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Abstract
The impact of an early food introduction on the microbiota composition and microbial metabolism in colon was investigated 
using a new-born piglet model. At day 4 after birth, 10 litters of piglets were randomly allocated to a sow-rearing group (SR 
group) and a milk-replacer supplementing group (MRS group) (n = 5). A commercial milk replacer was given to the suckling 
piglets in the MRS group from the 4th day to the 28th day. Pyrosequencing of the V3–V4 region of the 16S rRNA genes 
showed that the milk replacer supplementation significantly decreased the relative abundance of Lactobacillus, Clostridium 
XI, Blautia, Clostridium sensustricto and Escherichia (p = 0.08) in the colon of the piglets, but significantly increased the 
relative abundance of Paraprevotella on the 28th day. In addition, the abundance of Rumminococcus, Clostridium XlVa, 
Succiniclasticum, Clostridium IV tended to increase in the MRS group. The concentrations of acetate, propionate, butyrate, 
valerate and branch-chain fatty acids (BCFAs) in the colonic digesta increased with the milk replacer supplementary in the 
MRS group. In addition, the milk replacer supplementary increased the expression level of Toll-like receptor 4 (TLR4), 
but decreased the expression level of interleukin-6 (IL-6) in the colonic mucosa of the piglets. In conclusion, an early food 
introduction can influence the gut bacterial composition and metabolism, and may further affect the intestinal health by 
modifying the gene transcription related to the colonic function. These findings may provide some guidelines for the early 
nutrition supplementation for infants during the lactation period.
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Introduction

Breast-feeding has been endorsed as an optimum way of 
feeding infants [1, 2]. The WHO recommends an exclusive 
breast-feeding for 6 months, and a supplemental breast-
feeding up to 2 years and beyond [3]. However, the preva-
lence of exclusive breast-feeding infants for 6 months is at 

low percentage in both developing and developed countries 
[4–7]. Hence, many infants are fed with formula milk or 
other supplemental foods in addition to breast milk [8–10]. 
Previous studies have pointed out that an early food intro-
duction would increase the later risk of some chronic dis-
eases, such as obesity and food allergies [5, 11]. On the 
other hand, De Lange et al. [12] reported that an early food 
introduction would stimulate the development of gastrointes-
tinal tract to adapt to a complicated dietary environment [12, 
13]. Moreover, such practice can prevent growth retardation 
by providing additional complementary nutrition, especially 
for the children at age of 6–12 months [14, 15]. Therefore, 
whether the early food introduction is beneficial or harmful 
to the infant health needs to be further studied.

The maintenance of colonic homeostasis and normal 
physiological function is essential to infant health. The colon 
harbors the highest density of microbes, and the colonic 
microbiota changes rapidly in response to dietary treat-
ments [16–18]. Recent studies have revealed that colonic 
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microbiota plays a crucial role in the host’s metabolic, physi-
ological and immune processes [7]. Duncan et al. indicated 
that the colonic microbiota affects energy harvest, storage, 
and expenditure including short-chain fatty acids (SCFAs) 
as the main energy source of colonocytes [19]. Moreover, 
the changes of microbial composition induced by antibiotics 
affect the immune status of the host and influence disease 
susceptibility [20]. Therefore, we hypothesize that an early 
food introduction affects the host health by modulating the 
microbiota composition, microbial metabolism in the colon 
and the expressions of genes related to colonic function. To 
date, few data are available regarding how the colonic micro-
biota responds to the early food introduction. To verify this 
hypothesis, we developed an early food introduction model 
by feeding new-born piglets with a milk replacer in addi-
tion to sow milk to investigate the changes in microbiota 
composition, microbial metabolites in the colon and the 
expressions of genes related to the colonic function during 
the lactation period.

Materials and Methods

Animal Trial

The animal experiment was approved by the Animal Experi-
ment Committee of Nanjing Agricultural University, in 
accordance with the Regulations for the Administrations of 
Affairs Concerning the Experimental Animals (The State 
Science and Technology Commission of China, 1988). 
All experiments were performed in accordance with the 
approved guidelines and regulations.

10 Landrace × Yorkshire crossbred sows were artificially 
inseminated by one Duroc boar to minimize the genetic vari-
ation among their off-springs. The sows were allowed to far-
row in concrete-floored farrowing pens at the experimental 
farm of Nanjing Agricultural University, Jiangsu, China. The 
piglets within each litter were adjusted for an average body 
weight of 1.87 ± 0.05 kg and balanced gender with a stand-
ardized litter size of 8 piglets (half male and half female).

