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Abstract
Clostridium difficile is normally present in low numbers in a healthy adult gastro-intestinal tract (GIT). Drastic changes in 
the microbial population, e.g., dysbiosis caused by extensive treatment with antibiotics, stimulates the growth of resistant 
strains and the onset of C. difficile infection (CDI). Symptoms of infection varies from mild diarrhea to colitis (associated 
with dehydration and bleeding), pseudomembranous colitis with yellow ulcerations in the mucosa of the colon, to fulminant 
colitis (perforation of the gut membrane), and multiple organ failure. Inflamed epithelial cells and damaged mucosal tissue 
predisposes the colon to other opportunistic pathogens such as Clostridium perfringens, Staphylococcus aureus, Klebsiella 
oxytoca, Candida spp., and Salmonella spp. This may lead to small intestinal bacterial overgrowth (SIBO), sepsis, toxic 
megacolon, and even colorectal cancer. Many stains of C. difficile are resistant to metronidazole and vancomycin. Vaccination 
may be an answer to CDI, but requires more research. Success in treatment with probiotics depends on the strains used. Oral 
or rectal fecal transplants are partly effective, as spores in the small intestine may germinate and colonize the colon. The effect 
of antibiotics on C. difficile and commensal gut microbiota is summarized and changes in gut physiology are discussed. The 
need to search for non-antibiotic methods in the treatment of CDI and C. difficile-associated disease (CDAD) is emphasized.

Introduction

Clostridium difficile infection (CDI) is contagious, as shown 
by spreading of one of the ribotypes (027) throughout the 
world (Fig. 1). Symptoms range from asymptomatic, severe 
abdominal pain, diarrhea to the development of a toxic meg-
acolon [19]. C. difficile-associated colitis (CDAC) is charac-
terized by an erythematous mucosa, friability, and bleeding. 
In more severe cases yellow plaques (small ulcerations) form 
and is described as pseudomembranous colitis, with clear 
lesions on the gut wall. Fulminant colitis, described as perfo-
ration of the gut membrane, develops in 3–8% of the patients 
and may resulst in multiple organ failure [19].

CDI is impelled by the uncontrolled growth of C. difficile 
in the large intestinal tract as a result of drastic changes in 
the gut microbiome [7, 8]. According to Durovic et al. [20], 

the most common route for transmission of C. difficile, based 
on the number of infection cases reported, is through health-
care settings (63%) and contact with symptomatic carriers 
(53%), followed by transfer between patients in hospitals 
(40%) and long-term care facilities (30%). Of interest is that 
20% of the reports mentioned contact with asymptomatic 
carriers and exposure to livestock as a possible sources of 
infection [20]. CDI is almost always associated with antibi-
otic treatment and an estimated 61% of patients diagnosed 
with iriitable bowel disease (IBD) and exposed to antibiotics 
developed CDI [39]. Barc et al. [4] have shown that treat-
ment with amoxicillin-clavulanic acid resulted in increased 
levels of Bacteroidetes and Enterobacteriaceae, with a simul-
taneous decline in the Clostridium coccoides-Eubacterium 
rectale group. Other studies have shown that 30 days of 
exposure to antibiotics increased the risk of developing CDI 
by a factor of 12.0 [45].

Long-term treatment with broad-spectrum antibiotics 
such as cefoperazone, clindamycin, vancomycin, ampicillin, 
amoxicillin, cephalosporins, and fluoroquinolones are almost 
always associated with the development of CDI. Patients 
treated with these antibiotics showed a drastic decline in 
Firmicutes, especially from the families Lachnospiraceae 
and Ruminococcaceae [2, 93, 94]. This usually co-insides 
with a depletion in secondary bile acids, e.g., deoxycholate 
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(DCA), lithocholate (LCA), ursodeoxycholate (UDCA), 
hyodeoxycholate and muricholate [2, 82, 93]. These sudden 
changes in the GIT stimulates the adherence of C. difficile to 
epithelial cells and mucus, leading to high levels of coloni-
zation, especially in the colon [10]. The impact of antibiot-
ics on 12 of the most prominent bacteria in the human GIT 
(Bacteroides, Bifidobacterium, Clostridium, Enterococcus, 
Escherichia, Faecalibacterium, Fusobacterium, Lactoba-
cillus, Prevotella, Staphylococcus, Streptococcus, and Veil-
lonella) is shown in Fig. 2.

