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Abstract Filamentous fungi play a dynamic role in health

and the environment. In addition, their unique and complex

hyphal structures are involved in their morphogenesis,

integrity, synthesis, and degradation, according to envi-

ronmental and physiological conditions and resource

availability. However, in biotechnology, it has a great

value in the production of enzymes, pharmaceuticals, and

food ingredients. The beginning of nomenclature of overall

fungi started in early 1990 after which the categorization,

interior and exterior mechanism, function, molecular and

genetics study took pace. This mini-review has emphasized

some of the important aspects of filamentous fungi, their

pattern of life cycle, history, and development of different

strategic methods applied to exploit this unique organism.

New trends and concepts that have been applied to over-

come obstacle because of their basic structure related to

genomics and systems biology has been presented. Fur-

thermore, the future aspects and challenges that need to be

deciphered to get a bigger and better picture of filamentous

fungi have been discussed.

Introduction

There are varieties of fungal species involved in most

common opportunistic mycotic infection, mainly Candida

spp. and Cryptococcus neoformans [102], while some

serious infections occur due to Aspergillus spp. and other

filamentous fungi [52, 67, 102]. These are becoming a

threat to the medical and research field regarding infectious

morbidity and mortality worldwide [36, 51, 101, 102]. The

filamentous fungus mainly attacks immunocompromised

host which worsens the health condition more seriously.

Therefore, many studies on pathogenic fungus have been

performed in recent years [55, 63, 86, 102]. Until 2000 AD,

Amphotericin B was the standard therapy for mycotic

infections caused by a number of hyaline filamentous fungi

such as Fusarium, Acremonium, Penicillium, and Sce-

dosporium species, Zygomycetes, and Dematiaceous fila-

mentous fungi such as Bipolaris, Alternaria, and Exophiala

species; however, the effect is only suboptimal. Hence,

more research on active and potential therapeutics is nee-

ded. Because of the unique behavior and distinctive cel-

lular organization, they have been creating extraordinary

challenges in describing their form and function, which has

been an essential factor for the breakout diseases [74]. The

rigid hyphal network and the cytoplasm that can be moved

within the hyphal network are the two peculiar character-

istics that make filamentous fungi a unique group over all

organisms. Moreover, the heterokaryotic nature of organ-

isms [54] undergoing cell fusion and the growth mode

resulting into hyphae with multinuclear cellular compart-

ments represent another wicked setback in antifungal

clinical setting [35, 91, 95]. In spite of these special fea-

tures that are an obstacle from a therapeutic aspect, fila-

mentous fungi are yet another important class of eukaryotic

organisms of significant commercial relevance, especially
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in the production of antibiotics, food additives, or recom-

binant proteins at the industrial scale [35, 72]. For example,

the market value of cholesterol-lowering statins represents

almost US$15 billion per year in the USA [72]. Fermen-

tation of filamentous fungi for producing many enzymes,

antibiotics, fermented food, pigments, medicine, and many

useful compounds is most commonly used. Some fila-

mentous fungi are potential producers of a wide range of

lignocellulolytic enzymes, which has drawn great interest

in many industries [43, 47]. Some of the fungi that are

industrially important for the production of various

enzymes are listed in Table 1. Based on previous publi-

cations, the study on filamentous fungi has been done in

1853 which advanced with the study of nomenclature in

1904. Until now, the number of studies on filamentous

fungi has increased drastically with new advancement and

technologies that have provided solutions to lots of health,

environmental, industrial, and economical problems.

Table 1 List of some of industrially important fungi

Fungi Enzymes Fungi Enzymes

Agaricus bisporus [28] Cellulase, b-glucanosyltransferase,
Glucose-6-phosphate

dehydrogenase

Macrophomina phaseolina

[120]

Endoglucanase, Lipolytic

enzyme, Hemicellulolytic

enzyme

Aspergillus fumigatus [7, 8, 23, 27, 49, 80, 90, 126] Endoglucanase, Cellulase,

Xylanase,

Mannosyltransferase

Myrothecium verrucaria [110]

Cellulolytic enzyme,

Hydrolytic enzyme,

oxidases

Aspergillus niger

[4, 9, 12, 26, 34]

