyta (1.1–6.3%), Chloroplyta (1–9.1%), Cerco-
zoa (1.1–4.7%), Fungi (0–8.5%), Katablepharidophyta 
(0.3–2.7%), Choanoflagellida (0–1.6%) and Haptophyta 
(0–1.6%) were more abundant in water. According to simi-
larity analysis, the result showed that the two habitats had 

absolutely significant differences of microeukaryotic com-
munity composition (ANOSIM, p = 0.027).

Differences of Microeukaryotic Community 
Composition Between Sediment and Water Habitats

To manifest the detailed differences in the microeukary-
otic communities between sediment and water at different 
levels, LEfSe analysis was conducted based on the data of 
eukaryotic microorganisms from super-phylum to genus 
level (Fig. 3). Compared to water, there were 25 taxa domi-
nants in sediment (p < 0.05), mainly part of the super-phy-
lum Opisthokonta, Archaeplastida, and Rhizaria. However, 
there were 23 dominant taxa in water, in which Alveolata, 
Opisthokonta, Rhizaria, and Hacrobia were the dominant 
super-phyla that contributed to the difference.

The results of Welch’s t-test at 95% confidence intervals, 
(Fig. S6) on phylum and class level further corroborated 
the significant differences could be distinguished between 
sediment and water habitats (p < 0.05). Fungi and Cerco-
zoa showed the absolute dominance in sediment than that 
of water, while Cryptophya and Dinophytawere were more 
abundant in water samples on phylum level. Moreover, 
Astomycota and Fiosa-Imbricatea were more abundant in 
sediment on class level, Cryptophyceae and Dinophyteae 
showed the absolute dominance in water samples.

The highest abundant OTU-based analysis was also car-
ried out to further manifest the differences in microeukaryotic 
community between sediment and water (Table S3). Microeu-
karyotic dominant OTUs including OTU92 (12.7%), OTU95 
(4.7%), OTU822 (3.0%), OTU145 (2.8%), and OTU464 (2.8%) 
had sheer dominance in sediment (Table S6a), representing 
Dothideomycetes, Noctiluca_scintillans, Coscinodiscus_radia-
tus, Novel-Clade-4_X, and Odontella_sinensis, respectively. 
The most abundant OTUs of eukaryotic microorganisms in 

Fig. 2  PCoA plots based on microeukaryotic Bray–Curtis distance metrics of sediment and water samples. Red color represents sediment sam-
ples, blue color represents water samples
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water (Table S6b) were OTU95 (40.6%), OTU482 (8.3%), 
OTU869 (5.8%), OTU676 (2.0%), and OTU134 (1.8%), repre-
senting Noctiluca_scintillans, Noctiluca_scintillans, Tintinnid-
ium_sp., Parallelostrombidium_paralatum, and Dino-Group-I-
Clade-4_X_sp., respectively. In summary, the microeukaryotic 
communities between water and sediment varied distinctly 
whether in diverse taxonomic classification or OTU level.

Physicochemical Variables Influencing 
Microeukaryotic Communities in Sediment 
and Water Habitats

Spearman correlation analysis was used to reveal the rela-
tionships between the alpha diversity of the microeukaryotic 
communities and environmental factors (Fig. 4). In sediment 

Fig. 3  LEfSe analysis revealed the most significant (p < 0.05) eukary-
otic microbial taxa between sediment and water. a Taxonomic clad-
ogram based on LEfSe analysis of eukaryotic microorganisms from 
super-phylum to family level. Red color represents sediment-enriched 
taxa, green color represents water-enriched taxa and yellow color rep-

resents nonspecific taxa. b Histogram of LDA scores coupled with 
effect size for differentially abundant taxa between sediment and 
water. (Red) Sediment-enriched taxa with negative LDA scores, and 
(green) water-enriched taxa with positive scores. Only taxa meeting 
an LDA significant threshold of > 2 are shown
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(Fig. 4a), the only remarkable (ρ = 0.975, p < 0.01) positive 
correlation was detected between microeukaryotic abundance 
and depth; the OTU number (ρ = 0.9) and Chao 1 (ρ = 0.9) 
were significantly (p < 0.05) and positively correlated with 
 NO3

−, while no physical and chemical factors were signifi-
cantly associated with Shannon diversity index (Table S3). 
Unlike sediment samples, the only factor that negatively and 
significantly correlated (ρ = 0.9, p < 0.05) with microeukary-
otic abundance in the water was dissolved oxygen (Fig. 4a). 
There was no significant (p > 0.05) relationship among phys-
icochemical factors and other diversity indexes (including 
Shannon diversity index, Chao1) and OTU number (Table S3). 
Pearson correlation between the microeukaryotic taxa and 
environmental factors revealed that few environmental fac-
tors were remarkably correlated with sediment microeukary-
otic taxa (Fig. 4b), in which depth was the significant factor 
affecting much more taxa, while DO and TN were found to 
only exert significant effect on few taxa (Table S4). In the 
water samples (Fig. 4c), there were more statistically sig-
nificant relationships between environmental variables and 

microeukaryotic community, such as pH, salinity, dissolved 
oxygen,  NO3

−,  NH4
+, TP (Table S5).