Piglets were completely reared by the sows to acquire 
passive immunity from colostrum till the 4th day after far-
rowing. Afterwards, 5 litters of piglets were randomly allo-
cated to a sow-rearing group (SR group), while the other 
5 litters of piglets were assigned to a milk-replacer supple-
menting group (MRS group). A commercial milk replacer 
(Table S1) was given ad libitum to the suckling piglets in the 
MRS group from the 4th to the 28th day. The milk replacer 
was mixed with warm water and fed ad libitum to piglets. 
To avoid non-experimental effects, the piglets had no access 
to creep feed during the experiment. Water was fed ad libi-
tum throughout the experiment. The piglets were weaned on 
the 28th day and fed with a commercial-weaning diet. The 

growth performance and diarrhea frequency were monitored 
for 7 days after weaning to investigate the effect of early 
dietary introduction on the weaning transition of piglets. On 
the 28th day, five piglets from each group were sacrificed for 
sampling. The abdomen of piglets was opened and the whole 
gastrointestinal tract was removed to collect colonic digesta 
and mucosa for subsequent analysis. In addition, blood was 
collected before the piglets were killed.

DNA Extraction, PCR Amplification 
and Illumina MiSeq Sequencing

Total bacterial DNA was extracted from the colonic digesta 
using the bead-beating method as described by Zoetendal 
et al. [21]. The concentration of DNA was determined using 
a Nano-Drop 1000 spectrophotometer (Thermo Scientific 
Inc., Wimington, DE, USA). The V3–V4 regions of bacte-
rial 16S ribosomal RNA gene were amplified by polymerase 
chain reaction (PCR) using the bacterial universal primers 
319F (ACT CCT ACG GGA GGC AGC AG) and 806R (GGA 
CTA CHVGGG TWT CTAAT). The PCR amplification was 
performed using the following program: 95 °C for 2 min, 
followed by 25 cycles of 95 °C for 30 s, 55 °C for 30 s, 72 °C 
for 30 s and final extension 72 °C for 7 min. The amplicons 
extracted from 2% agarose gel were purified using the Axy-
Prep DNA Gel Extraction Kit (Axygen Biosciences; Union 
City, CA, USA) according to the recommended instructions, 
and were quantified using QuantiFluor™-ST (Promega, 
USA). The purified amplicons were pooled in equimolar 
and paired-end on the Illumina platform according to the 
standard protocols [22].

Bioinformatics Analysis

The raw sequencing data were uploaded to GeneBank in 
NCBI with the accession number SRP105910. Then the Raw 
FASTQ files were de-multiplexed and quality-filtered using 
QIIME (version 1.70) with a reported standard criteria [23]. 
Operational taxonomic units (OTUs) were clustered with a 
97% similarity cut-off using UPARSE (version 7.1 http://
drive5.com/uparse/), and the chimeric sequences were iden-
tified and removed using UCHIME. The rarefaction curves 
(Fig. S1) generated by the number of reads through the num-
ber of OTUs tend to approach the saturation plateau. The 
bacterial diversity was assessed using the observed species, 
Simpson, Chao1 and Shannon indices.

Determination of Microbial Metabolites

The concentrations of SCFAs in the colonic digesta were 
determined by gas chromatography (Shimadzu, GC-14A 
with an FID detector, Japan) as previously described by 

http://drive5.com/uparse/
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Mao et al. [24]. A Nukol™ Capillary GC Column (Sigma-
Aldrich, US) was used. The temperature of injector, column 
and detector were 110, 150, and 180 °C, respectively. The 
lactic acid was detected using a commercial kit (Nanjing 
Jiancheng Bioengineering Institute, China) according to the 
specification. The colorimetric method was used to measure 
the concentration of ammonia-N in the colonic digesta as 
described by Nyachoti et al. [25].