Age Matters

Prevalence of C. difficile in the GIT of healthy adults may 
be as high as 17% [52, 70]. A small percentage of the adult 
population (approximately 4%) are asymptomatic carriers 
of C. difficile [69, 89]. This suggests that the microbiota of 
a healthy gut suppresses the growth of C. difficile, or the 
outgrowth of endospores, and that the immune system of 
healthy individuals is fully tuned into preventing an out-
break in the GIT. However, physiological decline over time 
renders elderly more prone to acquiring/developing CDI 
[34, 59]. In contrast, the majority of infants colonized with 
C. difficile are asymptomatic [40, 81], possibly due to the 
absence of toxin-binding receptors in the infant gut. Asymp-
tomatic infants develop antibodies to C. difficile enterotoxin 
A (TcdA) and cytotoxin B (TcdB), which suggests that they 
may develop a life-long immune response [99]. Coloniza-
tion of C. difficile almost always occurs in the presence of 

Ruminococcus gnavus and Clostridium nexile. Both species 
produce a trypsin-dependent antimicrobial substance active 
against C. perfringens, but with less of an effect on C. dif-
ficile [65].

Growth and Adhesion to the Gastro‑Intestinal Tract

Clostridium difficile converts succinate to butyrate [16, 23, 
24]. Butyrate supports the germination of endospores [97] 
and increases the production of intestinal antimicrobial 
peptides, stimulates mucin production, and decreases the 
permeability of epithelial cells by preventing the formation 
of tight junction proteins [80]. Furthermore, butyrate plays 
an important role in regulating the expression of host genes 
involved in inflammation, cell differentiation, and apoptosis 
[12, 27, 84].

Excess bile acids in the colon stimulates the germina-
tion of C. difficile endospores [86, 104]. Chenodeoxycho-
late (CDCA) inhibits spore germination and the outgrowth 
of vegetative cells [86]. Deoxycholate (DCA), on the other 
hand, stimulates spore germination, but inhibits the growth 
of C. difficile [85–87]. Primary bile acids (TCA, CA) 
increase in the GIT after a course of antibiotics with con-
comitant decline in secondary bile acids, potentially promot-
ing CDI [88].

The ability of C. difficile to adhere to gut epithelial cells 
and mucus may be ascribed to the number of virulence fac-
tors, of which proteolytic enzymes (i.e., cysteine protease), 
adhesins (cell-wall protein Cwp66, the GroEL heat-shock 
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Fig. 1   Spreading of C. difficile ribotype 027 isolates in 14 European 
countries by 2010, as recorded with data generated by multilocus 
variable-number tandem-repeat analyses [26]. Numbers in brackets 
refer to the number of 027 isolates per country. Isolates in 10 of the 
countries were genetically related to isolates reported in The Nether-

lands. Isolates in France and Finland were genetically more related to 
isolates in Belgium and the Isolate from Poland closer related to the 
isolate from Austria. The spreading of ribotype 027 isolates from the 
USA to other continents is shown in the background. The background 
image was taken from He et al. [31]



