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n the study of fractals one regularly encounters math-
ematical objects with fractional dimension. It is surely
stranger still to find discussion of complex dimension.

What might that mean?
The concept was introduced in the 1990s by Michel

Lapidus and has since been extensively developed by him
and his collaborators. Our first aim in the present paper is
to present an introduction to the theory of Lapidus and
Pearse in the original setting of self-similar fractals in
R

n. We will go on to give a simple treatment of com-
plex dimensions of graph-directed fractals as investigated
by us.

In looking at a fractal, especially a self-similar fractal,
one naturally ‘‘thickens’’ it a bit to ‘‘make it visible.’’ So one
considers, along with any fractal F � R

n, its e-tube: that is,
the set of points at distance less than e from F. To see finer
detail, one reduces e[ 0:

Let us begin with one dimension, with the e-tube Ce of
the middle-third Cantor set C � ½0; 1� in R. Lapidus found
the following striking formula for its volume (see [5]):

VolðCeÞ ¼ ð2eÞ1�D 1

2

� �f� log3ð2eÞg
þ 3

2

� �f� log3ð2eÞg
 !

for all 0� e� 1
2; here D = log3 2 is the Minkowski dimen-

sion of the Cantor set and {x} = x - [[x]] denotes the
fractional part of x.

Manipulating this expression, Lapidus obtained the
formula

where p ¼ 2p
log 3. He coined the term ‘‘complex dimensions’’

for the complex numbers occurring here; they are
the complex roots of the Moran equation

1

3

� �s

þ 1

3

� �s

¼ 1

of the Cantor set.

It was familiar for the dimension to give the rate at which
bulk varied with linear dimension, and fractional dimensions
were known as an extension of this, as positive solutions of
Moran equations of fractals. But until the appearance of the
previously mentioned volume formula for the e-tube of the
Cantor set, no attention whatsoever had been given to the
complex roots of theMoranequation.Yet now these seemingly
meaningless complex rootsof theMoranequationof theCantor
setwere ‘‘controlling’’ thevolumeof the e-tubeof theCantor set!
Thus began the theory of complex dimensions of fractals.

A particularly nice and simple class of fractals is the self-
similar fractals. These are compact sets F � R

n, which satisfy
an equation F ¼

SJ
j¼1 SjðFÞ with some similarities

Sj : Rn ! R
n with similarity ratios 0\ rj \ 1. By similarity,

we mean a map S : Rn ! R
n of the form S ¼ r � Aþ b,

where A is an orthogonal map and b 2 R
n. Such a system of

similarities is called an iterated function system (IFS) on R
n;

and given an arbitrary IFS, there exists a unique compact set
F satisfying F ¼

SJ
j¼1 SjðFÞ, called the attractor of the IFS.
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Given any ratio list fr1; r2; . . .; rJg with 0 \ rj \ 1, the
associated equation

rs
1 þ rs

2 þ � � � þ rs
J ¼ 1;

is called the Moran equation. One ordinarily demands that
the system of similarities (Sj) satisfy the so-called open set
condition: that there exists an open set O � R

n such that
SjðOÞ � O and Si(O) \ Sj(O) = ; for i = j. In this case, the
unique non-negative real number satisfying the Moran
equation, the so-called similarity dimension of the ratio list
fr1; r2; . . .; rJg, coincides with the Hausdorff and Minkowski
dimensions of the fractal.

Lapidus and his coworkers (especially van Franken-
huijsen), turning their attention to the complex roots,
developed an elaborate theory of complex dimensions in R

as documented in [5]. Their theory provided tube formulas
not only for self-similar fractals but also for much more
general objects called fractal strings and generalized fractal
strings (for fractal strings see [8]). Based on the 1-dimen-
sional theory, Lapidus and Pearse obtained higher-
dimensional tube formulas in [6]. Further generalizations
are accomplished in [7]. Again, their theory covered not
only self-similar fractals but also the more general fractal
sprays and generalized fractal sprays, which were originally
introduced in [9]. Complex roots of the Moran equation
were still contributing to volume formulas of the e-tubes of
fractals, and much more precise information about the
underlying fractal geometry is obtained. These roots enable
us to express the hidden oscillations in the neighborhood-
volumes of fractals, and the frequency spectrum of fractal
drums ([5, 8], and references therein); the spectral study is
connected to the Riemann zeta function. ‘‘In essence, the
imaginary parts of the complex dimensions correspond to
the frequencies of the oscillations, while the real parts
control the amplitudes of the oscillations,’’ as M. Lapidus
puts it ([5, 8, 9]). We can give here only a brief introduction
to their theory, and we deal only with the information it
yields on volumes, not with the oscillations.

We applied the Lapidus-Pearse theory to graph-directed
fractals and expressed the volumes of e-tubes along the lines
of the Lapidus-Pearse tube formulas ([1]). For graph-directed
fractals there is a counterpart of the Moran equation helping
to determine the dimension. A graph-directed fractal has an
associated Mauldin-Williams matrix (see later) depending on
a complex argument s, and the unique real s-value for which
the spectral radius of the MW-matrix is 1 is called the sim-
value. This sim-value equals the Hausdorff and Minkowski
dimensions under suitable conditions.

In view of the analogy, the natural candidates for complex
dimensions for graph-directed fractals would be the set of
complex values of s for which the spectral radius of the MW-
matrix is 1. Surprisingly, it turns out that all values of s for
which 1 is an eigenvalue of the MW-matrix contribute to the
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Figure 1. e-tube (of the third stage) of the Cantor set.