RNA Extraction, cDNA Synthesis and Real‑Time PCR

Total RNA of the colonic mucosa was isolated using TRIzol 
(Invitrogen, China), and 1 µg RNA was reverse transcribed 
to cDNA with a Prime Script RT reagent kit (TaKaRa Bio-
technology (Dalian) Co., China) according to the manufac-
turer’s protocols. Real-time PCR was performed using the 
StepOne-Plus (Applied Biosystems, California, USA) with 
StepOne Software (version 2.2.2, Applied Biosystems). For 
the amplification, a 20 µL reaction mixture contains 10 µL 
SYBR Premix Ex Taq (TliRNaseH Plus), 0.4 µL of each 
primer, 0.4 µL of ROX Reference Dye (50×), 6.8 µL of 
 ddH2O and 2 µL of cDNA. The primers used are listed in 
Table S2 as described by Zhang et al. [26]. The expression 
of genes (TLR4, Toll-like receptor 4; TNF-α, tumor necro-
sis factor-α; IL-1β, interleukin-1β; IL-6, interleukin-6; IL-8, 
interleukin-8; IL-10, interleukin-10; TGF-β, transforming 
growth factor-β; IFN-γ, interferon-γ; ZO-1, zonula occlu-
din 1; occludin) was calculated relative to the expression 
of β-actin using the  2−ΔΔCt method as previous described 
by Herfel et al. [27]. The relative mRNA expression of the 
target gene was normalized to the control group.

Immunoglobulin Analysis

The concentrations of total immunoglobulin A (IgA), immu-
noglobulin M (IgM), immunoglobulin G (IgG) in serum and 
secretory immunoglobulin A (sIgA) in the colonic mucosa 
were measured using the porcine IgA, IgM, IgG and sIgA 
ELISA kits (Nanjing AOGENE Technology Science Co., 
Ltd., China), respectively. The concentration of sIgA in the 
mucosa was expressed as the relative amount of sIgA to 
total protein. The total protein content was quantified using 
the commercial kit (Nanjing AOGENE Technology Science 
Co., Ltd., China).

Statistical Analysis

Data were analyzed with SPSS 20.0 and are shown as 
means ± SEM. The Student’s t test and Mann–Whitney U 
test were used to assess the differences between the MRS 
group and the SR group. The normality of the distribution of 
variables was tested by the Shapiro–Wilk test. The variables 
which had a non-normal distribution were analyzed using 

the nonparametric methods. The t test and the Mann–Whit-
ney U test were used to analyze the data that had a normal 
or non-normal distribution. Significant differences were 
declared when p < 0.05.

Results

Bacterial Diversity and Bacterial Composition 
Determined by MiSeq Sequencing

As shown in Table S3, the diversity indices (Shannon and 
Simpson) and richness estimators (observed species and 
Chao1) of colonic microbiota are similar in the MRS group 
and the SR group. The bacterial composition was assessed 
at different taxonomic levels. At the phylum level (Fig. S2), 
there is no statistical difference in bacterial composition 
between the two groups (p > 0.05). At the family level, Lac-
tobacillaceae, Peptostreptococcaceae and Clostridiaceae 1 
(Fig. S3) have lower abundance in the colonic digesta of pig-
lets in the MRS group than those in the SR group (p < 0.05).

At the genus level (Fig. 1a), the abundance of Lactobacil-
lus, Clostridium XI, Blautia, and Clostridium sensu stricto 
(p < 0.05) and Escherichia (p = 0.08) tend to decrease in the 
MRS group compared with the SR group. On the other hand, 
the abundance of Rumminococcus (p = 0.06), Clostridium 
XlVa (p = 0.05), Succiniclasticum (p = 0.05), Clostridium IV 
(p = 0.06) and Paraprevotella (p < 0.05) tends to increase in 
the MRS group. At the species level (Fig. 1b), the abundance 
of Faecalibacterium prausnitzii (p = 0.10) and Ruminococ-
cus bromii (p = 0.09) tends to increase in the MRS group, 
the abundance of Lactobacillus salivarius (p = 0.05), Lac-
tobacillus reuteri (p = 0.10) and Escherichia coli (p = 0.08) 
tends to decrease.

Microbial Metabolites in the Colonic Digesta

To reveal the microbial metabolism in the colonic digesta, 
the concentrations of lactic acid, SCFAs and ammonia-N 
were examined (Table 1). The concentrations of total SCFA, 
acetate, propionate, butyrate, valerate and BCFA (isobutyric 
acid and isovaleric acid) in the colonic digesta of piglets in 
the MRS group are significantly increased compared with 
those in the SR group. In addition, there is no statistical dif-
ference in the concentrations of lactic acid and ammonia-N 
in the colonic digesta of piglets in the two groups (p > 0.05).