776	 L. M. T. Dicks et al.

1 3

protein and a 68 kDa fibronectin binding protein), and fla-
gella components FliC (flagellin) and FliD (flagellar cap 
protein) have been the best studied [32, 33, 92, 101]. Infec-
tion with C. difficile causes weakening of tight junctions 
in the epithelial barrier, which leads to drastic changes in 
permeability across the gut wall, including the translocation 
of bacteria and their products, and the infiltration of neutro-
phils into the lumen. Neutrophils, together with fibrin, form 
plaques, visible as pseudomembranes, on the colonic wall 
[28]. Enzymes produced by the activated neutrophils and the 
release of reactive oxygen species interact with the entero-
toxins of C. difficile and destroy tissue cells. Transmigration 
of recruited neutrophils to the mucosa involves the expres-
sion of leukocytes and endothelial cell adhesion molecules, 
driven by the production of a wide range of chemoattract-
ants and the activation of cytokines. IL-8 is the principle 
cytokine involved in migration. The activation of neutrophils 
and molecules released from immune and epithelial cells is a 
critical step in the inflammatory cascade following coloniza-
tion by C. difficile. The molecular mechanism by which C. 
difficile induces the inflammatory process involves activation 
of NFκB, which appears to be required for transcription of 
the IL-8 gene [42, 51].

Toxins

The genes encoding toxins A and B (tcdA and tcdB) are 
located on the chromosome of C. difficile, within the 
19.6-kilobase (kb) pathogenicity locus (PaLoc) along with 
the three accessory genes (tcdC, tcdD and tcdE) [55]. Tox-
ins A and B share a 49% amino acid homology [71]. The 
N-terminal domain of both toxins possesses cytotoxic activ-
ity. The C-terminal domain of the two toxins bind to the 
epithelial cells [101]. The transmembrane domain facilitates 
the entry of the two toxins into the cytoplasm. The tcdD 
gene product up-regulates toxin transcription, whilst tcdC 
encodes a toxin gene repressor [101]. The protein encoded 
by tcdE lyses the cell wall and releases toxins A and B into 
the colonic lumen [91].

Toxin A binds to a trisaccharide, composed of α-Gal-
(1,3)-β-gal-(1,4)-β-GlcNac [53, 54]. This implies that toxin 
A binds to human enterocytes via different oligosaccharides, 
or possibly by protein–protein interaction. The disaccharide 
β-Gal-(1,4)-β-GlcNac, present in humans, is most likely one 
of the receptors. Little is known about the receptors required 
by toxin B. After adhesion to the colonic cells, the toxins 
are translocated into target cells through receptor-mediated 
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Metronidazole (a nitroimidazole)

Vancomycina (a glycopeptide)

Fidaxomicinb (a macrolide)

Rifaximin (a rifamycin)

Nitazoxanidec (at low concentrations)

Ramoplanind (a glycopeptide)

Teicoplanine (a glycopeptide)

Tigecycline (a tretracycline)

Bacitracin (= polymyxin B plus neomycin)

Fusidic acid (a fucidane; bacteriostatic)

ANTIBIOTICS USED IN THE TREATMENT
OF C. difficile INFECTIONS:

Bacteroidesc, Clostridiumc,  Lactobacillus,
Bifidobacterium

Lactobacillus,
Bifidobacterium,
Faecalibacterium, Prevotella

Enterococcusa,d,e,
Clostridiuma,d,e, Faecalibacterium,
Streptococcusa,d, Escherichia, Bacteroides

Enterococcusb,
Clostridiumb, Faecalibacterium,
Streptococcus, Prevotella, Bacteroides,
Bifidobacterium, Ruminococcus

Clostridium, Faecalibacterium,
Lactobacillus, Bacteroides,
Bifidobacterium

Enterococcus,
Faecalibacterium,
Bacteroides,
Lactobacillus, 
Escherichia

Bacitracin inhibits Streptococcus pyogenes and Enterobacteriaceae
Fusidic acid inhibits S. pyogenes, Bacteroides fragilis, Enterococcus
(Werner and Russel, 1999)