Figure 3. The function eD�1 � VolðCeÞ oscillates: The Cantor

set is not ‘‘Minkowski measurable’’.

Figure 2. Graph of the volume of the e-tube of the Cantor set.
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tube formulas of graph-directed fractals, whether 1 is the
spectral radius of the MW-matrix or not. We call these new
values—for which the spectral radius of theMW-matrix is not
1, but for which 1 is an eigenvalue of the MW-matrix—the
hidden complex dimensions of the graph-directed fractal.

We want to introduce the reader to the whole beautiful
theory of complex dimensions and fractal tube formulas.
To keep the exposition within reasonable bounds, we will
concentrate on these two among many aspects: self-similar
and graph-directed fractals.

The Lapidus-Pearse Theory
We will try to explain the essence of the Lapidus-Pearse
theory in the following basic setting. Let G � R

n be a
nonempty, bounded open set. The inner e-neighborhood
of G is the set fx 2 Gjdistðx; oGÞ\eg, and we denote the
volume of this set by VGðeÞ. The supremum of the radii of
the balls contained in G is called the inradius of G and will
be denoted by g. For e� g, obviously, VGðeÞ does not
depend upon e and equals the volume of G.

What is a spray?

A spray generated by anopen set G � R
n is a collection

ðGiÞi2N of pairwise disjoint open sets Gi � R
n such that

Gi is a scaled copy of G by some ki [ 0 (i.e., Gi is

congruent to ki G).

The sequence ðkiÞi2N is called the associated scaling

sequence of the spray.

To make the volume of
S
i2N

Gi finite, we assumeP
i2N

kn
i \1.

In our applications, we will have ki \ 1 for i C 1 and

often k0 = 1, G0 = G.

Now the main question is the following: What is
the volume of the inner e-neighborhood of

S
i2N

Gi for a

spray ðGiÞi2N? The question is more tricky than it

sounds. The knowledge of G and of the scaling
sequence should determine the inner e-neighborhood
volume, but there are several technical obstructions to
getting a closed expression for it. First, the inner
neighborhood volume function of G can be rather
complicated. There are famous formulas (e.g., the Stei-
ner formula) for outer neighborhood volumes, but the
inner neighborhood behavior of even a planar polygon
can be unexpectedly complicated, and there are no
available general formulas.

The function VGðeÞ need not be polynomial. If VGðeÞ is a
polynomial function of e in the whole range between zero
and the inradius of G, then we say that G is monophase
polynomial (or simply monophase), see Example 1. In this
case we will write

VGðeÞ ¼ j0ðGÞen þ j1ðGÞen�1 þ � � � þ jn�1ðGÞe; for 0� e� g:

EX A M P L E 1 Let G � R
2 be the parallelogram in Figure 5.

Then the inradius is g ¼ 1
2
ffiffi
2
p and VGðeÞ ¼ 6e� 4

ffiffiffi
2
p

e2 for

0� e� 1
2
ffiffi
2
p ; so its inner e-neighborhood volume function is

monophase polynomial on the range [0, g].

EX A M P L E 2 Let G � R
2 be the hexagon in Figure 6. Its

inner e-neighborhood volume function displays polynomial

and nonpolynomial behavior on different subsegments of

[0, g]. With h ¼ /�1
2/ ; h0 ¼ /�1ffiffiffiffiffiffiffiffiffi

4/þ3
p ; g ¼

ffiffiffiffiffiffiffiffiffi
4/þ3
p
4/þ2 , and / the

golden ratio:
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VGðeÞ ¼

6e� 4
ffiffiffiffiffiffiffiffiffi
4/þ3
p
2/�1 � p

5

� �
e2 ; 0� e�h

6e� 4
ffiffiffiffiffiffiffiffiffi
4/þ3
p
2/�1 � p

5

� �
e2 � 2e2 arccos /�1

2/e

� �
þ /�1

/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 2�/

4/þ4

q
; h� e�h0

1
2

ð/�2Þ
ffiffiffiffiffiffiffiffiffi
4/þ3
p

/þ1 þ 2e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2/þ 1
p

� 2e2 8/þ5ffiffiffiffiffiffiffiffiffi
4/þ3
p ; h0 � e� g

1
2

ð2/�1Þ
ffiffiffiffiffiffiffiffiffi
4/þ3
p

/þ1 ; e[ g ¼ inradius;

8>>>>>>>>>><
>>>>>>>>>>:
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If VGðeÞ is piecewise-polynomial on [0, g], then G is said to
be pluriphase-polynomial. Otherwise, G is said to be non-
polynomial. In Example 2, VGðeÞ shows polynomial and
nonpolynomial behavior on different subsegments of [0, g].

Even in the case where VGðeÞ is nonpolynomial, it has
been shown in [7] that an analogue of Theorem 1 below
still holds. Our exposition will cover only the monophase
case.

Figure 4. A spray ðGiÞi2N and its inner e-neighborhood.

(a) (b)

Figure 5. (a) Parallelogram G and (b) inner e-neighborhood of G.

Figure 6. A polygon with nonpolynomial inner e-neighborhood volume.
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The second difficulty for the computation of the volume
of the inner e-neighborhood of

S
Gi is related to the nature

of the scaling sequence.

What is the scaling f-function of a spray?

Given a spray ðGiÞi2N, with the associated scaling

sequence ðkiÞi2N, the function fðsÞ ¼
P1
i¼0

ks
i is called

the scaling f-function of the spray.

