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Abstract
Gamma-Aminobutyric acid (GABA) is a non-protein amino acid widely distributed in nature. It is produced through irre-
versible α-decarboxylation of glutamate by enzyme glutamate decarboxylase (GAD). GABA and GAD have been found in 
plants, animals, and microorganisms. GABA is distributed throughout the human body and it is involved in the regulation 
of cardiovascular conditions such as blood pressure and heart rate, and plays a role in the reduction of anxiety and pain. 
Although researchers had produced GABA by chemical method earlier it became less acceptable as it pollutes the environ-
ment. Researchers now use a more promising microbial method for the production of GABA. In the drug and food industry, 
demand for GABA is immense. So, large scale conversion of GABA by microbes has got much attention. So this review 
focuses on the isolation source, production, and functions of GABA in the microbial system. We also summarize the mecha-
nism of action of GABA and its shunt pathway.

Introduction

Gamma-aminobutyric acid (GABA) is a non-protein amino 
acid and it is produced through α-decarboxylation of l-glu-
tamic acid in a reaction catalyzed by glutamate decarboxy-
lase (Fig. 1). Half a century ago Steward et al. [1] in 1949 
had first discovered GABA in plants and later Roberts and 
Franklin [2] in 1950 discovered it in the mammalian brain. 
Roberts and Heidelbergin 1960 [3] made another great leap 
revealing its major role in the neurotransmission of ani-
mals. It is found predominantly in the brain where it acts 
as an important inhibitory neurotransmitter. GABA and its 
receptors are also detected in the peripheral system, endo-
crine, and several non-neural tissues where it plays a role in 
oxidative metabolism. GABA has 3 receptors alpha or A, 
beta or B, gamma or C which recognize and bind GABA 
and these receptors are located in the postsynaptic mem-
brane. GABA-A and GABA-C receptors are ligand-gated 
ion channels while GABA-B receptors are G protein-coupled 

receptors. GABA -A receptors mediate fast synaptic trans-
mission whereas GABA-B mediates slow synaptic trans-
mission. Seizure, threshold, anxiety, and panic are associ-
ated with GABA -A receptors and GABA -B receptors are 
associated with memory, mood and pain. Although GABA 
-C receptors have been identified, its physiological role has 
not yet been recognized. There is an increase of interest in 
research for GABA and its receptors and studies demon-
strate that GABA can have important health effects. GABA 
promotes the metabolism of brain cells by increasing the 
oxygen supply, activating cerebral blood flow and inhibits 
the secretion of the vasopressin by acting on the vasomotor 
center of the medulla oblongata. In addition to its diuretic, 
anti-depressive, and anti-oxidant effects, it regulates growth 
hormone secretion, drops the blood pressure by expanding 
the blood vessels [4–8]. It acts as an effective pain reliever, 
regulates cardiovascular function and used as medicine for 
stroke treatment. GABA has been known to be effective to 
regulate several neurological disorders such as Parkinson’s 
disease, Huntington’s chorea [9], and Alzheimer’s disease. 
Moreover, GABA stimulates cancer cell apoptosis and has 
an inhibitory effect on cancer cell proliferation. In food and 
pharmaceuticals, it used as a bioactive component [10].
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Mechanism of Action of GABA

Gamma-aminobutyric acid is a neurotransmitter released 
from neurons to relay information to another. It is stored in 
membranous sacs in the axon terminal called vesicles. There 
are thousands of GABA molecules in each vesicle. The 
vesicles fuse with the neuronal membrane for the release 
of GABA by neurons and then release it via exocytosis. It 
is released into the synaptic space and diffuses across syn-
aptic space to the postsynaptic neuron. In human, GABA 
acts at the inhibitory synapse by binding to GABA receptors 
and this binding causes opening of ion channels to allow 
the flow of potassium ion out of the cell and chloride ion 
into the cell [11]. This action results in a negative change 