Glucoamylase, Cellulase, tRNA-

synthases, and protein

transporters, Phytase

Pellicularia filamentosa [117] Hemicellulase, Cellulase,

Carbohydrate-degrading

enzymes

Aspergillus terreus [58, 98] Hydrolytic enzyme, Protease,

Peroxidase

Penicillium citrinum [39] Cellulase, Protease, Lignin

peroxidases, Antibiotics,

Organic acids

Aspergillus nidulans

[68, 70, 108, 111]

Cellulase, Xylanase, Mannosidase,

Transferase, Gluconic acid,

Organic acids

Penicillium funiculosum [123] Hydrolytic enzyme,

Hemicellulase, Antibiotics

Fusarium solani [122] Lipase, Glucoamylase, b-
glucosidase, Lignocellulolytic

enzyme

Penicillium irensis [31] Polygalacturonase, Catalase,

Antibiotics, Cellulose-

degrading enzyme

Humicola insolens [16] Cellulase, b-glucosidase,
Cellobiohydrolase,

Galactosidase

Penicillium janthinellum [114] Cellulase, b-glucosidase,
Carboxypeptidase

Trichoderma koningii [53] b-glucosidase, Cellulase,
Lignocellulose

Penicillium variabile [98] Cellulase, Antibiotics,

Rugulovasine

Trichoderma lignorum [11] Cellulase, Lipase, Hydrolytic

enzyme

Pestalotiopsis westerdijkii [87] Exocellulase, Glucosidase,

Glucoamylase

Trichoderma

longibrachiatum [105]

Cellulase, Xylanase, Pectolyase Polyporus adustus [24] Cellobiose oxidase, Cellulase,

Quinone oxidoreductase

Trichoderma reesei

[1, 3, 6, 38, 60]

Cellulase, Xylanase,

Arabinofructofuranoside,

Hemicellulases, Lignin-

degrading enzymes,

Proteases, Protein-translocating

transporter, Mannosidase

Polyporus tulipiferae [66] Endocellulase, Xylanase,

Chitosanase

Trichoderma cutaneum [57] Cellulase, Xylan-degrading

enzyme

Poria spp. [115] Endoglucanase, galactosidase,

Lignin-degrading enzyme

Trichoderma atroviride

[50]

Cellulase, Endoglucanase,

Xylanase, b-glucosidase
Sporotrichum dimorphosporum

[30]

Xylanase, Mannanase

Sporotrichum thermophile

[32]

Cellulase, Hydrolytic enzymes Sporotrichum pulverulentum

[40]

b-glucanases, CMCase,

Glucohydrolase

Talaromyces emersonii [87] Glucosidases, Polysaccharide

degrading enzyme

Sporotrichum pruinosum [104] Cellulolytic enzyme, Bleaching

enzyme
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Life Cycle and Microscopic Observation
of Filamentous Fungi

The complete life cycle of filamentous fungi lasts 2–3 labo-

ratory weeks including both sexual reproduction (fusion of

two haploid nuclei; karyogamy), followed by meiotic division

of the diploid nucleus, and asexual reproduction (division of

nuclei by mitosis) [25]. On the other hand, karyogamy may be

followed immediately by the combination of two hyphal

protoplasts (plasmogamy), or it may be separated in time

[18, 25]. In contrast, identical haploid cells can be obtained by

the asexual cycle, which can be used for mutagenesis and

DNA-mediated transformation [25]. The schematic repre-

sentation of the life cycle of filamentous fungi is presented in

Fig. 1. Mainly, hyphal growth initiates by extension of

hyphae at the tips followed by polarization [127]. The

polarized growth can be partially identified by directional

movement and vesicle accumulation carrying cell wall pre-

cursors and cell wall synthetases [25, 79, 127]. Ultrastructure

study revealed that hyphal morphogenesis is a complicated

organization of tip-growth-related organelles and cytoskeletal

elements as well as chitin microfibrils at the apical dome of

the hyphae [25, 63]. The chitosomes which control the

activity of membrane-bound chitin synthetase may arise from

Golgi-like bodies or by a process of self-assembly of subunits

freely within the cytoplasm or within larger vesicular bodies.