A series of the form
P1
i¼0

ks
i , (ki [ 0, ki ? 0) is called a

Dirichlet series. It converges and is analytic on a half-plane
Re(s)[r0 (�1� r0�1); the number r0 is called the
abscissa of convergence. The general theory of computing
the volume-function V[Gi

ðeÞ depends on technicalities con-
cerning the behavior of the Dirichlet series (see [5] for
details). For self-similar and graph-directed fractals, we need
only special scaling sequences ki, which we describe below,
and the corresponding f-functions are well behaved.

1. Scaling sequences of the first type (‘‘Fullshift’’

sequences)

The first type is related to self-similar fractals. Let
fr1; r2; . . .; rJg be a ratio list (0\rj\1; j ¼ 1; 2; . . .; J ).

Consider the set Wk of words w ¼ w1w2 � � �wk of length

k with letters from f1; 2; . . .; Jg and W ¼
S1

k¼0

Wk, where

W0 denotes for convenience the set {;} of the empty
word. For w ¼ w1w2 � � �wk we define rw ¼ rw1

rw2
� � � rwk

(for the empty word we set r; = 1). Choose an order on
W, say, by the lexicographic order on Wk, and consider
the sequence ðrwÞw2W . This sequence will look like

1; r1; r2; . . .; rJ ; r1r1; r1r2; . . .; r1rJ ; r2r1; r2r2; r2r3; . . .:

Our first type of scaling sequences ðkiÞi2N will have this

form. We will call such a sequence ðkiÞi2N a sequence

associated with a ratio list fr1; r2; . . .; rJg.
The relation of these sequences to self-similar fractals is
as follows: If F � R

n is a self-similar fractal with F ¼
SJ
j¼1

SjðFÞ (Sj : Rn ! R
n are similarities with 0\ rj \ 1),

then for every word w ¼ w1w2 � � �wk with letters from
f1; 2; . . .; Jg there is a scaled copy Sw1

� Sw2
� � � � � Swk

ðFÞ
of the fractal F inside itself with the scaling ratio
rw ¼ rw1

rw2
� � � rwk

.If the scaling sequence ðkiÞi2N is of

the aforementioned form, then the Dirichlet series fðsÞ ¼P1
i¼0 ks

i has the abscissa of convergence r0 = D, where

D is the similarity dimension of the ratio list

fr1; r2; . . .; rJg. The sum
P1

i¼0 ks
i can be easily evaluated

to yield ([5, Theorem 2.4])

fðsÞ ¼ 1

1� ðrs
1 þ rs

2 þ � � � þ rs
J Þ
; for Re ðsÞ[ D:

2. Scaling sequences of the second type (‘‘Subshift of finite

type’’ sequences)

The second type is related to graph-directed fractals. We
will consider graph-directed fractals later, but anticipating a
bit, we can introduce weighted directed graphs and define
scaling sequences of the second type.

Let G ¼ ðV ; E; rÞ be a (finite) weighted directed graph,
where V is the set of vertices, E is the set of edges, and
r : E ! ð0;1Þ is the weight function. We assume the
weights to lie always in the interval (0,1), in which case the
graph is called strictly contracting. Let a transition function
h on E 9 E be defined by

hðe; f Þ ¼
1; if the terminal vertex of e equals the initial vertex of f

0; otherwise.

�

Consider the set W k
uv of words a ¼ e1e2 � � � ek of length

k with letters from E such that h(ei,ei+1) = 1 ði ¼ 1; . . .;
k � 1Þ, the initial vertex of e1 is u, and the terminal vertex
of ek is v. (These words correspond to paths of length
k from the vertex u to the vertex v in the graph.) For k = 0
we use the conventions W 0

uu = {;} and W 0
uv = ; for

u = v.
For a 2 W uv

k we define ra ¼ re1
re2
� � � rek

(where we write

re for r(e)). For the empty word a 2 W uu
0 , we set ra = 1.

Choose an order on W uv ¼
S1

k¼0

W uv
k and consider the

sequence ðraÞa2W uv . A sequence of this type will be called a

scaling sequence of the second type associated with the
graph G and the vertex pair (u, v). They will emerge natu-
rally in the computation of the tube volumes of graph-
directed fractals, and we will discuss their scaling f-func-
tions in that connection.

How to compute the volume function of the inner

e-neighborhood of a spray?

Now, let ðGiÞi2N be a spray with the associated scaling
sequence ðkiÞi2N.Wehave tocomputeV[Gi

ðeÞ ¼
P

i VGi
ðeÞ ¼P

i VkiGðeÞ. One of the problems is that the inner e-neigh-
borhood of a scaled copy of G is not the corresponding scaled
copy of the inner e-neighborhood of G. Obviously, VGi

ðkieÞ ¼
kn

i VGðeÞ for 0� e� g and

VGi
ðeÞ ¼ kn

i VGðe=kiÞ
for 0� e� kig ¼: gi; gi being the inradius of Gi:

In the sum
P

i VkiGðeÞ, if ki is small enough (i.e., if ki\e=g),
the inner e-neighborhood will fill Gi, and for such ki we will
have VGi

ðeÞ ¼ VolðGiÞ ¼ kn
i VolðGÞ. For the other ki’s, there

are genuine e-neighborhoods not filling the Gi fully (see
Fig. 4). Therefore we can write

V[Gi
ðeÞ ¼

X
ki � e=g

VGi
ðeÞ þ

X
ki\e=g

VGi
ðeÞ

¼
X

ki � e=g

VGi
ðeÞ þ

X
ki\e=g

kn
i VolðGÞ:

It is, however, almost impossible to manipulate this bipartite
sum except in simple special cases. (See, however, [7].)