Fig. 2   The effect of nine antibiotics (metronidazole, vancomycin, 
fidaxomicin, rifaximin, nitazoxanide, ramoplanin, teicoplanin, tige-
clycline and bacitracin) and Fusidic acid on C. difficile and 11 com-
mensal genera Enterococcus, Lactobacillus, Ruminococcus, Fae-
calibacterium, Streptococcus, Eubacterium and Blautia (within 
Firmicutes phylum), Prevotella and Bacteroides (Bacteroidetes), 

Bifidobacterium (Actinobacteria) and Escherichia (Proteobacteria) in 
the GIT. Modifed from Rojo et al. [79]. Data on vancomycin, fidax-
omicin, nitazoxanide, ramoplanin and teicoplanin were from https​
://www.drugs​.com/mmx/vanco​mycin​-hydro​chlor​ide.html (accessed 
22/03/2018) and http://antim​icrob​e.org/new/drugp​opup/Teico​plani​
n.pdf (accessed 22/03/2018)

https://www.drugs.com/mmx/vancomycin-hydrochloride.html
https://www.drugs.com/mmx/vancomycin-hydrochloride.html
http://antimicrobe.org/new/drugpopup/Teicoplanin.pdf
http://antimicrobe.org/new/drugpopup/Teicoplanin.pdf
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endocytosis and start their destructive processes by inacti-
vating guanosine triphosphate (GTP)-binding proteins of the 
proteins Rho, Rac, and Cdc42 involved in cell signaling [41, 
44]. The inactivation of GTP-binding proteins is mediated 
by catalyzing the transfer of a glucose residue from UDP-
glucose to GTP-binding Rho proteins [102]. Glucosylation 
of Rho GTPases leads to actin cytoskeleton disaggregation, 
increased membrane permeability, loss of barrier function, 
cell rounding, cytotoxicity, and ultimately cell death [100]. 
The toxins induce the formation of microtubule protrusions 
on the surface of intestinal epithelial cells, which supports 
the adherence of C. difficile [83]. Massive cellular immune 
responses generated by the toxins stimulate neutrophils to 
infiltrate the site of infection and upregulate the release of 
cytokines such as IL-8, IL-6, IL-1β, leukotrienes B4 and 
interferon γ [100]. This leads to pseudomembranous colitis, 
visualized with endoscopic examinations as raised, white 
or yellowish nodules of 2–10 mm in diameter on the sur-
face of the colon [100]. Symptoms of CDI include mild or 
severe diarrhea, abdominal pain, fever, leucocytosis, and 
may develop hypoalbuminemia as albumin in the exudate 
from ulcers enters the colonic lumen. Acute diarrhea with 
hypoalbuminemia is a good indicator of CDI [100].

Karlsson et al. [46, 47] have shown that toxins produced 
by C. difficile may be regulated by amino acids in the colon. 
Cysteine, glycine, isoleucine, leucine, methionine, proline, 
threonine, tryptophan, and valine reduced toxin production 
100-fold, whereas a combination of alanine, arginine, aspar-
tic acid, histidine, lysine, phenylalanine, serine, and tyrosine 
had no effect on toxin production [47].

Where Does C. difficile Fit into the Human 
Microbiome?

The majority of bacteria in the GIT belongs to the Firmicutes 
and Bacteroidetes phyla, and to a lesser extend proteobacte-
ria, actinobacteria, verrucomicrobia, and cyanobacteria [21, 
61, 95]. Bacteroidetes and Proteobacteria are more prevalent 
in individuals older than 70 years. Sudden changes in the gut 
microbiome induce alterations to the protective mucus layer, 
resulting in changes of the mucosal immune system, loss in 
integrity of the epithelial barrier, and changes in peristalsis 
and the absorption of nutrients [3, 49, 66, 108]. In a state of 
dysbiosis, major changes are observed in the production of 
vitamins and ion absorption, and conversion of dietary poly-
phenolic compounds into active forms [22]. Inflamed epithe-
lial cells and damaged mucosal tissue predisposes the GIT to 
C. difficile and other opportunistic pathogens, which gives 
rise to IBD, small intestinal bacterial overgrowth (SIBO), 
functional gastro-intestinal disorders (including IBS), and 
sometimes colorectal cancer [90]. Patients treated with anti-
biotics over an extended period run the risk of developing 
an overgrowth of C. difficile, the causative agent of 10–20% 

