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Abstract
The halophilic archaeal strain ZS-3T (= CGMCC 1.12866T = JCM  30239T) was isolated from a sediment sample of Zhoushan 
marine solar saltern, P. R. China. Phylogenetic analyses based on 16S rRNA, rpoB′ genes and the concatenation of 738 
protein sequences reveal that strain ZS-3T was related to members of the genus Halorussus. The OrthoANI and in silico 
DDH values between strain ZS-3T and the current Halorussus members are much lower than the threshold values proposed 
as the species boundary (ANI 95–96% and in silico DDH 70%), suggesting that strain ZS-3T represents a novel species of 
Halorussus (Halorussus halophilus sp. nov.). Diverse phenotypic characteristics differentiate strain ZS-3T from current 
Halorussus members. Since the strain expressed diverse hydrolyzing enzyme activity, its complete genome was sequenced. 
The genome of strain ZS-3T was found to be 4,450,731 bp with total GC content of 61.51%, and comprises one chromosome 
and three plasmids. A total of 4694 protein coding genes, 43 tRNA genes and 6 rRNA genes were predicted. A CRISPR–Cas 
system was also detected. The genome encodes sixteen putative glycoside hydrolases, nine extracellular proteases, seventeen 
aminopeptidases, seven carboxypeptidases, one esterase and one nitrite reductase. The exploration of the hydrolase genes 
may expand our understanding of adapted mechanism of halophilic archaea surviving optimally in hypersaline environments 
where containing organic matter. Meanwhile, various hydrolyzing enzymes may extend this microorganism for further 
applications in salt-based fermentation.
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Introduction

The genus Halorussus (belonging to family Halobacte-
riaceae, order Halobacteriales, class Halobacteria) was 
established in 2010 and currently contains five validly pub-
lished species, Hrs. amylolyticus [1], Hrs. litoreus [2], Hrs. 
rarus [3], Hrs. ruber [4] and Hrs. salinus [5]. These five 
current members of Halorussus exhibited diverse halophilic 
enzyme activity, three of them hydrolyzing starch, four of 
them hydrolyzing gelatin, two of them hydrolyzing casein 
and Tween 80, which reveals that Halorussus species may 

have the potential biotechnological applications. In this 
study, a novel strain ZS-3T, isolated from a sediment sample 
of Zhoushan marine solar saltern of China, was subjected 
to a polyphasic taxonomic characterization based on pheno-
typic, genotypic, and chemotaxonomic characteristics and 
identified as a novel species of the genus Halorussus, for 
which the name Halorussus halophilus sp. nov. is proposed.

Materials and Methods

Isolation of Halophilic Archaeal Strain and Culture 
Conditions

Strain ZS-3T was isolated from a sediment sample of 
Zhoushan marine solar saltern in Zhejiang Province, China 
(29° 56′ 56′′ N, 122° 20′ 20′′ E; elevation, sea level) in 2012. 
The isolation and cultivation of halophilic archaea were per-
formed on a neutral haloarchaeal medium designated NHM 
containing (g/L): 0.05 yeast extract (Angel Yeast), 0.25 fish 
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peptone (Sinopharm Chemical Reagent), 1.0 sodium pyru-
vate, 5.4 KCl, 0.3  K2HPO4, 0.29  CaCl2, 0.27  NH4Cl, 26.8 
 MgSO4·7H2O, 23.0  MgCl2·6H2O, 184.0 NaCl (adjusted to 
pH 7.0–7.2 with 1 M NaOH) [6]. Agar (2%, w/v) was added 
to prepare NHM plates. Strains were routinely grown aerobi-
cally at 37 °C in NHM medium.

Phenotypic Determination

Cell morphology and motility in exponentially growing liq-
uid cultures in NHM broth at 37 °C were examined using 
a Nikon microscope (Ci-L) equipped with phase-contrast 
optics. The range of NaCl concentrations for growth was 
determined with modified NHM medium containing 0.9, 
1.4, 1.7, 2.1, 2.6, 3.1, 3.4, 3.9, 4.3, 4.8 and 5.1 M NaCl. The 
range of  MgCl2 concentrations for growth was studied in 
modified NHM medium with 0, 0.005, 0.01, 0.03, 0.05, 0.1, 
0.3, 0.5, 0.7 and 1.0 M  MgCl2. The temperature range for 
growth was examined at 10, 15, 20, 25, 30, 37, 40, 42, 45, 
50, 55 and 60 °C. The pH range for growth was determined 
in modified NHM medium at pH 5.0–10.0 (at intervals of 
0.5 pH units). Other phenotypic and physiological charac-
teristics of strain ZS-3T were determined according to the 
proposed minimal standards for description of novel taxa in 
the order Halobacteriales [7].