At this point, another approach to handling the sum
V[Gi
ðeÞ ¼

P
VGi
ðeÞ proves useful. The strategy will be to

take an appropriate Mellin transform and then the inverse
Mellin transform to express this sum as a sum of residues of
a certain meromorphic function.
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Computation for the monophase case with scaling

sequence of the first type

We assume G � R
n to be monophase, so that we can write

its inner e-neighborhood volume function as

VGðeÞ ¼
Pn�1

i¼0
jien�i ; 0� e� g

VolðGÞ ; e[ g

8<
: ð1Þ

and we assume the scaling sequence ðkiÞi2N to be
of the first type associated with a ratio list fr1; r2; . . .; rJg. Let
D denote the similarity dimension of the ratio list.

We define the auxiliary function fGðx; eÞ :¼ VxGðeÞ (for
x; e[ 0), which expresses the inner e-neighborhood vol-
ume of a copy of G scaled by x [ 0. Since
VxGðeÞ ¼ xnVGðe=xÞ,

fGðx; eÞ ¼
Pn�1

i¼0
jix

ien�i ; 0� e� xg

xnVolðGÞ ; e [ xg

8<
: :

The Mellin transform M½f ; s� of a function
f : ð0;1Þ ! R is given by

M½f ; s� ¼ ef ðsÞ ¼
Z 1

0

xs�1f ðxÞdx:

For fixed e, we take the Mellin transform of fGðx; eÞ as a
function of x. We easily obtain

efGðs; eÞ ¼ esþn VolðGÞ
gsþnðs þ nÞ �

Xn�1

i¼0

ji

gsþiðs þ iÞ

 !

for � n\ReðsÞ\� nþ 1:

With the convention jn = -Vol(G), this is simply

efGðs; eÞ ¼ �esþn
Xn

i¼0

ji

gsþiðs þ iÞ :

Taking now the inverse Mellin transform of efGðs; eÞ, we
obtain

for any n - 1 \ c \ n. By the change of variable s! �s,

for n - 1 \ c \ n. The assumption
P

kn
i \1 implies

D \ n and we choose c to satisfy also D \ c \ n. Inserting
the aforementioned expression into V[Gi

ðeÞ ¼
P1

i¼0 VkiGðeÞ,
we obtain

Changing the order of the sum and the integral (a justifi-
cation can be found in [2]), we obtain

As we have noted previously,

fðsÞ ¼
X1
i¼0

ks
i ¼

1

1� ðrs
1 þ rs

2 þ � � � þ rs
J Þ
; for ReðsÞ[ D:

The right-hand side has a meromorphic extension to the
whole complex plane, and from now on we will under-
stand by fðsÞ this meromorphic extension. It can easily be
shown that all the poles of this function lie on a vertical
strip D‘ B Re(s) B D for some D‘ 2 R (see [5, Theorem
3.6]). We choose D‘ to be negative.

What are the complex dimensions of a spray with

scaling sequence of the first type?

Let ðGiÞi2N be a spray with a scaling sequence (ki) of

the first type associated with a ratio list fr1; r2; :::; rJg.
The poles of the (extended) f-function

fðsÞ ¼ 1

1� ðrs
1 þ rs

2 þ � � � þ rs
J Þ

are called the complex dimensions of the spray (Gi).

This set of poles will be denoted by D.

What is the geometric f-function of a spray?

Let ðGiÞi2N be a spray with the associated scaling

sequence (ki) of either the first or the second type. Let

f(s)be the zeta functionof the spray (Gi).Assume that the

generator G is monophase with the inner e-neighbor-

hood volume function as given in (1). Then the product

fðsÞefGð�s; eÞ ¼ fðsÞen�s
Xn

i¼0

gs�i

s � i
ji

is called the geometric zeta function of the spray and

is denoted by fG
(k )i

(s, e) or fG(s, e).
While the scaling zeta function f(s) depends only on

the scaling sequence of the spray, the geometric zeta

function depends on the geometry of G also.

The volume of the inner e-neighborhood of a spray with a
scaling sequence of the first type can now be expressed as

Figure 7. The poles of the geometric f-function lie in the

vertical strip D‘ B Re(s) B D. To evaluate the integral (2), we

apply the residue theorem to the rectangle with corners
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ð2Þ

This integral can be written as a sum of residues of the
geometric zeta function fGðs; eÞ by applying the residue
theorem to an appropriate rectangle with a right side edge

and then letting T !1 (see Fig. 7; for the
details of the proof see [1, 2, 5, 6]).

We thus have given a sketch-proof of the following the-
orem, which was originally proved in a more general setting
and distributionally in [11] and [6]. A pointwise proof for self-
similar as well as graph-directed fractalswas given in [1] (for a
simplified version of the proof see also [2]). For further
generalizations and pointwise proofs, see [7] and [5, 2nd ed.].

TH E O R E M 1 Let ðGiÞi2N be a spray generated by a

monophase open set G � R
n with a scaling sequence ðkiÞi2N

of the first type associated with ratio list fr1; r2; . . .; rJg.
Then the volume V[Gi

ðeÞ of the inner e-neighborhood

of
S

Gi is given by the formula

V[Gi
ðeÞ ¼

X
x2D[f0;1;2;...;n�1g

resðfGðs; eÞ; xÞ; for e\g

where fGðs; eÞ is the geometric f-function, and D is the set of
the complex dimensions (i.e., the poles of the scaling f-
function fðsÞ) of the spray (Gi).