of all AAD [5, 6, 50], colitis, pseudomembranous colitis 
(PMC), toxic megacolon and sepsis [19]. Other pathogens 
associated with AAD, but to a much lesser extent, are C. 
perfringens, Staphylococcus aureus, Klebsiella oxytoca, 
Candida spp., and Salmonella spp. [36].

Treatment

Initial, mild, or moderate episodes of CDI are treated with 
oral metronidazole (500 mg three times per day for 10–14 
days) [13]. Severe episodes of CDI are treated with oral van-
comycin (125 mg four times per day for 10–14 days) [13]. 
Severe, complicated CDI is treated with increased levels of 
vancomycin (500 mg, orally, four times per day), plus met-
ronidazole (500 mg every 8 h intravenously). Vancomycin 
may also be applied rectally [13]. Although metronidazole 
is the antibiotic of choice, failure rates of 22–38% have been 
reported [67, 68]. Treatment with metronidazole and van-
comycin yielded the same success rates with mild CDI. In 
severe cases of CDI, the eradication of C. difficile was more 
successful with the administration of vancomycin (97% cure 
rate), compared to metronidazole with a 76% cure rate [78, 
106]. Based on this report, vancomycin is the first line treat-
ment for severe and mild CDI. Critical cases of CDI may 
require much more aggressive treatment, e.g., 2 g vanco-
mycin per day [71].

Resistance to metronidazole was reported in a study on 
patients infected with ribotype 027. As many as 20% of 
patients successfully treated with metronidazole experienced 
a relapse of CDI [60, 107], labeling the treatment of CDI 
with antibiotics as a risk factor [40, 99]. Treatment of a first 
episode recurrent infection with a repeat course of either 
metronidazole or vancomycin for 10–14 days was successful 
in approximately 50% of patients [37, 58]. In a few critical 
cases, patients were treated with fidaxomicin, a macrocy-
clic antibiotic approved by the food and drug administration 
(FDA) in 2011. Rifaximin, nitazoxanide, ramoplanin, teico-
planin, and tigecycline have also been used to treat CDIs. 
Case studies using these antibiotics are, however, few and 
treatment is expensive, thus limiting their use. Bacitracin 
and fusidic acid have also been used in the treatment of CDI, 
but their efficacy has not been proved superior to vancomy-
cin and metronidazole [103].

Alternative treatments include immunoglobulins, vacci-
nation, novel antibiotics and probiotics. Glucose, sialic acid, 
and N-acetyl glucosamine are limiting growth factors and are 
considered important in the exclusion of C. difficile from the 
GIT [104]. The large intestine is lacking free glucose [9], but 
contains adequate amounts of amino acids. Thus, C. difficile 
compete against commensal microbiota for amino acids and, 
if not available, produce toxins. This explains why protein 
malnutrition, which is often the case amongst elderly people, 
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may be a risk factor for CDAD, especially when exposed to 
antibiotics.

More research is needed to find mechanisms that would 
neutralize the toxins produced by pathogens and avoid dam-
age to the mucosa and epithelial cells. More in-depth studies 
on antibiotic-gut wall interactions need to be done. Eryth-
romycin and a combination of amoxicillin and clavulanate 
(trade name Augmentin), for instance, increase gut motility 
and may exacerbate CDI. Further research on the effect of 
prolonged treatment with immune suppressants, H2-receptor 
antagonists and proton-pump inhibitors (PPIs) need to be 
conducted. According to Thomson et al. [96], PPIs enhances 
the survival of C. difficile through the stomach, thereby sup-
porting the hypothesis that PPI’s may initiate CDI.