Serum Immunoglobulin Concentration and Colonic 
Immune Function

There was no difference in the serum concentration of 
IgA, IgM and IgG and colonic mucosa sIgA of piglets 
in the SR and MRS groups (Table S4). However, the 
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piglets in the MRS group have lower expression level 
of IL-6 (p < 0.05) but higher expression level of TLR4 
(p < 0.05) in colonic mucosa than the piglets in the SR 
group (Fig. 2). In addition, the piglets in the MRS group 
have an increased expression level of IL-8 (p = 0.06) but a 
decreased expression level of IFN-γ (p = 0.09) and TNF-α 
(p = 0.08) in colonic mucosa compared with the piglets in 
the SR group. There is no difference in the expression lev-
els of IL-1β, IL-10, TGF-β, ZO-1 and occludin in colonic 
mucosa of piglets from both groups (p > 0.05).

Discussion

Previous studies indicated that an early food introduction 
would damage the gut histological structure and might 
increase the risk of some chronic diseases, such as obesity 
and food allergies [28–30]. However, Caulfield reported 
that an early food introduction can prevent infants’ growth 
retardation by providing additional complementary nutri-
tion [8, 14]. In this study, an early food introduction model 
of new-born piglets using a milk replacer was used to 
investigate the changes in microbiota composition, micro-
bial metabolism and colonic function during the lactation 
period. Our results showed no significant differences in 
ADG (MRS: 0.21 kg ± 0.01 kg; SR: 0.20 kg ± 0.01 kg, 

Fig. 1  Comparisons of relative abundance of altered bacteria at the 
genus level (a) and at the species level (b) in each group. Dotted bar 
SR, a sow-rearing group; checked bar MRS, a milk-replacer supple-
menting group. Different letters among group at the same day indi-
cated a significant difference, p < 0.05. n = 5, per group per day

Table 1  The concentrations of different SCFA, total SCFAs 
(µmol g−1) and lactic acid (µmol g−1) and ammonia nitrogen (µg g−1) 
in the colonic digesta of piglets on the 28th day

SR a sow-rearing group; MRS a milk-replacer supplementing group
a,b Values within a row with different superscript letters were signifi-
cantly different (p < 0.05). n = 5, per group per day

SR MRS p value

Acetate 21.01 ± 1.74b 31.45 ± 2.33a < 0.01
Propionate 8.33 ± 0.49b 13.25 ± 1.90a 0.04
Butyrate 3.74 ± 0.30b 6.28 ± 0.61a < 0.01
Valerate 0.78 ± 0.13b 1.58 ± 0.28a 0.03
Isobutyric acid 1.22 ± 0.11b 2.05 ± 0.28a 0.02
Isovaleric acid 1.40 ± 0.16b 2.07 ± 0.20a 0.03
Total SCFAs 36.47 ± 1.18b 56.69 ± 4.98a < 0.01
Lactic acid 2.42 ± 0.65 1.54 ± 0.15 0.22
Ammonia-N 66.40 ± 1.47 61.68 ± 6.74 0.56

Fig. 2  The mRNA relative expression in colonic mucosa. Dotted bar 
SR, a sow-rearing group; checked bar MRS, a milk-replacer supple-
menting group; different letters among groups at the same day indi-
cated a significant difference, p < 0.05. n = 5, per group per day; IL-8 
(p = 0.06); IFN-γ (p = 0.09); TNF-α (p = 0.08)
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p = 0.50) of piglets in the two groups from the 4th to 28th 
day. There were no significant differences in ADG (MRS: 
0.17 kg ± 0.03 kg; SR: 0.18 kg ± 0.02 kg, p = 0.71) and 
ADFI (MRS: 428.52 g ± 11.96 g; SR: 419.11 g ± 7.52 g, 
p = 0.52) of piglets from the 28th to 35th day. In addition, 
no significant differences in colonic mucosal morphology 
and the concentration of sIgA in the colonic mucosa were 
observed on the 28th day in the MRS group and the SR 
group. These results indicated that an early food introduc-
tion did not have a clearly negative influence on the hosts’ 
health and colonic morphology in the study. Moreover, it 
was found that the early food introduction would modulate 
the colonic bacterial composition and bacterial metabo-
lism, and could further affect the host health by modulat-
ing the expression of genes related to the colonic function. 
Similar results were also reported by others regarding the 
altered bacterial composition, the increased concentrations 
of SCFAs [5, 11, 30] in response to the early food intro-
duction during the lactation period.