EX A M P L E 3 (Recovery of the tube formula of the Cantor

set) The middle-third Cantor set C � ½0; 1� is the attractor

of an IFS on R with a ratio list f13 ; 13g. (Take

S1ðxÞ ¼ x
3 ; S2ðxÞ ¼ x

3 þ 2
3 Þ. The Moran equation is 1

3s þ 1
3s ¼ 1

giving the dimension D = log3 2. The e-neighborhood of

C consists of two parts: The outer e-neighborhood of [0,1] with

volume 2e; and the inner e-neighborhood of the Cantor spray

ðGiÞi2N generated by G ¼ 1
3 ;

2
3

� �
. The scaling sequence is of the

first type and the scaling f-function is fðsÞ ¼ 1
1�2� 1

3s
. The set of

poles of fðsÞ (i.e., the complex dimensions of the Cantor spray)

is with p ¼ 2p
log 3.

The volume of the inner e-neighborhood of G is given by

VGðeÞ ¼
2e ; 0� e� 1

6
1
3 ; e[ 1

6 ;

�

so that the geometric f-function is given by

fGðs; eÞ ¼ fðsÞe1�s 1

6s

1

s
� 2� 1

6s�1

1

s � 1
� 1
3

� �
:

The volume of the inner e-neighborhood of the spray (Gi)

is given by Theorem 1 as follows:

Adding the volume of the outer e-neighborhood, we obtain
the formula for VolðCeÞ in the introduction.

As in this example of the Cantor set, Theorem 1 can be
applied under certain conditions to compute the tube-
volumes of IFS-generated fractals. We give a second
example in the same spirit.

EXAMPLE 4 Consider the IFS on R
2 with ratio list

f12 ; 12 ; 12 ; 14 ; 14g as shown in Figure 9(a),(b). The attractor F of

this IFS is indicated in Figure 9(c). The e-tube of F consists

of two parts: the outer e-neighborhood of the convex hull of

the fractal and the inner e-neighborhood of the spray

ðGiÞi2N generated by the parallelogram G (see Figure 9(d)).

The Moran equation of the ratio list is

3
1

2

� �s

þ2
1

4

� �s

¼ 1;

and the similarity dimension is D ¼ � log2
�3þ

ffiffiffiffi
17
p

4 	 1:832.
The scaling zeta function is fðsÞ ¼ 1

1�3�2�s�2�2�2s. The set of poles

of fðsÞ is

with p ¼ 2p
log 2 and D0 ¼ � log2

3þ
ffiffiffiffi
17
p

4 .

The volume of the inner e-neighborhood of the generator

G is given by

VGðeÞ ¼
ð1þ

ffiffiffi
2
p
Þe� 4

ffiffiffi
2
p

e2 ; 0� e� 1
4
ffiffi
2
p

1
4 ; e[ 1

4
ffiffi
2
p

�

so that the geometric zeta function is given by

fGðs; eÞ ¼ e2�sfðsÞ
"

1

4
ffiffiffi
2
p

� �s1

s
ð�4

ffiffiffi
2
p
Þ þ 1

4
ffiffiffi
2
p

� �s�1


 1

s � 1
ð1þ

ffiffiffi
2
p
Þ þ 1

4
ffiffiffi
2
p

� �s�2 1

s � 2
� 1

4

� �#
:

By Theorem 1, the volume of the inner e-neighborhood of

the spray (Gi) is given as
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The volume of the outer e-neighborhood of the
convex hull of the fractal simply equals pe2 þ ð4þ 2

ffiffiffi
2
p
Þe.

Adding these two terms gives the volume of the e-tube
of F.

How to compute the tube volumes of self-similar

fractals

The picture we discussed in the Examples 3 and 4 holds for
the attractor F of an iterated function system fSj j j ¼
1; 2; . . .; Jg under the following fairly general conditions
([13]).

(IFS.1) dim C = n, where C is the convex hull of F
(IFS.2) (Tileset Condition) The open set condition should

be satisfied with O = int(C)
(IFS.3) (Nontriviality Condition) intðCÞ*

SJ
j¼1

SjðCÞ

(IFS.4) (Pearse-Winter Condition) oC � F .

If these conditions hold, then the e-tube of the fractal
decomposes into a disjoint union of the outer e-tube of the
convex hull C and the inner e-tube of a spray (Gi) gener-
ated by the set G ¼ intðCÞ n

SJ
j¼1 SjðCÞ. The scaling factors

ki of (Gi) are given by the sequence ðkiÞi2N associated with
the ratio list fr1; r2; . . .; rJg. If the connected components of
G are monophase, then the procedure we described earlier
can be applied to compute the volume of the e-tube of the
fractal (see [5, 6, 12, 13]).

As is well-known, the Steiner formula states that the
volume VolðAeÞ of the e-tube of a convex body A � R

n is
given by a polynomial

VolðAeÞ ¼
Xn

i¼0

cie
n�i:

Under the above conditions (and if all the poles of the
geometric f-function are simple) the volume of the e-tube
of a fractal can be expressed as a series

(a) (b)

(d)(c)

Figure 9. (a) An isosceles right-angled triangle of side-length 2, (b) The similarities S1; S2; . . .; S5, (c) The attractor F, (d) The e-tube

of F.

Figure 8. The Cantor spray.
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VolðFeÞ ¼
X

x2D[f0;1;...;n�1g
cxen�x;

where D is the set of complex dimensions of the fractal. In
this sense, the fractal tube formula is a generalization of the
Steiner formula. This analogy shows the significance of the
notion of complex dimensions.