in transmembrane potential causing hyperpolarization and 
decrease the excitability of neurons (Fig. 2). The GABA 
that was released that did not bind to a receptor, is either 
degraded by enzymes in the synaptic cleft or taken back into 
presynaptic axon terminal by active transport through trans-
porter or reuptake pump. In addition to the brain, GABA 
produced at a high level in the insulin-producing beta cells 
of the pancreas. Along with insulin, GABA is produced by 
beta cells and GABA binds to its receptors on the neighbor-
ing islet the alpha cells of the pancreas and inhibits them 
secreting glucagon. Replication and survival of beta cells 
can be stimulated by GABA and it also helps in the conver-
sion of alpha to beta cells. It leads to a new treatment for 
diabetes.

Fig. 1   Decarboxylation of glutamate to GABA by glutamate decarboxylase

Fig. 2   Mechanism of action of GABA
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GABA Pathway (GABA Shunt)

GABA is the main inhibitory neurotransmitter found pre-
dominantly in the brain. The major pathway of GABA con-
sists of the conversion of alpha-ketoglutarate generated by 
the TCA cycle to succinate via glutamate, GABA and suc-
cinic semialdehyde. This pathway is known as GABA shunt 
(Fig. 3) a conserved pathway for prokaryotes and eukary-
otes. During 1970, the study on guinea pig cells, the GABA 
shunt pathway was first described [12]. There are different 
types of enzymes involved in the GABA shunt. The first step 
is the production of glutamate from alpha-ketoglutarate by 
transamination reaction and the reaction catalyzed by gluta-
mate dehydrogenase. The next step is the glutamate decar-
boxylation to GABA catalyzed by glutamate decarboxylase 
(GAD) and this step is irreversible. In this step glutamate 
decarboxylase consumes a proton and releases CO2. The 
GAD enzyme is present in various organisms of all kingdom 
of life. In GABA synthesis GAD is a rate-limiting enzyme 
and it requires pyridoxal phosphate (PLP) as a cofactor [13]. 
Two isoforms of GAD, GAD67, and GAD65 are expressed 
by mammalian species. GAD67 gene and GAD65 gene 
located on chromosomes 2 and 10 respectively in humans. 
GAD67 synthesizes GABA in the brain, whereas GAD65 
is the major GAD isoform in pancreatic cells. The third 
enzyme involved in the GABA shunt is GABA transaminase. 
In this step, GABA catabolism occurs and produces succinic 
semialdehyde (SSA) using enzyme GABA transaminase. 
The next step is the conversion of succinic semialdehyde to 
succinate by enzyme succinic semialdehyde dehydrogenase 
and it enters the TCA cycle. Succinate, an electron donor to 
the mitochondrial electron transport chain is the significant 

factor of the tricarboxylic acid cycle. In plants, animals 
[14, 15] and Escherichia coli [16] GHB dehydrogenase 
(GHBDH) convert SSA to γ-hydroxybutyric acid (GHBA). 
GAD is located in the cytosol and GABA transaminase and 
succinic semialdehyde dehydrogenase are located in mito-
chondria. The main role of GABA shunt is the production 
of GABA. Synthesis of GABA was also done through poly-
amine (putrescine and spermidine) degradation [17, 18] and 
under oxidative stress, it occurs by a non-enzymatic reaction 
from proline [19].

Microorganisms Producing GABA

GABA as an effective compound with bio-functions can 
be used as a drug with significant pharmacological effects. 
Besides, it is effective as a component of health food as 
well. In biological tissues, GABA is present in very low con-
centration so it is very difficult to be extracted sufficiently 
from natural organisms. In order to get GABA, an alter-
nate method was necessary. Researchers turned to chemi-
cal and biological field and in the last two decades, they 
achieved good results. However the chemical synthesis has 
some drawbacks for the corrosive reactants, so the biological 
method got prominence in the GABA research. Microbial 
fermentation has a high transformation rate and convenient 
use, so it is regarded as an effective one to produce GABA 
in the biological method. Siragusa et al. [20] reported that 
Lactobacillus delbrueckii subsp. bulgaricus PR1, Lactoba-
cillus plantarum C48, Lactococcus lactis PU1, Lactobacil-
lus brevis PM17 and Lactobacillus paracasei PF6 isolated 
from various kinds of cheese produced GABA. Similarily 
the strain of Lactococcus lactis sub lactis was screened 