Phylogenetic Analysis

The genomic DNA of strain ZS-3T was extracted and puri-
fied using the genomic DNA extraction kit (CW0552, Bei-
jing ComWin Biotech Co., Ltd.) according to the manu-
facturer’s instruction. The 16S rRNA gene was amplified 
by PCR using the forward primer 20F (5′-ATT CCG GTT 
GAT CCT GCC GG-3′) and reverse primer 1452R (5′-AGG 
AGG TGA TCC AGC CGC AG-3′), then cloned and sequenced 
as described previously [8]. The rpoB′ gene was amplified, 
cloned and sequenced as described by Han et al. [9]. The 
16S rRNA gene and the rpoB′ gene sequences were aligned 
using the ClustalW program integrated in the MEGA 6 
software [10] and the phylogenetic trees were reconstructed 
using maximum-likelihood (ML) [11], neighbour-joining 
(NJ) [12] and maximum-parsimony (MP) [13] algorithms. 
The similarity of gene sequences was assessed by compar-
ing the 16S rRNA gene and rpoB′ gene sequences of strain 
ZS-3T with those available from the EzBioCloud server [14]. 
The phylogenomic analysis was carried out as described by 
Zhao et al. [15].

Genome Sequence Analysis

The complete genome of strain ZS-3T was sequenced using 
a PacBio RS II platform and Illumina HiSeq 4000 platform 
at the Beijing Genomics Institute, China. Two libraries 

containing 10-kb and 350-bp inserts were constructed and 
the Pbdagcon (https ://githu b.com/Pacifi cBio scien ces/pbdag 
con) was used for self-correction. All reads were de novo 
assembled using the Celera Assembler and the assembled 
sequence was screened further to correct errors and identify 
single nucleotide polymorphisms (SNP) using the GATK, 
SOAPsnp and SOAPindel packages. Confirmation of circu-
lar replicons and plasmid comparisons were performed with 
the SOAP package mapped to the bacterial plasmid data-
base. The final assembly generated four circular sequences 
without any gap. The average nucleotide identity (ANI) 
was calculated using the OrthoANIu algorithm by Chun-
Lab’s online Average Nucleotide Identify calculator (https 
://www.ezbio cloud .net/tools /ani). The in silico DNA-DNA 
hybridization (DDH) values were calculated by Genome-
to-Genome Distance Calculator 2.1 (GGDC) (https ://ggdc.
dsmz.de/ggdc.php) [16–19]. Gene prediction was performed 
with glimmer 3 [20] and Hidden Markov models. The best 
hits found using the Blast alignment tool were used for 
functional annotation. The databases, KEGG [21], COG 
[22], NR (Non-Redundant Protein Database databases), 
Swiss-Prot [23] and GO (Gene Ontology), were searched 
in order to assign or improve general function annotations. 
Enzymes for degrading carbohydrates and glycoconjugates 
were annotated using dbCAN [24]. The tRNA and rRNA 
genes were detected using tRNA scan-SE [25] and RNAm-
mer [26]. CRISPRFinder was used to screen for CRISPR 
arrays [27]. Putative signal sequences of hydrolytic enzymes 
were analysed using the predictive algorithm of the server 
SignalP 5.0 [28].

Chemotaxonomic Characteristics

Polar lipids of strain ZS-3T and reference halophilic archaeal 
strains were extracted and analyzed by one- and two-dimen-
sional TLC according to the procedures described by Cui 
et al. [3]. Specific detection spray reagents for phospholipids 
and glycolipids were used and the general detection reagent, 
sulfuric acid–ethanol (1:2, by vol.), was used to detect total 
polar lipids [3].

