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Abstract. Strain YA was newly isolated from an enrichment culture of river sediment and was iden-
tified as Janibacter sp. It was able to utilize dibenzofuran as the sole source of carbon and energy. Strain
YA degraded > 90% of 1-chloro-dibenzo-p-dioxin (1-CDD) and > 80% of 2-chloro-dibenzo-p-dioxin in
18 hours with each initial concentration at 40 mg/L. A novel metabolite, 2-chloro-2’,6-dihydroxydi-
phenylether, was observed in 1-CDD degradation. From the metabolites detected by gas chromatog-
raphy—mass spectrometry, strain YA was supposed to have at least two types of oxidation pathways in

1-CDD degradation.

Polychlorinated dibenzo-p-dioxins (DDs) and dib-
enzofurans (PCDD/DFs) are highly toxic compounds and
are persistent in the environment. Bacterial activities in
soil play some part in diminishing their concentrations. It
is necessary to elucidate the degradation activity and
pathway to understand their natural biodegradation and
further enhance the degradation. Recently, several
bacteria capable of using DD and/or DF as the sole source
of carbon and energy have been isolated, and they also
degrade chlorine-substituted DD and/or DFs. Regarding
Gram-negative bacteria, Sphingomonas wittichii strain
RW1 has been characterized. It can grow both DD and DF
as the sole source of carbon and energy [18]. Some
sphingomonad [2, 4] and several Pseudomonas strains can
metabolize DD and DF [6, 11, 14]. Regarding Gram-po-
sitive bacteria, Janibacter [19, 20], Rhodococcus [7] and
some Terrabacter strains [9, 15] have been reported to
degrade DD and DF. Two types of dioxygenations are
involved in the initial step of the degradation of dioxins.
One is lateral dioxygenation, in which one of the aromatic
rings is attacked at the lateral 1,2 or 2,3 positions, resulting
in the formation of cis-dihydrodiols [1]. The other type of
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dioxygenation is angular dioxygenation, which takes
place at the angular positions 4 and 4a adjacent to the ether
bridge [10]. S. wittichii strain RW1 degraded several
mono-chlorinated and dichlorinated DFs and DDs, but it
did not degrade more highly chlorinated congeners. Most
mono-chlorinated and dichlorinated DFs and DDs were
degraded to the corresponding mono-chlorinated and
dichlorinated salicylates and catechols, respectively,
together with salicylate and catechol [16].

In this article, we describe the isolation and char-
acterization of a novel bacterium, Janibacter sp. strain
YA, which utilizes DF as the sole source of carbon and
energy. It can degrade mono-chlorinated dibenzo-p-di-
oxin (1-CDD and 2-CDD) by resting cells. This is the
first report of Janibacter spp. to degrade chlorinated
DDs. Transformation of 1-CDD proceeded by way of
both the angular and lateral dioxygenation pathways.
Moreover, a novel metabolite, 2-chloro-2’,6-di-
hydroxydiphenylether (2-C1-2’,6-DHDE) was observed,
and possible degradation pathways are discussed.

Materials and Methods

Isolation of DF-utilizing bacteria. Strain YA was isolated from
sediment of the Ayase River in Japan by an enrichment culture method
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Fig. 1. 16S rRNA-based phylogenetic tree showing the relationship of strain YA to the family Intrasporangiaceae. The scale bar represents 1%
estimated sequence divergence. Bootstrap values were based on 1000 replications. The numbers in parentheses are accession numbers in the

GenBank/EMBL/DDBJ database.

using DF as the sole source of carbon and energy. DF dissolved in
hexane was added to test tubes, and the hexane was evaporated. Then
the mineral salt medium (MM = 2.2 g Na,POy,, 0.8 g KH,PO,4, 3.0 g
NH4NO;, 0.2 g MgS0O47H,0, 10 mg FeSO,7H,0, and 10 mg
CaCl,2H,0/1; 20 mg yeast extract was added to supplement trace
metals) was added to the tube with silicon sponge cap. The amount of
DF in the tube was set at 0.1 % (w/v). For the plate culture, 12 g/L
gellan gum was used for solidification of MM, and DF was supplied in
vapor form by placing solid DF on the lid of inverted Petri dishes. The
cultivation was done at 25°C.