Fig. 3   Major metabolic pathway of GABA (GABA shunt pathway)
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and selected with the best producers of GABA from cheese 
starters [21]. Other bacteria such as Lb. brevis [22–25], Lb. 
plantarum [26], L. sub lactis [27], Lb. plantarum, Lb. bre-
vis, Leuconostoc mesenteroides, Leuconostoc lactis, Weis-
sella viridescens [28], Lb. buchneri [29], Lb. zymae [30] 
were produced large amount of GABA from kimchi, tra-
ditional fermented food in Korea. Many food items can act 
as a medium for the production of GABA from Lb. brevis 
IF0-12005 in rice shou distillery rice (komusachusa) as an 
economic and simple process of GABA production [31].

As a perfect medium for GABA production by Lactic 
acid bacteria, fermented fish products are used. The bacte-
ria Lb. farcimini D323 was one of the most efficient LAB 
strains in fermented fishery products with boiled rice [32] 
that can be used for GABA synthesized functional foods. 
Liao et al [33] investigated the effects of pre-processes such 
as immersing, germinating and cold shock before fermenta-
tion conditions of adzuki beans and cold treatment resulted 
in higher GABA accumulation using mixed cultures of L. 
lactis and Lb. rhamnosus compared to non-treated adzuki 
beans. GABA production by Streptococcus salvarius subsp 
.thermophilus via submerged fermentation was first reported 
by Yang et al [34] and their result indicated that S. salivarius 
subsp. thermophilus produced a large amount of GABA and 
had enormous potential to use as starter in the production of 
GABA-containing cheese, yogurt and other functional fer-
mented foods. An efficient and simple fermentation process 
was developed for the production of γ-aminobutyric acid 
(GABA) by Lactobacillus sakei B2-16 and the successful 
result of GABA production up to plant scale strongly sug-
gests that Lb. sakei B2-16 produces commercial GABA in 
the RBE-MSG medium and that can be used in industrial 
fields [35]. Some researchers reported that co-culturing of 
strains of lactic acid bacteria Lb. delbrueckii subsp. bulga-
ricus and S. thermophilus IFO13957 [36], Lb. brevis and 
Lb. plantarum from Egyptian dairy products [37] produced 
a large amount of GABA. These findings suggested that co-
cultivation of both strains increase each other’s acidification 
properties of the medium and production of acid resistance 
or GABA.

Apart from bacteria, GABA is also found in many fungi, 
yeast, and molds. The occurrence of Gamma-aminobutyric 
acid in a yeast Rhodotorula glutinis was reported as early 
as by Krishnaswamy and Giri [38]. Gamma-Aminobutyric 
acid (GABA) can be produced by Monascus spp, a type of 
fungi in solid and submerged cultures. GABA production 
reached 1396.04 mg/kg when the basic medium was supple-
mented with both NaNO3 and MnSO4·H2O [39]. In the early 
phase of Neurospora crassa spore germination, the GABA 
pool was observed [40]. Kubicek et al. [41] investigated the 
GABA pool accumulation by the strain of Aspergillus niger 
during batch growth under manganese sufficient and defi-
cient conditions. Masuda et al. [42] isolated Saccharomyces, 

Candida utilis, and Candida fermanti from the pacific ocean 
and produced a high concentration of gamma-aminobutyric 
acid. Dikshit and Tallapragada [43] reported that Monascus 
sanguineus was isolated from spoiled pomegranate and pro-
duced gamma-aminobutyric acid using coconut oil cake as a 
substrate. Production of GABA using Monascus purpureus 
by fermenting rice and nutrient media [44] as well as using 
Rhizopus microsporus strains by fermenting soybeans [45] 
has been demonstrated. Below Table 1 listed the GABA pro-
ducing microorganisms and its source of isolation.