Results and Discussion

Morphological and Physiological Characteristics

Cells of strain ZS-3T are motile, pleomorphic rods 
(0.8–1.0 × 1.0–6.0 μm, Fig. S1), aerobic, and Gram-stain-
negative. Colonies are circular, smooth and red pigmented. 
Strain ZS-3T grows under 25–42 °C (optimum 37 °C), in 
the presence of 1.4–4.8 M NaCl (optimum 2.6 M), with 
0–1.0 M  MgCl2 (optimum 0.1 M), and at pH 5.5–9.5 (opti-
mum 7.0). Cells lyse in distilled water and the minimal NaCl 
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concentration to prevent cell lysis is 10% (w/v). Catalase and 
oxidase are positive. No growth occurs anaerobically with 
nitrate, l-arginine or DMSO. Strain ZS-3T does not reduce 
nitrate to nitrite, thus formation of gas from nitrate does not 
occur. Casein, gelatin and starch are hydrolysed but Tween 
80 is not. Both indole formation and  H2S production are 
negative. d-glucose, d-mannose, d-galactose, sucrose, starch, 
glycerol, pyruvate, dl-lactate, succinate, l-malate, fumarate 
and citrate can be used as carbon sources. l-glutamate and 
l-ornithine can support growth. No growth occurs on d-fruc-
tose, l-sorbose, d-ribose, lactose, d-xylose, maltose, d-man-
nitol, d-sorbitol, acetate, l-arginine, l-aspartate, l-lysine, 
glycine or l-alanine. Acid is produced from d-glucose and 
sucrose. The main phenotypic characteristics differentiat-
ing strain ZS-3T from the current members of Halorussus, 
Haladaptatus and Halalkalicoccus were shown in Table 1.

Phylogenetic Analysis

Phylogenetic analyses based on 16S rRNA and rpoB′ genes 
sequences using the ML, NJ and MP algorithms reveal that 

strain ZS-3T was related to the member of genus Halorussus, 
then with the members of Haladaptatus or Halalkalicoccus 
(Fig. 1, Fig. S3 and Fig. S4). The 16S rRNA and rpoB′ gene 
sequences similarities of strain ZS-3T towards the members 
of Halorussus, Haladaptatus and Halalkalicoccus were 
91.0–92.5% and 87.4–88.3%, 91.0–91.9% and 84.2–85.3%, 
89.7–89.9% and 81.1–82.9% similarities, respectively. These 
relatively low similarities in rRNA and rpoB′ genes moti-
vated us to perform further polyphasic taxonomic study and 
complete genome analyses. The phylogenomic tree recon-
struction (Fig. 2) revealed unequivocally that strain ZS-3T 
clustered with the current Halorussus members, confirming 
their positions as a new taxon within the genus Halorussus.

Genome Sequence Analysis

The complete genome sequence of strain ZS-3T consists 
of one circular chromosome and three circular plasmids, 
with lengths of 3,636,252 bp (chromosome), 531,768 bp 
(pUJS01), 219,256 bp (pUJS02) and 63,455 bp (pUJS03), 
respectively. The G + C contents of the chromosome and 

Table 1.  Differential 
characteristics among strain 
ZS-3T and the members of 
Halorussus, Haladaptatus and 
Halalkalicoccus 

Taxa: 1, ZS-3T; 2, Halorussus amylolyticus  YC93T; 3, Halorussus litoreus HD8-51T; 4, Halorussus rarus 
 TBN4T; 5, Halorussus ruber  YC25T; 6, Halorussus salinus YJ-37-HT; 7, Haladaptatus; 8, Halalkalicoc-
cus. + , positive; −, negative; w, weak; UG, unidentified glycolipid

Characteristic 1 2 3 4 5 6 7 8

Minimal salt concentration to 
prevent cell lysis

10% 8% 5% 8% 8% 5% 0 0

Optimum NaCl (M) 2.6 2.0 3.1 2.1 1.7 2.6 2.6–4.3 2.6–4.3
Optimum  Mg2+(M) 0.1 0.05 0.03 0.005 0.01 0.3 0.02–1.0 0–0.5
Anaerobic growth with nitrate −  +  + −  + − − −
Reduction of nitrate to nitrite −  +  +  +  +  +  + /−  + /−
Anaerobic growth with DMSO −  +  + −  + − − −
Utilization of
 d-Mannose  +  +  +  +  +  +  +  + /−
 d-Galactose  +  + −  +  + −  +  + /−
 d-Maltose − − −  + − −  +  + /−
 Lactose −  +  +  +  + −  + /−  + /−
 Starch  +  + −  + −  +  + /−  + /−
 Glycerol  +  +  +  + −  +  +  + 
 d-Mannitol − −  +  +  +  +  + /−  + /−
 d-Sorbitol −  +  + −  + − −  + 
 Fumarate  +  +  + −  +  +  +  + 

Indole formation − − −  +  +  +  +  + /−
Starch hydrolysis  +  + − w −  +  + /−  + /−
Gelatin hydrolysis  +  +  +  + −  +  + −
Casein hydrolysis  +  + −  + − −  + /− −
Tween 80 hydrolysis − − −  +  + −  + /−  + /−
H2S formation −  + −  + −  +  + /−  + /−
Presence of PGS  +  +  +  +  +  +  + /−  + /−
Types of glycolipids DGD-1, DGD-2, S-DGD-1, 