[25]. Many studies performed on microscopic observation of

filamentous fungi including fluorescence microscopy, elec-

tron microscopy, or even confocal microscopy have suc-

cessfully obtained the clear picture of the life cycle and

reproduction process of filamentous fungi. Similarly, tagging

of chimeric green fluorescent proteins (GFPs) to the target

protein sequence of AfMp1, AfGel1, and AfEcm33, respec-

tively, has also been proved to be an important method for

identifying localizations of certain proteins based on fluo-

rescence tag [97]. Phosphomannose isomerase (Pmi1) [41],

GDP-mannose pyrophosphorylase [62], and O-mannosyl-

transferase 1 (AfPmt1) [129] in A. fumigatus are found to be

crucial for cell wall integrity and conidium morphology,

while GPI-anchor is essentially required for morphogenesis

and virulence [78]. In addition, glucosidase I (AfCwh41)

[127] and a-mannosidase (AfMsdC) [79] are required for cell

wall synthesis, conidiation, septation, and polarity in A.

fumigatus.

Fig. 1 Life cycle of filamentous fungi. Blue arrow indicates asexual reproduction, black arrow indicates sexual reproduction and dotted black

arrow indicates para sexual reproduction cycle
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Sexual reproduction in fungi typically involves the

fusion of two haploid nuclei (karyogamy), followed by

meiotic division of the resulting diploid nucleus. In some

cases, sexual spores are produced only by fusion of two

nuclei of different mating types, which necessitates prior

conjugation of different thalli. This condition of sexual

reproduction is known as heterothallism, and the nuclear

fusion is referred to as heterokaryosis [25, 29]. Normally,

plasmogamy (union of two hyphal protoplasts which brings

the nuclei close together in the same cell) is followed

almost immediately by karyogamy [25]. In certain mem-

bers of the Basidiomycotina, however, these two processes

are separated in time and space, with plasmogamy resulting

in a pair of nuclei (dikaryon) contained within a single cell.

The development of a dikaryotic mycelium results from

simultaneous division of the two closely associated nuclei

and separation of the sister nuclei into two daughter cells

[25]. An alternative mechanism of sexual reproduction in

the fungi is homothallism, in which a nucleus within the

same thallus can fuse with another nucleus of that thallus

(i.e., homokaryosis) [25, 29]. An understanding of these

nuclear cycles is fundamental to the investigation of fungal

genetics. Despite the absence of meiosis during the life

cycle of these imperfect fungi, recombination of hereditary

properties and genetic variation still occur by a mechanism

called parasexuality [25]. The major events of this process

include the production of diploid nuclei in a heterokaryotic,

haploid mycelium that results from plasmogamy and

karyogamy, multiplication of the diploid along with hap-

loid nuclei in the heterokaryotic mycelium, sorting out of a

diploid homokaryon, segregation and recombination by

mitotic crossing over, and haploidization of the diploid

nuclei. Some fungi that reproduce sexually also exhibit

parasexuality, which could also provide genetic remuner-

ation of meiosis that is achieved through mitotic means

[25, 103].

Genetic Engineering and Molecular Approach

According to DNA analysis, the history behind the suc-

cessful study of this unique group of organisms started

since fungi diverged from other life around 1500 million

years ago [20]. The typical features of fungi corresponding

to earliest fossils possessing date belong to the Proterozoic

eon [some 1430 million years ago (Ma)] where the multi-

cellular benthic organisms were found to posses filamen-

tous structures with septa and were capable of anastomosis

[21]. In earlier 1930s, the genetic study of any organism

was mainly based on mutation. The first heterologous gene

of filamentous fungus N. crassa pyr4 gene was isolated by

Buxton and Radford in 1983 by complementation of E. coli

pyr (F) mutant [22]. Earlier studies already revealed that in

higher eukaryotes genetic studies through mutation can be

accompanied by light microscopy for the determination of

the karyotype. However, small chromosome size in fungi

appeared to be problematic for microscopic studies of their

karyotype. Thus, the mutation using different mutagens

was the ultimate method for the genetic study. But the

major problems with this method were the induction of

chromosome aberrations with single gene mutations by

mutagens [118] and the reduction of interchromosomal

recombination and falsely indicated mitotic linkage [65].

Further, the genetic map could only give accurate genesis

only if the species is genetically well understood which

was lacking during that era. Teow et al. somehow solved

those problems alternately using spontaneous mutations in

the ascomycete A. nidulans as a model organism [119].