Probiotics and Fecal Transplants

Floch et al. [25] claimed relieve from AAD after treating 
patients with combinations of Lactobacillus rhamnosus 
GG and Saccharomyces boulardii, and Lactobacillus casei 
DN-114001, Lactobacillus delbrueckii subsp. bulgaricus 
and Streptococcus thermophilus. Gorbach [30] reported an 
increase in IgA- and other immunoglobulin-secreting cells in 
the intestinal mucosa of patients that received L. rhamnosus 
GG. This resulted in enhanced immune response to C. dif-
ficile and its toxins and was in agreement with a previous 
study by Mack et al. [63], showing that L. rhamnosus GG 
may protect the gut barrier [64]. Littman and Pamer [62] 
and Van Baarlen et al. [98] have shown that L. rhamnosus 
GG lowered the levels of TNF-α, chemokine CCL20, IL-12, 
IL-2, IL-23, and IL-27 and, by doing so, prevented damage 
to the epithelial barrier. Soluble proteins p40 and p70 from 
L. rhamnosus GG inhibited cytokine-induced apoptosis and 
disruption of the epithelial barrier. These proteins are impor-
tant in regulating the integrity of the epithelial barrier by 
maintaining tight junction and adhesion junction proteins.

Littman and Pamer [62] and Van Baarlen et  al. [98] 
reported that peptidoglycan from L. casei decreased the 
secretion of IL-12 and IL-23 by dendritic cells involved in 
IBD. In another study [74], the administration of Lactobacil-
lus acidophilus and Bifidobacterium bifidum seemed to have 
a neutralizing effect on the toxins of C. difficile, as only 46% 
of patients that received the probiotic were toxin-positive, 
compared to 78% of patients in the placebo group. This sug-
gested that many of the patients treated with the probiotic 
were asymptomatic carriers.

Lawley et al. [57] have shown that the colonization of C. 
difficile to epithelial cells could be prevented by administer-
ing a mixed culture of Staphylococcus, Enterococcus, Lac-
tobacillus, Anaerostipes, Bacteroidetes, and Enterorhabdus. 
Saccharomyces boulardii upregulated the expression of anti-
toxin A secretory immunoglobulin A expression in animal 
models of CDAD and inhibited the binding of toxin A to 

epithelial cells [11, 75]. A mixed culture of non-toxigenic 
C. difficile, Escherichia coli, Bifidobacterium bifidum, and 
members of Lachnospiraceae prevented the colonization of 
C. difficile in germ-free mice [14, 77].

A meta-analysis study conducted by Lau and Chamber-
lain [56] has shown that probiotics are associated with a 
60.5% reduction in the incidence of CDAD and that the use 
of a combination of strains (Lactobacillus, Saccharomyces, 
and several lactic acid bacteria) reduced the risk of CDAD 
by 63.7, 58.5, and 58.2%, respectively. The general reduc-
tion in CDAD reported for adults administerd probiotics was 
59.5% and for children 65.9% [55]. The risk reduction for 
hospitalized patients was 61% [56].

Despite these positive reports, many research groups are 
less optimistic about using probiotics in the treatment of 
CDI. This opinion is supported in a review published by the 
Cochrane Group [73]. Whilst the authors concluded “mod-
erate quality evidence suggests that probiotics are both safe 
and effective for preventing C. difficile-associated diarrhea”, 
they were of the opinion that more research and case stud-
ies are required to provide sufficient evidence in support of 
probiotic therapy [35]. However, in a more recent systematic 
review and meta-analysis by the Cochrane Collaboration, a 
more firm conclusion on the general positive effects of pro-
biotics in CDAD was made [29]. Isa and Moucari [38] stated 
that it is “difficult to draw any solid conclusion about the 
prophylactic use of probiotics in AAD”, but advised patients 
with a history of AAD to take probiotics as a prophylac-
tic measure and lower the risk of developing CDAD. Yet, 
the authors still warrants more research to be conducted on 
probiotics and CDAD. The UK Health Protection Agency 
good practice guidance for the management of C. difficile 
infection [17] does not support the use of probiotics in the 
prevention or treatment of CDI.