Identification of the bacterium. The nucleotide sequence of 16S
rDNA was identified by the polymerase chain reaction (PCR) direct-
sequencing method. The sequencing primers were 27f, 2L, 926f,
f3L, r1L, 2L, r3L, and 1492r, corresponding to the positions 8-27,
518-536, 907-926, 1094-1112, 536-518, 821-803, 1111-1093, and
1510-1492 of the Escherichia coli 16S rDNA sequence, respectively.
The sequencing reaction was analyzed with an ABI310 automatic
DNA sequencer (Applied Biosystems, Foster City, CA). The
sequence was compared with the DDBJ/GenBank/EMBL database
by BLAST search. Sequence data were aligned with the
CLUSTALW program, the distance was calculated according to
the Kimura two-parameter method, and the phylogenetic tree was
constructed by the neighbor-joining method.

Transformation of mono-chlorinated DDs. Transformation of
1-CDD and 2-CDD by strain YA was demonstrated by resting
cells reaction. Resting cells reaction was carried out as follows.
Strain YA was cultivated in 1-L Erlenmeyer flasks containing 0.1%
(w/v) DF as the substrate. Residual crystals of DF were separated
from the culture by sterilized glass filter (GF/D, Whatman, Kent,
UK). Cells were harvested by centrifugation and washed twice with
50 mM phosphate buffer (PB, pH 7.0). The pellet was resuspended
to PB at an 660 nm optical density of approximately 4. After
incubation of this cell suspension for 2 hours to consume residual
DF, 0.2 mg 1-CDD or 2-CDD from a stock solution (prepared in 1
mg/mL dimethylsulfoxide) was added to 5 mL cell suspension in
screw-capped tubes. The consumption of DF was confirmed by gas
chromatography—mass spectrometry (GC-MS) analysis (Fig. 3A).
The tubes were incubated at 25°C and shaking at 250 rpm for 2,
4, 6, 9, 12, and 18 hours. For the estimation of degradation ratio,
samples were extracted three times with the same volume of
acidified ethyl acetate and were derivatized with N-methyl-N-
trimethylsilyltrifluoroacetamide (MSTFA) to form trimethylsilyl
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Fig. 2. Degradation of 1-CDD and 2-CDD by resting cells of DF-
grown strain YA. Closed circle = 1-CDD, and closed square = 2-
CDD. 1-CDD, 1-chloro-dibenzo-p-dioxin; 2-CDD, 2-chloro-dibenzo-
p-dioxin; DF, dibenzofuran.

(TMS) derivatives. GC-MS (GCMS-QP5050, Shimadzu, Tokyo,
Japan) with a capillary column (DB-5MS, 0.25-mm inner diameter,
30-m length; J&W Scientific, Folsom, CA) was used for analyses.
The initial temperature, 80°C, was maintained for 3 minutes, then
temperature was increased to 250°C at a rate of 30°C/min and held
at 250°C for 10 minutes. Helium was used as the carrier gas.
Degradation ratio was calculated from the comparison of residual
with initial amounts. Experiments were performed in duplicate.
Control experiments were carried out with PB containing only 1-
CDD or 2-CDD and heat-inactivated cells. We could not find any
depletion of 1-CDD or 2-CDD in these control experiments.
Transformation of non-chlorinated DD was also tested in the same
manner.

Chemicals. DF was purchased from Kanto Kagaku (Tokyo, Japan).
1-CDD and 2-CDD were purchased from AccuStandard (New
Haven, CT). DD, DHDE, and 3-chlorocatechol (3-CC) were
purchased from Tokyo Kasei Kogyo (Tokyo, Japan). The
derivatization reagent MSTFA was purchased from GL Sciences,
Inc. (Tokyo, Japan). All chemicals were of analytical grade or of the
highest purity available.
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Fig. 3. (I) Total ion chromatograms of 1-CDD metabolites after 0, 6, and 18 hours of incubation. (II): Mass spectrum of the metabolites produced
from 1-CDD by strain YA. Identified as (A) 3-CC (TMS derivative); (B) 2-Cl-2’,6-DHDE (TMS derivative); (C) 2’-C1-2,3,6’-THDE or 2’-Cl-2,5",6'-
THDE (TMS derivative); (D) di-hydroxylated 1-CDD (TMS derivative). 1-CDD, 1-chloro-dibenzo-p-dioxin; 3-CC, 3-chlorocatechol; DHDE,
dihydroxydiphenylether; THDE, trihydroxydiphenylether; TMS, trimethylsilyl.