Previous studies have identified sequence and annotation of

18 different species of filamentous fungi such as A.

clavatus [72, 124], A. flavus [93, 99], A. fumigatus [45, 93],

A. nidulans [45], A. niger [100], A. terreus [124], F. ver-

ticillioides [19], N. crassa [17, 45], and P. chrysosporium

[85]. Moreover, ten genome sequences of the most

important industrial and medical Aspergilli are publically

accessible, making this genus one of the best to be studied

by comparative genome analysis [72]. The trends of

genomics studies done on filamentous fungi in the last

20 years are depicted in Fig. 2a. Nevertheless, the great

effort of researchers brought a fascinating period of new

discoveries and breakthroughs in many new genetic tools

and techniques in the past decades such as efficient genetic

transformation systems, expression systems for high-level

and controlled protein production, high-throughput gene

targeting tools, and even live imaging techniques for cell

structures [89].

PEG-mediated transformation system was first estab-

lished in yeast (Saccharomyces cerevisiae) in 1978 [69],

which was later followed by transformation of filamentous

fungi in 1989 for the first time [42]. Although asexual

spores such as conidia or sporangia are most favorable for

filamentous fungi, sometimes the use of mycelia and

multinuclear state of conidia make the transformation

system in filamentous fungi less efficient than in yeast [10].

Later in late 90s, Chakraborti and Ruiz-Diez studied

electroporation for the transformation using protoplast,

conidia, or young germlings [33, 106]. A great progress in

microbial metabolomics has been achieved in the last

37 years. However, it is clear that there appears to be no

universal methodology in microbial metabolomics for

instantaneous quenching of microbial metabolic activity,

extraction of all low-molecular weight metabolites, and

analysis of these metabolites of interest. The use of geno-

mics, transcriptomics, proteomics, and metabolomics

toward an improved and novel understanding of the bio-

chemical processes has been proved to be important for
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understanding the mechanism and massive overproduction

of secreted proteins [75].

A number of genetic and genomic tools have been

developed to obtain modified and improved strains to

enhance the production of specific enzymes from fungi.

Zou et al. [130] showed the direct engineering of the cbh1

promoter of T. reesei by replacing the three binding sites of

the carbon catabolite repressor CREI with binding sites of

different transcription activators to improve the strength of

promoter. The heterologous expression of ther-

mostable endoglucanase E1 from A. cellulolyticus in T.

reesei showed that the fusion proteins greatly improved the

quality of carbohydrate metabolic enzyme with increased

enzyme activity and better thermostability to release sugars

from complex biomass. Similarly, molecular techniques

such as cloning or denaturing gradient gel electrophoresis

(DGGE) have provided better knowledge about microbial

community structure [48]. A limited knowledge on

microbial enzymes because of the narrow traditional

microbiological and biochemical methods to characterize

the enzymes of complex sugar degradation has been solved

by much advanced genetic and molecular technology.

Yet another alternative strategy for gene targeting and in

particular gene deletion has been in use in recent years.

This strategy was also found to be more effective as

compared with the tedious gene knockout strategies [116].

The RNA-based methods that silence gene expression post-

transcriptionally are especially helpful either when gene

targeting approach could not be attained, isogenes might

compensate for the knockout, or when multiple copies of a

gene of interest are present in the genome [88]. Many

successful stories on gene silencing using artificial anti-

sense constructs have been reported on filamentous fungi

[15, 73, 92, 128]. Similarly, the effects of silencing of the

transcriptional regulator toward the total expression of

xylanases in A. niger was studied by measuring the relative

expression levels of two highly transcribed target genes

encoding D-xylose reductase and endo-b-1,4-xylanase B

[82]. This method described homologous recombination

between a general destination vector and a specific entry

clone to generate the corresponding dsRNA expression

[82]. Likewise, RT-PCR analysis revealed the inducible

expression of an RNAi construct for efficient gene

expression in A. fumigatus [71, 96]. In T. koningii YC01, a

cellulase-hyperproducing strain with genetic similarity to

T. reesei, the improved expression and production of cel-

lulase and xylanase was studied by constructing ACEI

through RNAi [121]. Similarly, CRISPR–Cas9 is another

powerful and most recent approach for genome editing in a

variety of organisms including filamentous fungi. CRISPR/

Cas9 system has been studied in Trichoderma reesei by

specific codon optimization and in vitro RNA transcription

through inducible Cas9 expression. This system can gen-

erate site-specific mutations, even using short homology

arms in target genes through efficient homologous recom-

bination. This tool also provided an applicable and

promising approach to target multiple genes simultane-

ously [77, 81, 94].