We now recall a famous example, which illustrates these
notionsbutwhichdoesnot satisfy thePearse-Winter condition.

EX A M P L E 5 (Koch Spray) The standard Koch curve

K can be realized as the attractor of an IFS on the complex

plane Cð¼ R
2Þ with the pair of similarities S1ðzÞ ¼ nz and

S2ðzÞ ¼ ð1� nÞðz � 1Þ þ 1 with We have the

ratio list 1ffiffi
3
p ; 1ffiffi

3
p

n o
yielding the Moran equation

1ffiffi
3
p
� �s

þ 1ffiffi
3
p
� �s

¼ 1, giving the dimension D = log3 4. Con-

sider the convex hull of the Koch curve K and subtract from

the interior of this convex hull the union S1(K) [ S2(K). The

remaining open set G is monophase and generates a spray

ðGiÞi2N under successive iterations of the given similarities.

This spray has a scaling sequence of the first type with the

scaling f-function fðsÞ ¼ 1
1�2�3�s=2. The complex dimensions

are with p ¼ 2p
log 3. Computing the

volume of the inner e-neighborhood of the generator G and

the geometric f-function of the spray, one can obtain the

volume of the inner e-neighborhood of the spray by

applying Theorem 1. (For the details see [5, 6].)

Tubes of Graph-Directed Fractals
Graph-directed fractals, introduced by Mauldin and Wil-
liams ([10]), are interesting generalizations of classical
fractals. We will give a brief introduction to them and then
discuss their tubes.

Let G ¼ ðV ; E; rÞ be a weighted directed graph with
weights r : E ! ð0; 1Þ. For vertices u; v 2 V ; the set of
edges from u to v is denoted by Euv and the set of all edges
with initial vertex u is denoted by Eu :¼

S
v2V Euv. If Eu = ;

for all u 2 V , then the graph G is called a Mauldin-Williams
(MW) graph. A MW-graph is called strongly connected if
there is a directed path from any vertex to any other vertex.

A graph-directed iterated function system (GIFS) realiz-
ing the MW-graph consists of a set of complete metric
spaces (Xv, qv), one for each vertex v 2 V , and similarities
Se : Xv ! Xu, one for each edge e 2 Euv, with similarity
ratio re: = r(e). We also say then that ðSeÞe2E realizes the
graph in complete metric spaces Xv. If for all
v 2 V ;Xv ¼ R

n for some fixed n, then the realization is
called a Euclidean realization. In the special case that the

vertex set is a singleton, the GIFS reduces to the classical
self-similar IFS. The following result ([3]) is the graph-
directed counterpart of the IFS theorem of Hutchinson ([4]).

What is a graph-directed fractal?

Let (V, E, r) be an MW-graph and let (Se)e[E realize the

graph in complete metric spaces Xv. Then there exist

unique nonempty compact sets Ku , Xu such that

Ku ¼
[
v2V

[
e2Euv

SeðKvÞ

for all u [ V. The compact metric spaces Ku are called

the attractors of the graph-directed iterated function

system realizing the MW-graph, or simply, graph-

directed fractals.

Here is an example of a GIFS.

EX A M P L E 6 Consider the MW-graph in Figure 11 with

three vertices. In Figure 12 we give a Euclidean GIFS real-

izing this MW-graph and in Figure 13 we indicate the

attractors of the GIFS.

If a Euclidean realization (Se) of a strongly connected MW-
graph (V, E, r) satisfies the open set condition, then the
dimension of the attractors of the GIFS can be computed by
a theorem of Mauldin and Williams ([10]). We recall what is
meant by the open set condition in the graph-directed case
([3, p. 205]):

There should exist nonempty open sets Ov � R
n such that

i) SeðOvÞ � Ou for all u, v and e 2 Euv.
ii) Se (Ov) \ Se’(Ov’) = ; for all u; v; v0 2 V ; e 2 Euv; e

0 2 Euv0

with e = e0.

Now let (V, E, r) be a strongly connected MW-graph,
where we assume V ¼ f1; 2; . . .;Ng. The matrix
A(s) = [Auv(s)], where

AuvðsÞ ¼
X
e2Euv

rs
e

for 1 B u,v B N, is called the MW-matrix of the graph. For
graph-directed fractals, this matrix in a sense plays the role
of the Moran equation. For s 2 R;AðsÞ is a non-negative,
irreducible matrix (by strong connectedness of the graph),
and by Perron-Frobenius theory the spectral radius q(A(s))

Figure 10. The Koch spray.

Figure 11. A strongly connected Mauldin-Williams graph.
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is decreasing (see [3]). The unique non-negative real
number s0 for which the spectral radius q(A(s)) of the
matrix A(s) is 1 is called the sim-value of the graph. Let (Se)
be a Euclidean realization of (V, E, r) satisfying the open
set condition. Then the Hausdorff, Minkowski, and packing
dimensions of the attractors coincide and equal the sim-
value s0.

For our purposes it will be convenient to consider s as a
complex variable.

EX A M P L E 6 (continued) The MW-matrix of the

graph in Figure 11 is

AðsÞ ¼
0 4ð12Þ

s 0
0 3ð14Þ

s ð12Þ
s

ð12Þ
s 2ð12Þ

s 2ð12Þ
s

0
@

1
A:

Because detðI � AðsÞÞ ¼ 2 � 2�3s � 5 � 2�2s � 2 � 2�s þ 1, the
complex numbers s for which 1 is an eigenvalue of A(s) are

ð3Þ

where p ¼ 2p
log2, and a0, a1, a2 are approximately 1.73,

0.76, and -1.48 respectively. We see that the sim-value
is s0 = a0 & 1.73, since this is the only non-negative
real s for which 1 is an eigenvalue of A(s). The
spectral radius of A(s) must in fact be 1 for this value. The
other values in this list will soon play unexpected roles.

