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Abstract. Beauveria bassiana is a well-known broad-range arthropod pathogen which has been used in
biological control of several pest insects and ticks such as Boophilus microplus. Beauveria amorpha has
both endophytic and entomopathogenic characteristics, but its capacity for biological control has still not
been studied. During the processes of host infection, B. bassiana and B. amorpha produce several
hydrolytic extracellular enzymes, including proteases and chitinases, which probably degrade the host
cuticle and are suggested to be pathogenicity determinants. To access the role of these enzymes during
infection in the tick B. microplus, we analyzed their secretion during fungus growth in single and
combined carbon sources, compared to complex substrates such as chitin and B. microplus cuticle.
Chitin and tick cuticle-induced chitinase in both fungus and protease was induced only by tick cuticle.
SEM analysis of B. amorpha and B. bassiana infecting B. microplus showed apressorium formation
during penetration on cattle tick cuticle.

Beauveria bassiana-based mycoinsecticides have been
developed and registered worldwide for control of
agricultural pests [17, 29], usually being applied in the
fields as a conidial spray [19]. This fungus infects a wide
range of insects such as thrips, beetles [13], flies [20],
and several species of ticks [19, 21] and is commonly
found in nature [7]. The tick Boophilus microplus is a
bovine ectoparasite that causes significant economic
losses in herds of tropical and subtropical areas. It
transmits diseases and causes reduction in milk and meat
yield and leather production. The necessity of tick
control represents significant investment and the present
technology is based on the use of synthetic chemical
products. However, the ability of B. microplus to de-
velop resistance to acaricides, the demands of consum-

ers for chemical free foods, and the negative
environmental effects of acaricides call for the devel-
opment of alternative strategies. Therefore, efforts to
develop alternative methods, such as biological control
of ticks using filamentous fungi, chiefly Metarhizium
anisopliae [12] and B. bassiana [23], have been pursued.

To transpose the cuticle, the main host barrier,
entomopathogenic fungi utilize a combination of
mechanical and enzymatic mechanisms, and secretion of
proteases is believed to be an important pathogenic
factor for fungal attack on cuticle [28].

The best-understood model of a fungal determinant
of entomopathogenicity is based on M. anisopliae, the
subtilisin-like endoprotease designated Pr1 [30]. This
enzyme is adapted to extensively degrade insects�
cuticular proteins [28] and has been ultrastructurally
located in the host cuticle during the early stages of
penetration [15]. The occurrence of natural variability in
the production of cuticle-degrading proteases among
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isolates of M. anisopliae after growth on cuticular and
noncuticular substrates has being investigated [3, 22].
Field studies have demonstrated that B. bassiana also
colonizes corn, endophytically [5].

Beauveria amorpha has both endophytic and ento-
mopathogenic characteristics, but its capacity for bio-
logical control has not been studied. To help understand
the role of proteases and chitinases in B. microplus
cuticle penetration, it is desirable to determine how their
synthesis is regulated in these two fungal models.
Knowledge of how protease and chitinase production is
regulated could be highly relevant to understanding the
pathogenic process. Therefore, this work aims to analyze
the production of both enzymes by B. bassiana and B.
amorpha and to investigate the infection process in B.
microplus by scanning electron microscopy (SEM), to
identify possible variations that may be relevant for tick
biocontrol and for the development of commercial for-
mulations.