GAD Gene

This gene encodes glutamate decarboxylase (protein-coding 
gene) which is responsible for the production of gamma-
aminobutyric acid from l-glutamic acid and is a major 
autogen in insulin-dependent diabetes. GAD is widely 
spread among eukaryotes and prokaryotes. In many micro-
organisms, this plays a vital role in biosynthesis and natu-
ral GABA accumulation. Numerous research reported that 
GABA producing ability of lactic acid bacteria and the pres-
ence of GAD activity in their cells. GAD is an intracellular 
enzyme that induces an acid stress response in lactic acid 
bacteria [47, 50]. GAD system is highly variable between 
species since some have one, two, or three decarboxylase 
followed by none, one, or two antiporters. In the case of 
Mycobacterium tuberculosis, it has a GAD gene that is 
not accompanied by an antiporter [75], However, Listeria 
monocytogenes normally has three decarboxylases and two 
antiporters [76]. Therefore, the chemical and physical prop-
erties of GAD of several species or strains differentiate con-
siderably, which makes it possible to search for new GAD 
enzymes with a higher biotechnological value. Many inves-
tigators detected GAD gene sequence in different microor-
ganisms which can indicate its ability to produce GABA at 
genetic level [20, 69]

Huang et al.’s [46] work indicated that Lb. brevis immobi-
lization with higher glutamate decarboxylase activity (GAD) 
into ca-alginate gel beads offers high biotransformation of 
l-monosodium glutamate to GABA and offers a promising 
means of GABA production for industrial production. They 
have cloned full-length GAD from Lb. brevis using RACE 
PCR methods and the protein was successfully expressed in 
E. coli cells and result from their study suggested that recom-
binant GAD could be used for the industrial production of 
GABA. Brasca et al. [77] reported that S. thermophilus were 
preliminarily screened for the presence of the genes coding 
for glutamate decarboxylase (gadB) and showed the abil-
ity to produce γ-aminobutyric acid (GABA) production and 
Yunes et al. [78] investigated the presence of GAD gene and 
the GABA synthesizing ability of human-derived Lb. plan-
tarum, Lb. brevis, B. adolescentis, B. angulatum, B. dentium, 
and other gut-derived bacterial species which may be an 
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important feature for selecting probiotic bacteria. Tsuchiya 
et al [71] produced Gamma-aminobutyric acid from Asper-
gillus oryzae and they purified glutamate decarboxylase 
(GAD) from A. oryzae and characterized its biochemical and 
kinetic properties. Tavakoli et al. [79] identified the GAD 

gene from Lb. casei and a fragment containing this gene 
was successfully cloned in PGEM-T vector and this bacte-
rium could possibly be used for industrial GABA production 
and also for the development of functional fermented foods. 
Taherzadeh et al. [80] cloned and sequenced the glutamate 

Table 1   Gamma-amino butyric acid producing bacterium and its source of isolation

S. No Microorganisms Isolation source References

1. Lactobacillus brevis Paocai [46]
2. Lactobacillus brevis Kimchi [22–25]
3. Lactobacillus brevis Quinoa sourdough [47]
4. Lactobacillus paracasei, Streptococcus thermophilus, Leucon-

ostoc mesenteroides, Lactobacillus rhamnosus, Lactobacillus 
plantarum, Pediococcus pentosaceus

Cheese [48]

5. Lactobacillus paracasei Traditional fermented fish [49]
6. Lactobacillus brevis Fish intestine [50]
7. Lactococcus lactis ssp lactis Cheese [51]
8. Streptocococcus thermophilus Fish [52]
9. Lactobacillus farciminis Fishery products [32]
10. Lactobacillus brevis Human faecas [53]
11. Lactobacillus plantarum Kimchi [26]
12. Lactobacillus plantarum Honeybee [54]
13. Lactococcus lactis sub lactis Cheese [21]
14. Lactobacillus buchneri, Lactobacillus sp Cheese [55]
15. Lactococcus sub lactis Kimchi [56]
16. Lactobacillus paracasei, Lactobacillus delbrueckii 

subsp.bulgaris, Lactococcus lactis, Lactobacillus plantarum, 
Lactobacillus brevis