Nucleotide sequence accession number. Sequence data described in
this article appear in the DDBJ/GenBank/EMBL databases under
accession number AB110422.

Results

Taxonomic analysis of strain YA. Strain YA is a
Gram-positive, aerobic, and nonmotile coccus. Strain
YA has 99.1% identity with J. brevis strain DSM
13953" from the result of 16S rDNA (1476 bp)
sequence. J. brevis was reclassified as J. terrae [8]. A
phylogenetic tree is shown in Fig. 1.

Transformation of mono-chlorinated DDs by resting
cells. Because strain YA could not utilize chlorinated
DDs as a sole source of carbon and energy, we tried to
degrade DDs with resting cells reactions. Figure 2
shows 1-CDD and 2-CDD degradation by DF-grown
resting cells of strain YA. The degradation percentage
was calculated relative to control samples without strain
YA. Approximately 80% of 40 mg/L 1-CDD was
degraded in 9 hours, and > 90% was degraded after 18
hours of incubation. In contrast, 2-CDD was degraded

> 80% after 18 hours of incubation, and the degradation
was lower than that of 1-CDD.

Identified metabolites and proposed pathway of
1-CDD degradation. Total-ion chromatograms (TICs)
of TMS-derivatized 1-CDD metabolites of strain YA
after 0, 6, and 18 hours incubation are shown in Fig. 3.
Four metabolites except 1-CDD were detected by GC-
MS. None of the metabolites was found in the samples
without strain YA. Metabolite A was identified as the
TMS derivative of 3-CC with the same fragmentation
pattern and retention time as those observed for the TMS
derivative of authentic 3-CC. Metabolite B was strongly
suggested as the TMS derivative of 2-Cl-2’,6-DHDE,
with diagnostic peaks at m/z 310 (M™, 37C (30%), m/z
308 (M*, *°Cl) (56%), m/z 295 (M*-CHs, 2'Cl) (39%),
m/z 293 (M*-CHs, °Cl) (100%), m/z 275 (27%), m/z
265 (43%), m/z 258 (M"-CH;-Cl) (55%), m/z 243 (M*-
CH;-Cl-CH3) (16%), and m/z 185 (M*-CH;-Cl-
Si(CH3)3) (17%). This product had possible molecular
ions whose mass unit corresponded to the calculated
molecular weight of the TMS derivative of 2-CI-2’,6-
DHDE (inexplicably, one hydroxyl function was not
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derivatized). Furthermore, the isotope ratio of m/z 308
M*, Cl) (56%) to m/z 310 (M*, *’Cl) (30%) showed
that metabolite B contained one chlorine substituent.
Metabolite C was identified as the TMS derivative of
2’-chloro-2,3,6’-trihydroxydiphenylether  (2°-C1-2,3,6’-
THDE) or of 2’-Cl-2,5°,6’-THDE, with diagnostic
peaks at m/z 470 (M*, *'Cl) (34%), m/z 468 (M*
Q) (67%), m/z 367 (45%), m/z 365 (100%), m/z 330
(26%), and m/z 137 (15%). This fragment pattern
showed strong fragment ions at M*-103, indicating that
it corresponds to the TMS derivatives of THDE [3]. The
mass unit of the possible molecular ion and isotope ratio
of a chlorine substituent corresponded to mono-Cl-
THDE. Furthermore, 5’-Cl-2,2’.3-THDE and 4’-Cl-
2,2’,3-THDE from 2-CDD degradation had similar
patterns of fragment ions [3]. Metabolite D was
identified as the TMS derivative of di-hydroxylated 1-
CDD. This product had the mass unit of the possible
molecular ion and isotope ratio of a chlorine substituent
corresponded to TMS derivative of di-hydroxylated 1-
CDD.

Formation of 2,2-DHDE from DD. Although the
formation of 2-CI-2’,6-DHDE from 1-CDD was
strongly suggested, we could not confirm it because
authentic 2-Cl-2’,6-DHDE was not available. Thus, we
also tested DD degradation in the same manner to find
2,2’-DHDE as the metabolite. Fig. 4 shows the TICs of
TMS-derivatized DD metabolites of strain YA of
ODggp = 10 after 18 hours incubation. Along with
catechol, pyrogallol, hydroxylated DD, THDE, and di-

hydroxylated DD, metabolite E was observed. This
metabolite was identified as DHDE with the same
fragmentation pattern and the retention time as those of
the TMS derivative of the authentic DHDE. This result
supports the formation of 2-C1-2’,6-DHDE from 1-CDD.