SCFA formation is one of the most important processes 
mediated by colonic microorganisms, and has multiple 
effects on the intestinal health [31–33]. In our study, the 
early food introduction increased the concentrations of 
SCFAs in the colon on the 28th day, which was consistent 
with previous studies [5]. First, the increased concentration 
of total SCFAs might be caused by the increased indigested 
substrate such as carbohydrate and protein in the colon as 
the milk replacer was supplemented to piglets from the 4th 
day to the 28th day [34, 35]. Second, the altered bacterial 
composition could lead to the increased concentrations of 
SCFAs. Our results showed that the early food introduction 
did not significantly change the bacterial composition at phy-
lum level, but altered some genera and species in the colonic 
digesta on the 28th day. The enriched abundances of Rumi-
nococcus, Clostridium XlVa, Clostridium IV and Paraprevo-
tella in the MRS group also contributed to the increased 
amount of total SCFAs as they were all shown to be able 
to improve SCFA production [23, 36–40]. The increased 
abundance of Succiniclasticum contributed to the increased 
concentration of propionate as it could ferment succinate 
and converted succinate quantitatively to propionate [41]. 
In addition, for the altered genera and species, our results 
showed that the abundance of Escherichia and Escherichia 
coli tended to decrease in the colonic digesta after the early 
food introduction, which contributed to the decreased diar-
rhea frequency of piglets after weaning in this study [42]. 
The diarrhea frequency of piglets in the MRS group after 
weaning had a decreasing trend compared with the piglets in 
the SR group (MRS: 5.57 ± 0.60; SR: 7.29 ± 0.58, p = 0.08). 
These results indicated that the early food introduction could 
decrease the diarrhea rate of piglets after weaning. Further-
more, the early food introduction decreased the abundance 
of Lactobacillus, which agreed with previous studies [11, 

43]. The decreased abundance of Lactobacillus may be 
caused by the decreased amount of ingested oligosaccha-
ride which is associated with the reduced amount of breast 
milk after the early food introduction [43–45]. In addition, 
our results showed that the abundance of F. prausnitzii in 
the MRS group and the SR group were 0.65% and 0.10% 
(p = 0.10), respectively. F. prausnitzii is a butyrate producer 
and has anti-inflammatory effects, making it a key member 
of microbiota that contributes to the intestinal health [36, 
46, 47]. Overall, these results indicated that an early food 
introduction would increase the concentrations of SCFA 
and might affect the host health by the modified microbiota 
composition and metabolism.

The homeostasis of gut is maintained by the combined 
actions of microbiota, microbial metabolites and host cells 
[48]. The altered microbiota composition and metabolism 
in the colon would then modulate local gene transcription 
in colonic mucosa [49, 50]. In our study, although the early 
food introduction decreased the expression of TNF-α and 
IL-6, the expression levels of other inflammatory genes did 
not change significantly. The decreased expression of TNF-α 
and IL-6 might be caused by the increased butyrate in the 
colonic digesta. When pathogen invades, butyrate could 
stimulate the macrophage to produce the expression of anti-
inflammation cytokine IL-10, and suppressed the expression 
of pro-inflammatory cytokine TNF-α and IL-6 [51] at the 
same time. In addition, the F. prauznitzii also contributed to 
the decreased IL-6 as Sokol et al. reported that it was corre-
lated inversely with IL-6 after a surgery [52]. In addition, the 
up-regulated expression of TLR4 in the MRS group was also 
associated with these modified expressions of inflammatory 
cytokines in colonic mucosa [53–55]. For the barrier func-
tion in the colon, the expression of tight junction proteins 
was also positively associated with butyrate [38]. Evidences 
showed that an early food introduction would increase intes-
tinal permeability and reduced the ZO-1 mRNA expression 
[34]. However, the early food introduction did not affect the 
expression of ZO-1 and occludin, or the colonic morphol-
ogy in our study. Therefore, the increased concentrations 
of SCFAs and altered microbial composition caused by the 
early food introduction might affect the intestinal health by 
modulating the gene transcription related to the barrier func-
tion and innate immune function.

In summary, the increased SCFAs might be caused by the 
increased ingestion of protein and carbohydrate from milk 
replacer, resulting in more substrates for the microbial fer-
mentation. Moreover, the increased SCFAs might contribute 
to the decreased expression of pro-inflammatory cytokines 
and help maintain an acidic environment to inhibit the pro-
liferation of pathogens. Therefore, early food introduction by 
milk replacer would increase microbial fermentation, inhibit 
pathogen proliferation and decrease the risk of inflamma-
tion in colon. In conclusion, an early food introduction can 
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influence the gut bacterial composition and metabolism, and 
may affect the intestinal health by modifying the gene tran-
scription related to colonic function. These findings may 
provide some guidelines for the early nutrition supplementa-
tion for infants during the lactation period.
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