Canonical Correspondence Analysis (CCA) was conducted 
to explain the relationships between measured factors and 
microeukaryotic community (Fig. S4), the first and second 
axis explained 25.9% and 25.2% of the variables in the sedi-
ment and 28.7% and 24.9% in the water samples, respectively. 
In sediment (Fig. S4a), no variables had remarkable effect on 
the microeukaryotic communities, while it revealed that more 
factors had significant correlations (Mantel test, p < 0.05) with 
water microeukaryotic communities than that of sediment (Fig. 
S4b), of which TN was the most predominant factor (p < 0.05) 
to regulate microeukaryotic community, then followed by pH, 
salinity, and nitrate content. Taken together, microeukaryotic 
taxa in water were more sensitive to the environmental factors 
compared with sediment.

Fig. 4  Spearman correlation heat maps of influential factors with a 
microeukaryotic abundance and diversity in sediment and water and 
Pearson correlation heat maps of influential factors with dominant 
taxa in b sediment and in c water samples. The values of Pearson’s 

(Spearman’s) correlation coefficients are characterized by the scale 
bar. Sal salinity, DO dissolved oxygen, TN total carbon, TC total car-
bon, TOC total organic carbon, TP phosphorus
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Network Interactions of Eukaryotic Microbes 
in Sediment or Water Habitat

The network relationships among eukaryotic microorgan-
isms were more complex in water, while relatively simple 
in sediment. In sediment habitat (Fig. 5a), the coexisting 
network analysis demonstrated that Dinophyta, Cillophora, 
Ochrophyta, Chlorophyta, and Fungi were in the center of 
the network, which meant that they had extensive relation-
ships with other taxa. Intriguingly, there were widely inter-
phylum positive correlations with the Breviatea, while Cho-
anoflagellida were universally negatively correlated with 
other taxa. In the water samples (Fig. 5b), Cryptophyta, 
Chlorophyta, Perkinsea, Chlorophyta, Fungi, Lobosa, Pico-
biliphyta, and Metazoa had the most relationships with other 
taxa. Equally intriguing was that Dinophyta was broadly 
positively correlated with other groups, while other taxa 
were more or less positively and negatively related.

Discussion

Most previous reports on estuarine microbes were mainly 
focused on prokaryotic, especially bacterial communi-
ties [44–46], or single habitat, sediment [34–36] or water 
[37–39]. However, comparative research on eukaryotic 
microorganisms between water and sediments have rarely 
been explored with microbial molecular ecology technol-
ogy especially in estuary habitat. Here, the study covering 
of the microeukaryotic abundance, diversity, community 
composition, and the relationships with environmental 

factors in both sediment and water, were assessed by qPCR 
and pyrosequencing methods.

In the present study, the diversity was similar between 
the water and sediment bacterial community, and there 
was no clear trend in community diversity. Yong et al. [26] 
had reported that microeukaryotic communities in water 
habitat were more diverse than those in sediment. Some 
recent molecular investigation reported [45, 47] that pro-
tistan group has long been considered to be confined to the 
aquatic environment, and is also common in the terrestrial 
environment [48]. However, some studies had been pro-
posed the opposite conclusion. Gong et al. [24] pointed 
that the diversity of microeukaryotes in water was higher 
than that of sediment, which might be due to the sampling 
depth. It has to be emphasized that by Shulse et al. [5] 
that the microeukaryotic communities in sediment have the 
highest diversity in the equatorial North Pacific, habitat 
type, water column depth, and sediment horizon should 
be responsible for this result. A study brought up by Chen 
et al. had been certified that sediments were more diverse 
than water, which should be attributed into environmental 
filtering and stochastic processes [49]. All the conclusions 
indicated that the influencing factors may be complex 
rather than single one. Furthermore, choosing the right 
annotation process and reference database has also proven 
to be critical because it largely limits the risk of mispric-
ing. In addition, we also tried to compare the abundance 
of water and sediment, but due to the fact that we used 
two DNA-extraction kits to extract the water and sediment 
samples, which may generate artificial differences between 
these two compartment, we did not put this result.