S-TGD-1, TGD-1
S-DGD-1, 2–4 UG S-DGD-1, 2UG
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Fig. 1  Maximum-Likelihood 
phylogenetic tree reconstruc-
tions based on 16S rRNA 
gene (a) and rpoB′ gene (b) 
sequences, showing the rela-
tionships between strain ZS-3T 
and related members within the 
order Halobacteriales. Boot-
strap values (%) are based on 
1000 replicates and are shown 
for branches with more 50% 
bootstrap support. Bar repre-
sents expected substitutions per 
nucleotide position
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three plasmids were 61.68%, 62.04%, 58.05%, and 59.56%, 
respectively (Table S1; Fig. S5). The OrthoANI and in silico 
DDH values between strain ZS-3T, Halorussus members and 
Haladaptatus species are much lower than the threshold val-
ues proposed as the species boundary (ANI 95–96% and in 
silico DDH 70%, Table S2). A total of 4694 protein coding 
genes, 43 tRNAs and 6 rRNA genes, and two 16S rRNA 
gene (1472 bp) were predicted. Among the 4694 ORFs, only 
2759 ORFs could be classified into COG categories. The 
major categories were amino acid transport and metabo-
lism (12.0%), translation, ribosomal structure and biogen-
esis (8.7%), transcription (8.0%), inorganic ion transport 
and metabolism (7.6%), energy production and conver-
sion (6.5%), coenzyme transport and metabolism (6.3%). 
Approximately 38.8% of all ORFs could be assigned to a 
pathway using the KEGG database. Twelve CRISPR repeat 
regions were identified on the chromosome and one on plas-
mid pUJS03, and these CRISPR repeat regions contained 
107 spacers, 7 types of direct repeats. There was only one 
predicted Cas protein operon (type I) on the chromosome 
(cas6, Csc3, Csc2, cas5, cas3, cas4, cas1, and cas2). Other 
general genomic features that distinguish strain ZS-3T from 
the type strains of the species of the genus Halorussus are 
shown in Table S3.

The types of the hydrolyzing enzymes encoded in the 
genome of strain ZS-3T were assessed. For primary organic 
carbon degradation, according to the dbCAN database we 
found glycosyl transferases (29), glycoside hydrolases (16), 
polysaccharide lyases (2), carbohydrate esterases (16), aux-
iliary activities (10), and carbohydrate-binding modules 
(4). Nine kinds of glycoside hydrolases were predicted: 1 
levansucrase (EC 2.4.1.10), 3 β-1,4-glucanase / cellulase 
(EC 3.2.1.4), 1 endo-inulinase (EC 3.2.1.7), 3 β-glucosidase 
(EC 3.2.1.21), 1 β-galactosidase (EC 3.2.1.23), 2 chitinase 
(EC 3.2.1.14), 1 glucoamylase (EC 3.2.1.3), 3 α-amylase 
(EC 3.2.1.1), and 1 α-N-acetylgalactosaminidase (EC 
3.2.1.49), respectively. Four of these glycoside hydrolases 

(1 β-1,4-glucanase / cellulase, 1 β-glucosidase and 2 chi-
tinase) have tat signal peptide-coding sequence, they exert 
their function by being secreted into extracellular environ-
ment. Strain ZS-3T has be confirmed to be able to hydrolyze 
starch and hydroxymethyl cellulose. These activities indicate 
the organism is likely to be able to hydrolyze or even grow 
on various types of carbohydrates.

For primary protein degradation, fourteen encoded serine 
protease genes were annotated in the genome, eight of which 
have a tat signal peptide while one has a sec signal peptide 
and the others have no signal peptide. In all, nine out of the 
fourteen enzymes are predicted to be secreted outside cell 
to function. Strain ZS-3T was also confirmed to be able to 
hydrolyze casein and gelatin. Compared to other haloarchaea 
on the ability to hydrolyze casein, strain ZS-3T appears to 
encode more extracellular proteases. For example, Halo-
bacterium salinarum NRC-1 (GCA_000006805.1) encodes 
two serine protease genes, Natrialba magadii ATCC  43099T 
(GCA_000025625.1) has nine ones and Natrinema sp. J7-1 
(GCA_000493245.1) has five ones. Strain ZS-3T carries 
five aminopeptidases (Xaa-Pro), three putative aminopepti-
dases (FrvX), a methionine aminopeptidase, four leucyl 
aminopeptidases, and four dipeptidyl aminopeptidases. 
Muramoyltetrapeptide carboxypeptidase, metal-dependent 
carboxypeptidase, d-alanyl- d-alanine carboxypeptidase, 
and four Zn-dependent carboxypeptidases were also found. 
The presence of these various protease-related genes indi-
cates that strain ZS-3T possesses a wide range of proteolytic 
activities that would be active in hypersaline environments.