The World Gastroenterology Organization [105] is of 
the opinion that S. boulardii or L. rhamnosus GG may be 
used to treat AAD. The WGO also advocated the use of L. 
casei DN-114001 in the prevention of AAD and CDAD. In 
addition, bacteria such as Lactobacillus can have a direct 
antimicrobial activity by secretion of bacteriocins and other 
antimicrobial peptides [43]. Given the low cost of probiot-
ics and that no negative effects have been reported in the 
treatment of CDI, the administering of probiotics to patients 
receiving antibiotics should be encouraged.

Bacteriocins have many beneficial properties which make 
them viable alternatives to antibiotics. These include their 
potency and high specific activity against pathogens, thereby 
causing less collateral damage to the gut microbiota [76]. 
Lantibiotics and thiopeptides are generally more active 
against Gram-positive strains [15].

Lactobacillus reuteri Lr1, isolated from healthy horses, 
adhered to buccal epithelial cells and aggregated with cells 
of C. difficile C6, isolated from the GIT of a horse that died 
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from severe colic. Adherence of C. difficile C6 to epithelial 
cells declined from 60 to 3% when challenged with L. reuteri 
Lr1 and the number of viable clostridia decreased ten-fold 
during dosage. L. reuteri Lr1 may thus be used to control C. 
difficile cell numbers in the GIT [18].

Oral or rectal fecal transplants from healthy individu-
als to patients with CDI may restore secondary bile acids 
and cell numbers of Lachnospiraceae [72]. Kassam et al. 
[48] reported the successful treatment of more than 90% of 
patients with recurrent CDI by using fecal transplants. The 
precise components of the fecal microbiome that provide 
resistance against C. difficile are not known, but the phyla 
Bacteroidetes and Firmicutes represents a critical component 
[1, 85]. The treatment is, however, only partly effective, as 
spores in the small intestine may still germinate and colonize 
the GIT. Collecting samples from the small intestinal tract 
of humans is difficult and most findings are extrapolated 
from studies conducted on murine models [58]. Neverthe-
less, data collected from murine studies are of value, as the 
bile acid composition in the murine and human intestinal 
tract is very similar.

Conclusions

Clostridium difficile lives up to its name, i.e., being a dif-
ficult spindle (Kloster) to control, especially in the GIT of 
patients that have been exposed to excessive doses of antibi-
otics and with a weakened immune system. In a healthy gut, 
cell growth, and the germination of endospores of C. difficile 
are repressed by commensal microorganisms, of which lactic 
acid bacteria forms the largest group. Although alternative 
options have been evaluated to treat CDI, best results are 
still obtained by treating patients with vancomycin and met-
ronidazole. Most of the major bacterial groups in the GIT 
are negatively affected by antibiotics, resulting in dysbiosis. 
Furthermore, treatment with antibiotics may soon be ineffec-
tive, as many strains of C. difficile have developed resistance 
to most of the antibiotics currently in use. Apart from S. 
boullardii, only a few species of lactic acid bacteria, mainly 
Lactobacillus spp., have been experimented with in the treat-
ment of CDAD. All of these studies have clearly shown that 
the antimicrobial effect against C. difficile is strain-specific. 
The challenge is thus to find strains that would colonize the 
GIT effectively and outcompete C. difficile. This requires 
an in-depth study on C. difficile receptors in the mucus and 
epithelial cells, and a better understanding of the cellular 
interactions between the competing strains, especially on 
a molecular level. Probiotics may never cure patients from 
CDI, but may prevent or control the adhesion of C. diffi-
cile to the GIT and make life of a difficult “Kloster” more 
difficult.
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