Materials and Methods

Organisms and culture conditions. Beauveria bassiana strain
CG166, originally isolated from Schrius sp. (Curitiba/PR, Brazil),
was supplied by Empresa Brasileira de Pesquisa Agropecu*ria
(Embrapa/Cenargen, Bras$lia/DF, Brazil). Beauveria B95 was
isolated from Zea mays leaves by Dr. Ida Chapaval Pimentel
(Universidade Federal do Paran*/UFPR, Brazil). DNA from this
endophytic isolate (Beauveria B95) was characterized by sequencing
5.8S rDNA, ITS-1, and ITS-2, using the primers ITS1-F (5¢-
TCCGTAGGTGAACCTGCGG-3¢), which is specific for higher
fungi, and ITS4 (5¢-TCCTCCGCTTATTGA TATGC-3¢), which is a
universal primer. The purified PCR products (GFX PCR DNA and
band purification kit; GE Healthcare) were then sequenced in both
directions using the ITS-1 and ITS-4 primers and the sequences
compared to the GenBank database using the BLASTn program [1],
which showed that this isolate is closer to Beauveria amorpha than to
Beauveria bassiana. Conidia suspensions were prepared in 0.01%.
Tween 80 solution from fungi grown on Sabouraud dextrose agar
plates. After washing in H2O, conidia suspensions were maintained in
10% glycerol at a concentration of 108 conidia Æ mL)1. For the
experiments, spores (106 mL)1) were inoculated in 100 mL of liquid
Cove�s medium (MC) supplemented with 0.05% yeast extract [9]. As a
carbon source, crystalline chitin, tick cuticle (B. microplus), glucose, or
N-acetylglucosamine (GIcNAc) was added to the medium at different
concentrations. Alanine, glycine, methyonine, and valine (0.5%) were
added together with the fungal inoculum and at each 24 h of growth.
After 72 h of incubation on a rotating shaking platform (150 rpm) at
27�C, the mycelium was removed by filtration on Whatman No. 1 filter
paper. Prior to use in enzymatic assays, the filtrates were dialyzed
against 20 mM Tris–HCI buffer (pH 8.0). The total protein content was
determined by the Bradford method [6], with a known concentration of
BSA as the standard.

Analytical procedure. Subtilisin-like protease was determined with
N-Suc-(Ala)2-Pro-Phe-p-nitroanilide (Sigma). The reaction mixture
was 15 lL substrate (2 lM), 10 lL enzyme sample, and 75 lL 50 mM

Tris–HCL, pH 8.0. The kinetic assay was done in a Spectra Max 250
and read in a Softmax Pro (405 nm/30 min) (Molecular Devices).

Enzyme activity is expressed as nanomoles nitroanilide (NA) released
per milliliter per minute at 37�C [22]. The specific activity is
represented as units per microgram of protein. Assays were performed
in three independent experiments, with four replicates for each sample.
Statistical and data analyses were performed using SPSS for Windows
(Release 8.0, 1997). Tukey HSD (p < 0.05) was used for comparisons
of means.

Chitinolytic activity was determined using N,N¢,N¢¢,N¢¢¢-tetra-
cetylchitotetraose (4 mM) to detect endochitinase. The reaction mixture
was 40 lL 0.2 mM acetate buffer (pH 5.4)/10 lL substrate/120 lL
sample. After 1 h of incubation at 37�C the amount of N-acetylglu-
cosamine (GIcNAc) released was determined as described [22]. One
unit of chitinase was defined as the amount of enzyme that releases 1
lmol of GIcNAc per minute at 37�C.

Scanning electron microscopy (SEM). Groups of 12 engorged B.
microplus females were immersed for 30 s in B. bassiana or B.
amorpha conidial suspensions (106 conidia Æ mL)1). Sterile distilled
water was applied to the control ticks. After treatment, ticks were
maintained in petri dishes at 28�C and 85% relative humidity for up 4
days. For SEM analysis, ticks were fixed overnight at 4�C with 2%
(v/v) glutaraldehyde, 2% (v/v) paraformaldehyde in 0.1 M sodium
cacodylate buffer at pH 7.2. Postfixation was carried out in 1% (w/v)
osmium tetroxide in the same buffer. The specimens were rinsed in
buffer, dehydrated in a series of 30–100% acetone solutions, dried at
critical point in CO2 (CPD 030 BALTEC), and coated with gold in a
sputter-coater (SCD 050 BALTEC). The material was examined in a
Jeol JSM 5800 scanning electron microscope at the Centro de
Microscopia ElectrPnica da Universidade Federal do Rio Grande do
SuI (CME/UFRGS, Porto Alegre/RS).