Cheese [20]

17. Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc 
mesenteroides,Leuconostoc lactis,Weissella viridescens

Kimchi [28]

18. Lactobacillus buchneri Kimchi [29]
19. Lactobacillus brevis, Lactobacillus plantarum Egyptian dairy products [37]
20. Pseudomonas sp Sea water [57]
21. Lactobacillus helveticus Koumiss [58]
22. Lactobacillus plantarum Fermented beverage Marcha of Sikkim [59]
23. Lactobacillus zymae Kimchi [30]
24. Lactobacillus buchneri, Lactobacillus brevis,Weissella hellenica Traditional fermented food from japan [60]
25. Lactobacillus brevis Fish [61]
26. Lactobacillus sakei Jeot-gal, a korean fermented seafood [62]
27. Lactobacillus futsaii Kung-Som [63]
28. Saccharomyces cerevisae Fruit [64]
29. Enterococcus avium Naturally fermented scallop solution [65]
30. Lactobacillus curieae Stinky tofu brine [66]
31. Enterococcus raffinosus Naturally pickled Chinese vegetables [67]
32. Enterococcus avium Jeotgals, Korean traditional fermented and salted seafoods [68]
33. Enterococcus faecium Traditional fermented food samples [69]
34. Lactobacillus fermentum Chinese traditional fermented food pickled vegetable [70]
35. Aspergillus oryzae Tane-koji [71]
36. Saccharomyces,Candida utilis, Candida fermanti Pacific ocean [43]
37.
38.
39.

Lactic acid bacteria
Lactobacillus plantarum
Lactobacillus otakinesis, Lactobacillus paracaesai, Lactobacil-

lus plantarum

Kimchi, Jot-gal(traditional fermented foods)
Dadih
Azorean cheese

[72]
[73]
[74]
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decarboxylase gene from Lb. delberckii and Lb. reuteri and 
capacity of these bacteria open new perspectives on GABA-
enriched functional foods. All results, therefore, suggested 
that strains with the highest GAD activity should be chosen 
to increase GABA content of fermented foods.

Factors Affecting GABA Production

The rate of GABA production by microorganism is affected 
by various fermentation factors, among which temperature, 
pH, time, and media additives of culture are common and 
essential. The conditions of fermentation can be optimized 
on the basis of the biochemical properties of GAD of micro-
organisms. Medium composition optimization for increasing 
GABA productivity and experiments to configure low-cost 
medium were carried out together for the industrial produc-
tion of GABA [10, 81]. The composition of overall optimal 
media may vary depending on the strain of bacteria produc-
ing GABA.

pH has a very strongly marked effect on GABA pro-
duction and it can regulate the biosynthesis of GABA in 
microorganisms. GABA production was considerably high 
(302 mM) at pH 5.0 when GABA producing the ability of 
Lb. paracaesai was compared with different pH (4–6) [49]. 
Production of GABA by S. salivarius sub species thermo-
philusY2 has been increased by optimizing the fermenta-
tion conditions and by adding pyridoxal phosphate (PLP) 
and GABA output (7985 mg/liter) at pH 4.5 [34]. Lb. del-
brueckii subsp. bulgaricus PR1, Lb. parcaesai PF6, Lb. 
brevis PM17, Lb. plantarum C48, L. lactis PU1 in cheese 
produced a large quantity of GABA (289–391 mg/kg) at a 
pH range of 4.68–5.70 [20]. The highest amount of GABA 
(7.2 g/l) produced by L. lactis was at 7.1, however, GABA 
production was reduced at pH above 8 [27]. In fermenta-
tion medium pH changes with time, initial pH impacts final 
GABA and timely adjustment of media pH should be made 
for optimal pH [10, 27].