Proteomics Study on Filamentous Fungi

Several fungi possess exceptional capacity for protein

production which provides one of the important aspects for

identifying the protein function. The ideal targets for pro-

tein could be more easily exposed by proteomics tech-

niques rather than conventional methods. The proteomic

study has opened a method for screening the secreted

Fig. 2 Trends in genomics and proteomics study done on filamentous fungi
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protein through their peptide sequence. The published data

reveal that the progress particularly in proteomics and its

techniques has been high only after 2000 (Fig. 2b). In the

last few years, the secreted lignocellulolytic enzymes of

individual strains and their co-cultures were analyzed by

high-throughput isobaric tag for relative and absolute

quantification (iTRAQ) coupled with liquid chromatogra-

phy tandem mass spectrometry (LC–MS/MS) [5, 112].

Using 2D gel electrophoresis, Sato et al. [107] identified 18

proteins with the expression patterns of cellulolytic pro-

teins from P. chrysosporium in cellulose-grown cultures

and wood-grown cultures. It was reported that there are

several disadvantages such as reagent cross-reactivity and

detection sensitivity with colorimetric estimation and

identification of enzymes in a complex secretome. Gene

expression technologies such as transcriptome profiling are

somehow flawless and advantageous but also include lim-

itations such as RNA stability, choice of primer set, and a

high number of false-positive and false-negative findings.

However, proteomic technology is much more advanced,

sensitive, and suitable to identify various sets of proteins

from intricate biological samples [83, 84]. In recent years,

an iTRAQ-based quantitative proteomics is a method of

choice for proteomics analysis in order to understand

cytosolic and membrane proteins, cellular process mecha-

nisms, their regulations and protein–protein interactions,

and possible metabolic pathway for enhanced cellulose

hydrolysis potential of bacterial and fungal secretomes [5].

The proteomics analysis of P. chrysosporium, T. fusca, A.

nidulans, A. fumigatus, A. niger, and T. reesei and other

bacterial and fungal enzymes has provided a useful means

to improve the understanding of their unique enzyme sys-

tem and evaluate their use in industries for lignocellulosic

bioenergy [3–5, 59, 80, 83].

The genome analysis of T. fusca exposed 45 hydrolytic

enzymes, 28 putative glycoside hydrolases, and other

enzymes optimally active at 55 �C [5, 61, 76]. It is

assumed that membrane proteins could exhibit a major

function in many biological processes, secretory protein

export, nutrient transport, and signal transduction to pro-

vide special cellular strategies to survive and secrete

thermostable hemi/cellulolytic enzymes. Cellulase genes

present in T. reesei and A. niger have been identified from

secreted protein by 2DGE and LC–MS [37, 64]. The pro-

tein secretion profile of A. niger identified 102 unique

proteins including many hydrolyzing enzymes, such as

cellulases, hemicellulases, hydrolases, proteases, peroxi-

dases, and protein-translocating transporter proteins [4].

Moreover, most of the hydrolases have potential applica-

tion in lignocellulosic biomass hydrolysis for biofuel pro-

duction. For example, some enzymes such as

endoglucanase, glucan 1,4-a-glucosidase, b-mannosidase,

glycosyl hydrolase, proteases, and other enzymes like

cytochrome C oxidase and glucose oxidase were highly

expressed in A. niger, which have a major role in cellu-

lolysis. In addition, specific enzyme production can be

stimulated by controlling pH of the culture medium

[2, 4, 9, 26]. However, the role of PTMs is not very clear

although Adav et al. [59] showed deamidation in the

secretome of A. fumigatus.