Results and Discussion

Fungal extracellular hydrolytic enzymes are important
for degradation of the host cuticle during infection,
facilitating penetration and providing nutrients for fur-
ther growth. Like most fungal pathogens, B. amorpha
and B. bassiana might use a combination of enzymes
and mechanical force to penetrate the host cuticle and
access the nutrient-rich host hemolymph. The effects of
different carbon sources on chitinase and protease
secretion by B. amorpha and B. bassiana were tested in
medium supplemented with simple or complex carbon
sources individually or in combination. As shown in
Tables 1 and 2, B. amorpha and B. bassiana produced
chitinases and proteases in all media tested; however,
the amount of secreted enzymes varied. The highest
levels of endochitinase activity were found in culture
supernatants from tick cuticle and chitin for both fungi.
Glucose (1%) and GIcNAc (1%) repressed enzyme
secretion (Table 1). The effect of glucose repression was
previously described for proteins utilized in carbohy-
drate degradation pathways. According to St Leger et al.
[25–27] GIcNAc might cause catabolite repression of
chitinases when in excess of the immediate growth
requirements of the organisms. In M. anisopliae, GIc-
NAc shows a special dual regulation on chitinase pro-
duction. It induced the production and secretion of the
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enzyme at low concentrations but repressed chitinase
secretion at higher concentrations [3]. This effect was
also observed for the extracellular endochitinase of
B. amorpha and B. bassiana. When GIcNAc was added
to media at a concentration of 0.5%, chitinase activity
was 11- and 8-fold higher compared with 1% GIcNAC
for B. amorpha and B. bassiana, respectively (Table 1).
Even when 0.5% GIcNAc was added to a chitin-con-
taining medium, similar results were observed, on a
more moderate scale (Table 1).

High levels of subtilisin activity were observed in
culture supplemented with tick cuticle for both fungi
(Table 2). Since arthropod cuticles comprise about 70%
protein, this enzyme may play an important role in host
penetration. The addition of alanine (0.5%) to the cul-
ture medium repressed subtilisin secretion (Table 2). St
Leger et al. [28] verified that in M. anisopliae, alanine
addition repressed both apressorium formation and the
release of subtilisin-like proteases. Alanine is the major

amino acid found in the cuticle of insects and also in B.
microplus [16]. Moreover, comparison between pr1
cDNA cloned from B. bassiana [18] and pr1 cDNA
cloned from M. anisopliae [28] showed significant
similarity.

Entomopathogenic fungi evolved distinct strategies
for their attachment to hosts, varying considerably in
their modes of action, virulence, and degree of host
specificity [8]. Direct penetration of intact cuticle is the
normal mode of entry by most entomophatogenic fungi.
B. amorpha and B. bassiana are not exceptions, and the
conidia are capable of germination on the host surface
and often differentiate to form apressoria. Beauveria
comprises two main insect pathogenic species, B. bas-
siana and Beauveria brongniartii, which are mainly
parasitic on Lepidoptera and Coleoptera [24]. Beauveria
species are classified by the shape of their conidia and
the placement of conidia on the conidiogeneous appa-
ratus [14]. Traditionally, the main difference among the

Table 2. Effect of carbon sources and amino acids on secretion of
subtilisin-like protease from B. amoropha and B. bassiana

Proteolytic activity, U
(lg protein)/30 min

Substrate
B. amorpha

(B 95)
B. bassiana
(CG 166)

Glucose (1%) 0.1128f 0.1141f

GlcNAca 0.4388e 0.7885de

GlcNAc (0.5%) 0.5706e 0.9095de

Alanine (0.5%) 0.1579f 0.0846f

Glycine (0.5%) 0.6330e 0.0530f

Methionine (0.5%) 0.9767de 1.3245e

Valine (0.5%) 0.7275de 0.9381e

Chitinb (1%) 0.0437f 0.0448f

Chitin (0.5%) + glucose (0.5%) 0.0082f 0.0240f

Chitin (0.5%) + GlcNAc (0.5%) 0.0363f 0.0595f

Chitin (0.5%) + alanine (0.5%) 0.0387f 0.0479f

Chitin (0.5%) + glycine (0.5%) 0.0329f 0.0465f

Chitin (0.5%) + methionine (0.5%) 0.0238f 0.0423f

Chitin (0.5%) + valine (0.5%) 0.0711f 0.0563f

Cuticlec (1%) 14.1771a 14.3309a

Cuticle (0.5%) + glucose (0.5%) 0.2391e 0.2421e

Cuticle (0.5%) + GlcNAc (0.5%) 1.1617d 1.0655d

Cuticle (0.5%) + alanine (0.5%) 6.2415b 2.5076c

Cuticle (0 5%) + glycine (0.5%) 8.4731b 7.6695b

Cuticle (0.5%) + methionine (0.5%) 3.6235c 3.7963c

Cuticle (0.5%) + valine (0.5%) 1.4435d 2.8830c

Note. The results are means of three independent experiments, with
four replicates for each enzymatic assay. Subtilisin-like protease was
determined with N-Suc-(Ala)2-Pro-Phe-p-nitroanilide. Means followed
by the same superscript letter in each column are not significantly
different according to Tukey HSD (p < 0.05).
aN-Acetylglucosamine.
bCrystalline chitin.
cB. microplus cuticle.