Fig. 5  Co-occurrence networks of dominant microeukaryotic phyla 
in sediment (a) and water (b) using Spearman analysis. Nodes of the 
same color indicate that they belong to the same taxa while differ-
ent colors show variable taxonomies. Edges show positive or nega-

tive relations, in which red color represents negative and blue repre-
sents the positive correlations, respectively. Nodes with diverse size 
express the number of connections among the taxa
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The diverse distribution patterns of microeukaryotes 
between water and sediment could be attributed to many 
factors. The multiple statistical analysis performed in the 
present study highlighted the remarkable differences of 
microeukaryotic community were found between sedi-
ment and water. Some studies focused on microeukaryotic 
community also verified our view [24, 49–53]. Eukaryotic 
taxonomic groups associated with analogous environmental 
conditions contained some common parts [54], which were 
also reflected in our study (Table S7). An interesting finding 
was that Metazoa and Ochrophyta were discovered to over-
whelmingly dominate in both sediment and water, and our 
results based on the OTU also showed that some taxa (Doth-
ideomycetes) indeed could simultaneously adapt both the 
two habitats, which indicated that there might exited an little 
overlap between sediment and water due to their inseparable 
bond, and the existence of a connection between network 
structure and habitat preference, most eukaryotic microbial 
groups demonstrate adaptation to specific abiotic and biotic 
conditions even within similar habitats [55], which had been 
proposed by some other studies [49, 56, 57].

The distribution of eukaryotic microorganisms commu-
nity had some similarity with bacteria/archaea community. 
Based on our previous study [40], prokaryotic (bacteria and 
archaea) performed higher abundance and diversity in the 
sediment than water, while eukaryotic microorganisms did 
not exhibit a clear trend of diversity between sediment and 
water habitat. Bacterial communities at different taxonomic 
levels were apparently distinct between the sediment and 
water, but archaeal communities were not. And the dis-
tribution patterns of eukaryotic microorganisms could be 
clustered into two different branches between the sediment 
and water. Our result showed that bacteria and eukaryotic 
microorganisms were more sensitive to habitat effects, 
unlike archaea.

In view of previous studies, we relied on an assumption 
that there were four mechanisms which can lead to the sen-
sitivity of habitat, containing environmental factors, spatial 
effects, niche plasticity, co-occurrence relationships [40]. 
First, not only abiotic factors (including temperature, salin-
ity, altitude; nutrients, and pollutions) [25, 44, 57–60] but 
also biotic factors [20, 30] had been previously proven to 
exert different degrees of effects on abundance and diversity 
of eukaryotic communities in different habitats. In addition, 
the unexplained variation might be related to complex envi-
ronmental factors or other mechanisms not referred [61, 62]. 
Second, spatial effect and niche plasticity can also affect 
microeukaryotic distribution patterns. Concluded from the 
PCoA and clustering results (Figs. 1 and 3, Table 1), the 
microeukaryotic organisms between sediment and water 
community did cluster into two distinct branches. This was 
supported by some studies [21, 27, 63, 64]. Results in a 
Chinese subtropical river demonstrated by Wang et al. [21] 

and Bohai sea by Xie et al. [65] confirmed our conjecture. 
Finally, both positive and negative microeukaryotic rela-
tionships were discovered in sediment and water of our 
study. A growing number of evidences demonstrated that 
the co-occurrence relationships among eukaryotes might be 
responsible for the community structure [27, 57, 66]. On the 
other hand, the co-occurrence or exclusion of phyla between 
trophic levels probably indicates that their OTU members 
have similar or opposing habitat preferences, as well as 
direct relationships between their members. Moreover, cer-
tain pairs of phyla (e.g. Discoba and Chlorophyta) exhibited 
both significant exclusion and co-occurrence between their 
members, indicating that the biological processes governing 
OTU assembly, such as the boundaries of ecological niches, 
were also influential at taxonomic levels below the phylum, 
as recently deduced from a bacterial and fungal cultivation 
experiment [55].

To sum up, microeukaryotic diversity, abundance, and 
distribution patterns in such closely interlinked sediment and 
overlying water were found in the YRE. Eukaryotic micro-
organisms in sediment were much less sensitive to environ-
mental factors compared with water. Moreover, some poten-
tial relationships were also found among microeukaryotes.
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