In LC-based platform, the proteins are first digested into

peptides, followed by separation with strong cation

exchange and then with reversed phase chromatography

[125]. Numerous labeling methods depending on heavy

isotopes such as 2H, 13C, 15N, and 18O have been developed

and allow relative quantitation using MS. There are various

quantitative methods that can be used in LC-based

approach including stable isotope labeling by amino acids

in cell culture (SILAC), cleavable isotope-coded affinity

tag (cICAT) labeling, and isobaric tags for relative and

absolute quantitation (iTRAQ). In iTRAQ approach, a

corresponding balance group and an amine-reactive group

are used to label primary amino group in peptides using

either 4-plex or 8-plex isobaric tags consisting of a reporter

mass of 114-117 (4-plex) or 113-121 (excluding 120,

8-plex). The labeled peptides are pooled, fractionated, and

subjected to mass spectrometry whereby MS/MS frag-

mentation releases the reporter ions which would reflect the

relative abundance of the proteins [56, 125]. In iTRAQ

labeling for relative and absolute quantitation, the iTRAQ

reagents react with primary amines of amino termini or

lysine residues and label most peptides and proteins present

in cells. iTRAQ reporter ions are released upon collision-

induced dissociation (CID) and their relative intensities are

used for protein quantitation. In contrast to ICAT and

SILAC (where only two or three samples can be com-

pared), iTRAQ permits labeling and quantitation of four or

eight samples. Further, by mixing multiple samples in a

single run, the instrument time for analyses can be reduced,

and the results are not affected by variations between dif-

ferent LC/MS runs. Among these three approaches, iTRAQ

has a higher sensitivity [46]; however, the three methods

covered cell lysates’ protein profiles which have little

overlaps, suggesting that these methods may complement

each other [14, 125].

Recent Advancement and Future Prospect

It is clear that the formation of heterokaryons in filamen-

tous fungi leads to the formation of hyphae with multinu-

clear cellular compartment and webs of mycelia that limit

the research of their cell cycle pattern [54, 91, 95].

Moreover, because of this nature the genetic and molecular

techniques usually involve more laborious, tedious, and/or

time-consuming procedures with greater risk of failure
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[109]. However, in recent years Delgado-Ramos et al.

studied flow cytometry procedure in yeast and filamentous

fungi by microencapsulation of single spore in which

growth was monitored by light or fluorescent microscopy

and complex object parametric analyzer and sorter large-

particle flow cytometry [35]. Similarly, Beneyton et al.

developed a high-throughput screening method of fila-

mentous fungi using nanoliter-range droplet-based

microfluidics [13]. These represent a great achievement in

the production of industrially important strains with low

cost, space, and time which could bring enormous benefits

for improving the genetic and molecular viability in fila-

mentous fungi [35]. Furthermore, live cell imaging of

hyphal fusion (anastomosis) process in growing colonies of

N. crassa was also successfully observed by staining with

the membrane-selective dyes FM1-43 and FM4-64

[13, 55]. In addition, the apoptosis occurring in these fungi

was performed by fluorescent labeling of the nuclei and

analyzed by SCAN�, a System for Counting and Analysis

of Nuclei [113]. These researches provide a great value as

nuclei are divided between compartments in filamentous

fungi containing a number of nuclei which further migrate

between the compartments [35, 113]. A versatile technique

in which RNA-guided mutagenesis by transforming a tar-

get fungus with a single plasmid has also been successfully

performed in yeast, Aspergillus sp. and Trichoderma sp. by

using CRISPR-Cas9 vectors furnished with fungal markers

permitting the selection in a broad range of fungi. This

method definitely helps in improving the efficiency and

stability of recombination and transformation and also

improves the gene targeting or gene replacement in fila-

mentous fungi [44, 77, 94]. However, many new and

advanced methods have been applied in the study of fila-

mentous fungi; still more studies are required for fully

understanding the further mechanism of their cell cycle.

The mechanism of their polarized growth and the relation

of their growth with their metabolism such as carbohydrate

metabolism or change in glycosylation still need lots of

efforts to be fully understood. For this, better and efficient

methods should be developed because the filamentous and

multinucleated nature of filamentous fungi always creates a

mystery and complexity in gaining better understanding.

Conclusion

Filamentous fungi can be categorized not only as a

pathogenic microorganism but also as a microbial cell

factory or the source of enzymes, chemicals, and pharma-

ceuticals. With the great effort of researchers and scientists,

genetic engineering and molecular approaches have been

devised to understand their unique features and functions.

Although many techniques and strategies including DNA–

RNA and genomics-based approach, protein and enzymes

approach using various biotechnological aspects have been

successfully used to exploit the basis of filamentous fungi,

still more efficient, stable, valid, and productive tools are

essentially required to solve the obstacles in having a better

insight into many industrially and commercially important

filamentous fungi so as to improve their productivities.

This will in future unlock the door for further improving

the strain to obtain the product of our interest. Furthermore,

in future the fungal genomics, transcriptomics, and pro-

teomics could even provide a network for profiling their

importance in relation to other organisms including human

and other prokaryotes and eukaryotes.
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