An esterase was predicted in the genome of strain ZS-3T, 
but no Tween 80 hydrolytic activity of strain ZS-3T was 
detected. It may act on smaller molecule esters. We also 
found that strain ZS-3T had capacity to reduce nitrite, and 
a copper-containing nitrite reductase coding gene sequence 
is located in the chromosome. Such halophilic archaeal 
strain ZS-3T may have commercial applications in the fer-
mentation of high-salt foods such soy sauce and fish sauce, 

Fig. 2  Maximum-Likelihood 
phylogenetic tree reconstruction 
based on the concatenation of 
738 protein sequences, showing 
the relationships between strain 
ZS-3T and related members 
within the family Halobacte-
riaceae. Bootstrap values (%) 
are based on 1000 replicates. 
Haloferax mediterranei ATCC 
 33500T was used as an out-
group. Bar, 0.1 substitutions per 
amino acid position
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by accelerating hydrolysis of proteins, carbohydrates, and 
esters, meanwhile reducing the harm of nitrite.

The sequence of strain ZS-3T determined in this study 
represents the first complete genome sequence reported for 
the genus Halorussus. The annotation and genomic analysis 
provide new insight into the metabolic capacity and het-
erotrophic lifestyle of strain ZS-3T, and opens up new pos-
sibilities for use of this microorganism or its enzymes in 
microbial biotechnology.

Chemotaxonomic Characteristics

Strain ZS-3T contained phosphatidylglycerol (PG), phos-
phatidylglycerol phosphate methyl ester (PGP-Me), phos-
phatidylglycerol sulfate (PGS), three major glycolipids, and 
two minor glycolipids. The three major glycolipids (GL1, 
GL2 and GL4) were identical to sulfated galactosyl manno-
syl glucosyl diether (S-TGD-1), sulfated mannosyl glucosyl 
diether (S-DGD-1), and mannosyl glucosyl diether (DGD-
1), while the two minor glycolipids (GL3 and GL5) were 
unidentified (Fig. S2).

Description of Halorussus halophilus sp. nov.

Halorussus halophilus (ha.lo’phi.lus. Gr. n. hals, halos salt; 
Gr. adj. philos loving; N.L. masc. adj. halophilus salt-loving 
referring to the requirement for salt).

The  ce l l s  a re  mot i l e ,  p l eomor ph ic  rods 
(0.8–1.0 × 1.0–6.0 μm), aerobic, and Gram-stain-negative. 
Colonies are circular, smooth and red pigmented. Growth 
occurs under 25–42 °C (optimum 37 °C), in the presence 
of 1.4–4.8 M NaCl (optimum 2.6 M), with 0–1.0 M  MgCl2 
(optimum 0.1 M), and at pH 5.5–9.5 (optimum 7.0). Cells 
lyse in distilled water and the minimal NaCl concentration 
to prevent cell lysis is 10% (w/v). Catalase and oxidase are 
positive. No growth occurs anaerobically with nitrate, l-argi-
nine or DMSO. The novel strain does not reduce nitrate to 
nitrite, thus formation of gas from nitrate does not occur. 
Casein, gelatin and starch are hydrolysed but Tween 80 is 
not. Both indole formation and  H2S production are negative. 
d-glucose, d-mannose, d-galactose, sucrose, starch, glycerol, 
pyruvate, dl-lactate, succinate, l-malate, fumarate and cit-
rate can be used as carbon sources. l-glutamate and l-orni-
thine can support growth. No growth occurs on d-fructose, 
l-sorbose, d-ribose, lactose, d-xylose, maltose, d-mannitol, 
d-sorbitol, acetate, l-arginine, l-aspartate, l-lysine, glycine 
or l-alanine. Acid is produced from d-glucose and sucrose. 
The polar lipids are phosphatidylglycerol (PG), phosphati-
dylglycerol phosphate methyl ester (PGP-Me), phosphati-
dylglycerol sulfate (PGS), three major glycolipids, and two 
minor glycolipids. The three major glycolipids are GL1, GL2 
and GL4, while the two unidentified minor glycolipids are 
GL3 and GL5. Genomic DNA G + C content is 61.5 mol%. 

The novel strain ZS-3T (= CGMCC 1.12866T = JCM  30239T) 
was isolated from Zhoushan marine solar saltern in Zhe-
jiang Province, P. R. China. The GenBank/EMBL/DDBJ 
accession numbers for the 16S rRNA genes, rpoB′ gene and 
whole genome sequences of strain ZS-3T are KJ689292, 
MF443863, and CP044523 ~ CP044526, respectively.
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