Table 1. Effect of carbon sources and amino acids on secretion of
chitinases from B. amorpha and B. bassiana

Chitinolytic activity, U
(lg protein)/30 min

Substrate
B. amorpha

(B 95)
B. bassiana
(CG 166)

Glucose (1%) 0.368g 0.407g

GlcNAca (1%) 0.006l 0.069i

GlcNAc (0.5%) 0.700e 0.581f

Alanine (0.5%) 0.508fg 0.495fg

Glycine (0.5%) 0.590f 0.521fg

Methionine (0.5%) 1.284c 1.049d

Valine (0.5%) 0.947d 0.957d

Chitinb (1%) 2.134a 2.312a

Chitin (0.5%) + glucose (0.5%) 0.439fg 0.485fg

Chitin (0.5%) + GlcNAc (0.5%) 0.290h 0.278h

Chitin (0.5%) + alanine (0.5%) 0.274h 0.279h

Chitin (0.5%) + glycine (0.5%) 0.938d 1.039d

Chitin (0.5%) + methionine (0.5%) 1.997a 1.841ab

Chitin (0.5%) + valine (0.5%) 1.482c 1.731ab

Cuticlec (1%) 2.148a 1.978a

Cuticle (0.5%) + glucose (0.5%) 0.414g 0.437g

Cuticle (0.5%) + GlcNAc (0.5%) 0.289h 0.373g

Cuticle (0.5%) + alanine (0.5%) 0.518fg 0.776e

Cuticle (0.5%) + glycine (0.5%) 0.871d 1.015d

Cuticle (0.5%) + methionine (0.5%) 0.573f 0.691e

Cuticle (0.5%) + valine (0.5%) 0.714e 0.903de

Note. The results are means of three independent experiments, with
four replicates for each enzymatic assay. Chitinase activity was
determined with N,N¢,N¢¢,N¢¢¢-tetracetylchitotetraose. Means followed
by the same superscript letter in each column are not significantly
different according to Tukey HSD (p < 0.05).
aN-Acetylglucosamine.
bCrystalline chitin.
cB. microplus cuticle.
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most common species is the shape and size of the con-
idia. SEM analysis of infected B. microplus showed that
B. bassiana and B. amorpha conidia are capable of
attaching to the epicuticle surface (Fig. 1). The conidial
morphology of B. bassiana was generally spherical
(Fig. 1A), whereas B. amorpha conidia on ticks were
often flattened on one side as in the original description
(Fig. 1B). Adherence of conidia to the host surface is
probably mediated by hydrophobic interactions between
conidia and the arthropode cuticle [4] and production of
an adhesive mucous layer. The fungus produces a thin
amorphous mucilage layer and it firmly adheres the
conidia and germ tubes to the tick integument (Fig. 1B).
The first sign of conidia germination is germ-tube
extrusion. Each conidium from both species usually
produced only one germ tube that differentiated in
apressoria and penetrated the tick cuticle (Figs. 1A and
B). B. bassiana presented conidiogenous cells formed in
tightly clustered groups (Fig. 2), whereas B. amorpha
sometimes had solitary conidiogenous cells.

For most aspects of B. microplus infection by
B. amorpha and B. bassiana, our observations are con-
sistent with the commonly described sequence of events
that characterizes other entomopathogenic fungal inter-
actions [2, 8]. The penetration mode of entomopatho-
genic fungi is similar to that of plant pathogenic fungi
and is suggested to be based on a combination of
mechanical pressure and enzymatic degradation [28].
Appressoria adhere to the plant surface by secreting a
potent glue [11]. The force is exerted vertically and
might be efficiently directed to the cuticle [10].

We showed that B. amorpha and B. bassiana pro-
duce subtilisin-like proteases and chitinases in the
presence of tick cuticle. The multiplicity of these en-
zymes provides a major challenge in determining the
role played by each particular enzyme in adaptation to a
new environment or in pathogenicity. The high capacity
of the secretion machinery of these fungi is still to be

exploited for biotechnological purposes. However, our
knowledge of the fungal secretion pathway is still at an
early stage.
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