An important factor in the GABA yield by fermentation 
is its incubation temperature. The high-efficiency gluta-
mate conversion to GABA requires a high cell density and 
appropriate culture temperature and the maximum GABA 
(27.6 mg/ml) was produced at pH 3.5 and 30 º C on 12th 
day of fermentation in the Lb. brevis GABA 100 ferment-
ing black raspberry juice [10] and optimum temperature 
for GABA production using Lb .buchneri in MRS broth 
was at 30ºC and produced GABA at a concentration of 
241 mM with 94% GABA conversion rate [29]. Lb. brevis 
immobilized whole cells at 40ºC produced 92% GABA 
after fermentation period of 8 h [46]. In S. Salivarius subsp 
thermophilus, the optimum temperature for GABA produc-
tion was 37 °C [34] and the highest GABA, (303 mM) 
was produced by Lb. paracaesai NFRI 7415 at 37 °C, 
but GABA production and cell growth were significantly 

reduced at 43 °C [49]. Fermentation temperatures of 25 °C 
and 40 °C generally produce a high level of GABA within 
the temperature range.

In the fermentation and production of GABA, the time 
factor plays a significant role as temperature and pH. On the 
15th day of fermentation, black raspberry juice fermented 
with Lb. brevis GABA 100 reached the highest GABA pro-
duction at (25 °C pH 5.5) and (37 °C pH 5.5) and high-
est GABA was produced at 12th day when the sample was 
fermented at pH 3.5 and 30 °C [10]. In the fermentation 
of L. lactis, a considerable difference in the GABA yield 
was shown between different times of MSG added, since 
the highest GABA yield was obtained by adding MSG over 
6 to 96 h during fermentation at 6-h interval of time [27]. 
The production of the highest GABA by microorganisms 
can also be based on suitable media additives and optimum 
additive time.

Microbial production of GABA by fermentation is 
affected by nutrient composition and culture additives. 
Other main factors that affect the GABA production during 
the fermentation are media additives such as glutamate and 
PLP as GAD coenzymes [34, 49] and the composition of 
media especially carbon, nitrogen, and other components 
can influence production quantity of GABA. L. lactis pro-
duced the highest amount of GABA (6.4 g/l) from the mixed 
ratio (33:58:9) of brown rice juice, germinated soybean juice 
and enzymolyzed skim milk, milk with enzyme deteriorated 
properties as a source of nitrogen and carbon [56].

The addition of glutamate enhanced the production of 
GABA in Lb. paracaesai and Lb. brevis [47, 49] after inoc-
ulation of the strain for 144 h in the medium containing 
500 mM of glutamate, GABA concentration by Lb. para-
casei NFRI 7415 reached 161 mM [49] Lb. brevis and Lb. 
brevis NCL912 also enhanced GABA production by the 
addition of glutamate [47]. However, GABA production by 
S. salivarius subsp. thermophilus Y2 was not significantly 
increased by the addition of 10–20 g of glutamate per liter 
of media, so these glutamate concentrations are not suitable 
for the production of GABA in this species [34]. Without the 
addition of glutamate, GABA could be produced from LAB 
using shochukasu as a growth medium. After 1 or 2 days of 
inoculation, GABA concentration reached 10.05 mM and 
10.18 mM in komeshochukusu [31]. PLP is also used to 
increase GAD activity as a coenzyme [50]. During fermenta-
tion, GABA production increased and reached to 7333 mg/l 
by the addition of PLP in Salivarius subsp. thermophilus Y2 
[34]. However, the GABA conversion rate was not increased 
by adding more than 0.6% glucose without ammonium sul-
fate [39]. The GABA production was enhanced by the addi-
tion of other substrates such 50% of tomokoji and wholemeal 
in M. pilosus IFO 4520 and Lb. plantarum C48 [6]. There-
fore substrate concentration is important for achieving high 
GABA yield.
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Functions of GABA in Microbial System