How to compute the tubes of graph-directed fractals

Let G ¼ ðV ; E; rÞ be a strongly connected MW-graph,
ðSeÞe2E be a Euclidean realization, and ðKuÞu2V be the
attractors of the graph-directed system. Let Cu be the con-
vex hull of Ku in R

n. We assume the following conditions:

(GIFS.1) dim (Cu) = n
(GIFS.2) (Tileset condition) The open set condition should

be satisfied with Ov = int(Cv)
(GIFS.3) (Nontriviality condition) intðCuÞ *

[
e2Eu

SeðCvÞ

(GIFS.4) (Pearse-Winter Condition) oCu � Ku.

Now we define Gu :¼ intðCuÞ n
S

e2Eu
SeðCvÞ. The

‘‘hollow space’’ Hu ¼ intðCuÞ n Ku is a union of cer-
tain sprays generatedby the Gv’s (v 2 V ). Tobemore specific,

Hu ¼
[
v2V

[
O2sprayuðGvÞ

O; ð4Þ

where sprayu(Gv) is the spray generated by Gv consisting of
the collection of all open sets ðSe1

� Se2
� � � � � Sek

ÞðGvÞ,
where e1e2 � � � ek is a path from u to v in the graph G.

The scaling factor of Se1
� Se2

� � � � � Sek
is re1

re2
� � � rek

, the
weight of the path e1e2 � � � ek. We see that the open sets of
the spray sprayu(Gv) have the scaling ratios ka ¼
re1

re2
� � � rek

, where a ¼ e1e2 � � � ek is any path from u to v in
the graph G.

Figure 12. The similarities realizing the MW-graph (in Figure 11) in R
2.

Figure 13. The attractors of the GIFS in Figure 12.
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This shows that the scaling sequence of this spray is a
sequence of the second type.

This consideration reduces the computation of the vol-
ume of the inner e-neighborhood of the hollow space Hu to
the computation of the volumes of the inner e-neighbor-
hoods of the sprays sprayu(Gv) for v 2 V . So the problem
becomes to get control of the associated sequence of
weights ka for all paths from u to v.

What is a scaling f-matrix function?

To encode the ‘‘path weights’’ ka ¼ re1
re2
� � � rek

for

paths a ¼ e1e2. . . ek from a vertex u to a vertex v in a

weighted directed graph G, we define the following

scaling f-matrix function f(s) = [ fuv(s) ]:

fuvðsÞ ¼
X1
k¼0

X
a2W uv

k

ks
a;

where Wk
uv is the set of paths a ¼ e1e2. . .ek of length

k from u to v and ka ¼ re1
re2

. . .rek
. Note that

fuv(s) =
P

a ka
s for all paths a from u to v.

LE M M A 1 fðsÞ ¼ ðI � AðsÞÞ�1 for Re(s)[ s0, where s0 is

the sim-value of the graph.

PR O O F . [Ak(s)]uv is the sum of ka
s ’s for paths of length k from

u to v. Thus
P1

k¼0 AkðsÞ
� 	

uv
¼
P

a ks
a for all paths a from u to

v. If s is real and greater than s0, then q(A(s)) is less than 1.

Therefore
P1

k¼0 AkðsÞ converges and equals (I - A(s))-1 for

s 2 R; s [ s0. Hence the series
P

a ka
s is convergent for

s 2 R; s [ s0, and, being a Dirichlet series, it is convergent

and analytic in the half plane Re(s)[ s0.

On the other hand, ½ðI � AðsÞÞ�1�uv ¼
½adjðI�AðsÞÞ�uv

detðI�AðsÞÞ is

meromorphic on C. Combining the three facts

i)
P

a ka
s is analytic on Re(s)[ s0,

ii) ðI � AðsÞÞ�1� 	
uv

is meromorphic on Re(s) [ s0,
iii)

P
a ks

a ¼ ðI � AðsÞÞ�1� 	
uv

for s 2 R; s [ s0

we conclude, by the unicity theorem, that

ðI � AðsÞÞ�1� 	
uv
¼
X

a

ks
a for all ReðsÞ[ s0:

The proof of this lemma shows that
½adjðI�AðsÞÞ�uv

detðI�AðsÞÞ is the
meromorphic extension of fuvðsÞ to the whole complex
plane C. From now on, by fuvðsÞ we will understand this
extension.

What are the complex dimensions of a spray with

scaling sequence of the second type?

Let ðGiÞi2N be a spray with a scaling sequence (ki) of

the second type associated with a graph G and vertex

pair (u, v). The poles of the (extended) f-function

fuvðsÞ ¼
½adjðI � AðsÞÞ�uv

detðI � AðsÞÞ

are called the complex dimensions of the spray (Gi).

This set of poles will be denoted by Duv.

Computation of the inner e-neighborhood volume

of a spray with monophase generator and scaling

sequence of the second type

The following is the counterpart of Theorem 1 for the
volume of the inner e-neighborhood of a spray ðGiÞi2N,
when the associated scaling sequence is of the second type.
(The proof of this theorem is similar to the proof of The-
orem 1, for details see [1].)