Discussion

Strain YA, isolated from the sediment of the Ayase
River in Japan, can grow on DF. It was identified as
Janibacter sp. with respect to 16S rDNA sequences.
Janibacter sp. strain YY-1 has also been reported to
utilize DF [20], and some Terrabacter strains, which are
phylogenetically close to Janibacter, have been reported
to degrade dioxins [3, 9, 15]. As for the genus of Jan-
ibacter, strain YA is first reported to degrade chlorinated
DDs.

Strain YA produced CI-THDE (Fig. 3C) and 3-CC
(Fig. 3A) in 1-CDD degradation. Chlorinated THDE
and 3-CC were also formed in degradation of 1-CDD by
S. wittichii RW1 [16]. Chlorinated THDE was also
produced in 2-CDD degradation by Pseudomonas resi-
novorans strain CA10, Terrabacter sp. strain DBF63 [3]
and Burkholderia sp. strain JB1 [13]. The formation of
THDE and 3-CC has also been also reported in degra-
dation of DD by many bacteria [5, 18]. These metabo-
lites were formed by way of the angular dioxygenation
pathway. Angular dioxygenation specifically attacks the
angular position on the two carbon atoms adjacent to the
ether bridge of DD or DF. After this reaction, an
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Fig. 5. Proposed pathway for degradation of 1-chloro-dibenzo-p-dioxin by strain YA. 1-CDD, 1-chloro-dibenzo-p-dioxin.

unstable hemiacetal is formed, which decays spontane-
ously to 2,2°,3-THDE [10, 17]. These results indicated
that the degradation of 1-CDD by strain YA follows the
angular dioxygenation pathway (Fig. 5). The production
of dihydroxylated 1-CDD (Fig. 3D) might be the result
of lateral dioxygenation of 1-CDD (Fig. 5). This type of
dioxygenation was reported in DF degradation by
Ralstonia sp. strain SBUG [1]. Furthermore, strain YA
formed 2-C1-2’,6-DHDE (Fig. 3B) from 1-CDD. 2-Cl-
2’,6-DHDE is a new metabolite of 1-CDD degradation.
This compound has not been reported as the metabolite
of 1-CDD through lateral and angular dioxygenation. In
the lateral dioxygenation of DD, di-hydroxylated DD is
formed (Fig. 5), and it can not be dehydrated to DHDE.
In the angular dioxygenation of DD, THDE is formed
spontaneously from unstable hemiacetal (Fig. 5). When
this hemiacetal is dehydrated, it rearomatizes to yield
hydroxylated DD but not DHDE [5]. Chlorinated DHDE
might be formed by mono-oxygenation, which leads to
cleavage of the ether bridge (Fig. 5). This reaction is
similar to that found in the dibenzothiophene (DBT)
desulfurization pathway by Rhodococcus erythropolis
D-1 [12]. Dibenzothiophene sulfone mono-oxygenase
catalyzes the conversion of DBT sulfone to form 2’-
hydroxybiphenyl 2-sulfinic acid. In this reaction, mono-
oxygenation occurs and one of the two C-S bonds of the
DBT molecule is cleaved.

In 2-CDD degradation, TICs of the extract con-
taining 2-CDD metabolites showed many peaks of the
products (data not shown). Among them, only a small
peak of dihydroxylated 2-CDD was identified by its
mass spectra. This result suggests that strain YA de-

graded 2-CDD by lateral dioxygenation. However, we
could not find any products formed by angular diox-
ygenation or mono-oxygenation by comparing their
mass spectrum. These results suggested that the deg-
radation pattern of 2-CDD was different from that of
1-CDD.

Strain YA, classified as Janibacter, degraded
chlorinated dioxins. It was suggested that both types of
reported degradation pathways were present in 1-CDD
degradation. In addition, 2-C1-2’,6-DHDE was observed
as a new metabolite. This metabolite might be the result
of mono-oxygenation of 1-CDD. It is necessary to elu-
cidate these oxygenation mechanisms to further under-
stand CDDs degradation.
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