GABA is a four-carbon compound that is widely distributed 
in bacteria. In bacteria, it plays a metabolic role in the Krebs 
cycle. GABA has some functions in bacteria. It varies from 
strain to strain (Fig. 4). Numerous studies about GABA’s 
role in human beings were already made but here we are try-
ing to discuss GABA function in microbes. Acid tolerance 
is one of the main criteria for the identification of poten-
tial probiotic strains. One of the most important factors for 
bacteria to maintain neutral pH under acidic stress depends 

upon glutamate-antiporter reactions. In bacteria with the 
help of specific transporter, glutamate released into the cell 
and cytoplasmic decarboxylation occur which results in the 
consumption of intracellular proton. Through antiporter, 
reaction product GABA is exported from the cell and due to 
the removal of hydrogen ions, intracellular pH is increased. 
Extracellular pH is also increased due to the exchange of 
extracellular glutamate for more alkaline GABA (Fig. 5). 
Hence, the main function of glutamate decarboxylase is 
to control the pH of the bacterial environment by consum-
ing hydrogen ions by the decarboxylation reaction. E. coli, 

Fig. 4   Role of GABA in microbial systems

Fig. 5   Function of GABA in acid resistant mechanism
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Shigella and lactic acid bacteria such as Lactobacillus, L. 
lactis [82–84] possess the gene for glutamate decarboxylase 
and expression of these genes require bacteria to survive 
under acidic pH. So increased GAD activity is critical to sur-
vive in acidic conditions and allows the bacterium to over-
come the low pH environment of fermented foods, gastric 
juice, volatile fatty acids in the gastrointestinal tract if, for 
example, the producing strain was orally administered as a 
probiotic. GABA on virulence was investigated by Dagorn 
et al. [85] and they showed that GABA can reduce the viru-
lence of different strains of Pseudomonas fluorescens. They 
also investigated the GABA effect on the mobility, growth 
kinetic, the binding potential on biotic and abiotic surfaces, 
surface polarity, biosurfactant production, biofilm formation 
activity, exoenzymes secretion in environmental and clini-
cal strains of P. fluorescens. According to their result, LPS 
structure and cytotoxicity of P. fluorescens can be regulated 
by GABA. Chevrot et al. [86] revealed that plant GABA 
stimulated the inactivation of N-3-oxo-octanoyl-l-homoser-
ine lactone (3-oxo-C8-HSL) and modulate quorum sensing 
in A. tumefaciens.

GABA functions as a molecule of communication 
between bacteria and their host and even between bacteria. 
Many bacteria including marine microorganisms [87], Lac-
tic acid bacteria [20], E. coli [88], and Pseudomonas [89] 
which reported to synthesize GABA, a conserved and ubiq-
uitous communication molecule like in eukaryotes. Foerster 
et al. [90] examined glutamate decarboxylase (GAD) in the 
spore germination of Bacillus megaterium and their findings 
suggest that spore germination in the strain of B. megaterium 
depends upon on the decarboxylation of endogenous l-glu-
tamic acid and generation of gamma-aminobutyric acid. In 
P. aeruginosa, intracellular polyamine levels are controlled 
by GABA which act as an inducer for the enzymatic path-
way [89] and it is also an intermediate metabolite of organic 
polycation catabolism.

Conclusion

The living cells of various organisms contain GABA which 
acts as a cerebral neurotransmitter in the central nervous 
system of animals. GABA makes an important position in 
human health due to its role as a tranquilizer, along with 
its curative quality in the treatment of epilepsy [91], inhi-
bition of cancer cell proliferation, and its use is extensive 
in pharmaceuticals and functional foods. Growing demand 
increases commercial value for its mass production. Various 
methods are used to produce GABA, among which biosyn-
thetic approach mainly microbial method is considered as 
more effective due to safety and eco-friendly. Hence, here we 
are focusing on GABA production and functions in different 

types of microorganisms. More studies are essential to find 
out other GABA functions in humans and microbes.
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