TH E O R E M 2 Let ðGiÞi2N be a spray generated by a

monophase open set G � R
n with a scaling sequence

ðkiÞi2N of the second type associated with a graph G
and the vertex pair (u, v). Then the volume V[Gi

ðeÞ of

the inner e-neighborhood of
S

Gi is given by the for-

mula

V[Gi
ðeÞ ¼

X
x2Duv[f0;1;2;...;n�1g

resðfG
uvðs; eÞ; xÞ;

where fG
uv is the geometric f-function, and Duv is the set

of the complex dimensions (i.e., the poles of the scaling f-
function fuvðsÞ) of the spray (Gi).

Finally, we are in a position to compute the tube
volume of graph-directed fractals. Under the conditions
(GIFS.1)-(GIFS.4) we had noted (see (4)) that the hollow
space Hu of the graph-directed fractal Ku could be
expressed as a union of elements from the sprays
sprayu(Gv).

Now, the associated scaling sequence of each spray
sprayu(Gv) is of the second type and, if we assume that
the components of the Gv’s are monophase, we can
apply Theorem 2 and compute the volume of the inner
e-neighborhood of the hollow space Hu. To obtain the
full tube volume of the fractal Ku, we need only to add
the volume of the outer e-neighborhood of the convex
hull of Ku.

EX A M P L E 6 (continued)

ðI � AðsÞÞ�1 ¼ 1

2 � 2�3s � 5 � 2�2s � 2 � 2�s þ 1



6 � 2�3s � 5 � 2�2s � 2 � 2�s þ 1 4 � 2�s � 8 � 2�s 4 � 2�2s

2�2s 1� 2 � 2�s 2�s

2�s � 3 � 2�3s 4 � 2�2s þ 2 � 2�s 1� 3 � 2�2s

2
64

3
75

The zeta function fuvðsÞ is the uv-entry of the above

matrix. For example

f2;3ðsÞ ¼
2�s

2 � 2�3s � 5 � 2�2s � 2 � 2�s þ 1
:

As can be seen from Figure 12, each attractor Ku has
only one generator Gu. As an example, we examine the
spray2(G3), the spray of copies of G3 that appear in the
hollow space H2. Since

VG3
ðeÞ ¼

ð1þ
ffiffiffi
2
p
Þe� 4

ffiffiffi
2
p

e2 ; 0� e� 1
4
ffiffi
2
p

1
4 ; e[ 1

4
ffiffi
2
p ;

8<
:
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the geometric zeta function fG3

2;3ðsÞ is given by

fG3

2;3ðsÞ ¼ e2�s 2�s

2 � 2�3s � 5 � 2�2s � 2 � 2�s þ 1



 

1

s

1

4
ffiffiffi
2
p

� �s

ð�4
ffiffiffi
2
p
Þ þ 1

s � 1

1

4
ffiffiffi
2
p

� �s�1

ð1þ
ffiffiffi
2
p
Þ

� 1

s � 2

1

4
ffiffiffi
2
p

� �s�21

4

�
:

As computed before (see (3)), the set of poles of the scaling
zeta function f2;3ðsÞ is

where

We note that the volume of the whole inner e-neigh-
borhood of the hollow space H2 can be computed by
additionally applying the spray formula to the sprays
spray2(G1) and spray2(G2) and adding to the already com-
puted sum. One can then obtain the volume of the whole e-
tube of the second fractal by adding the volume of the
outer e-neighborhood of the convex hull of the second
fractal. This recipe works generally for graph-directed
fractals under the conditions (GIFS.1)-(GIFS.4).

What are the hidden complex dimensions of graph-

directed fractals?

As we see in the previous example, not only the

complex values of s for which the spectral radius of

the Mauldin-Williams matrix A(s) is 1 contribute to

the volume formula. The other complex values of

s for which 1 is an eigenvalue of A(s) do also con-

tribute, by giving the set of poles Duv of the scaling

zeta function. These values of s are what we call the

hidden complex dimensions of graph-directed

fractals.

Noncancellation phenomenon

A last issue to discuss is the so-called noncancellation
phenomenon. As fuvðsÞ is given by

½ðI � AðsÞÞ�1�uv ¼
½adjðI � AðsÞÞ�uv

detðI � AðsÞÞ ;

it can happen that some roots of det(I - A(s)) might be
cancelled by the roots of [adj(I - A(s))]uv. We give below
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an example where this happens. It might seem possible,
then, for some roots of det(I - A(s)) not to appear as a pole
of any fuvðsÞ.

EX A M P L E 7 Consider the graph in Figure 15, where r is

some fixed number 0 \ r \ 1. The Mauldin-Williams

matrix is AðsÞ ¼ r2s rs þ r2s

r s rs


 �
, so that det(I - A(s)) =

1 - rs - r2s = (1 + rs)(1 - 2rs) and

ðI � AðsÞÞ�1 ¼ 1

1� rs � r2s

r2s r s þ r2s

rs rs


 �
:

The set of complex dimensions of the system is

where p ¼ 2p
log r; whereas, for example,

by cancellation in

f1;2 ¼ ½ðI � AðsÞÞ�1�12 ¼
rs þ r2s

ð1þ rsÞð1� 2rsÞ ¼
rs

1� 2rs
:

So only some of the values of s occurring in D occur as
values in D1;2: Nevertheless one shows by linear algebra
that, in general, all of them must occur in Duv for some
u, v.

Note added in proof: We are informed by the referee
that Stephen Muir has introduced and studied a

geometric zeta function for graph-directed fractals under
suitable conditions in a yet unpublished work. His
work, however does not involve the study of tube
formulas.
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