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TT
he digit expansions of p; e;

ffiffiffi

2
p

, and other mathemat-
ical constants have fascinated mathematicians from
the dawn of history. Indeed, one prime motivation

for computing and analyzing digits of p is to explore the
age-old question of whether and why these digits appear
‘‘random.’’ The first computation on ENIAC in 1949 of p to
2037 decimal places was proposed by John von Neumann
so as to shed some light on the distribution of p (and of e)
[15, pg. 277–281].

One key question of some significance is whether (and
why)numbers suchaspand e are ‘‘normal.’’ A real constanta is
b-normal if, given the positive integer b C 2, every m-long
string of base-b digits appears in the base-b expansion of a
with precisely the expected limiting frequency 1/bm. It is a
well-established, albeit counterintuitive, fact that given an
integer b C 2, almost all real numbers, in the measure theory
sense, are b-normal. What’s more, almost all real numbers are
b-normal simultaneously for all positive integer bases (a
property known as ‘‘absolutely normal’’).

Nonetheless, it has been surprisingly difficult to prove
normality for well-known mathematical constants for any
given base b, much less all bases simultaneously. The first
constant to be proven 10-normal is the Champernowne
number, namely theconstant 0:12345678910111213141516. . .,
produced by concatenating the decimal representation of all
positive integers in order. Some additional results of this sort
were established in the 1940s by Copeland and Erd}os [26].

At present, normality proofs are not available for any well-
known constant such asp; e; log 2;

ffiffiffi

2
p

. We donot even know,
say, that a 1 appears one-half of the time, in the limit, in the
binary expansion of

ffiffiffi

2
p

(although it certainly appears to), nor
do we know for certain that a 1 appears infinitely often in the
decimal expansion of

ffiffiffi

2
p

. For that matter, it is widely believed

that every irrational algebraicnumber (i.e., every irrational root
of an algebraic polynomial with integer coefficients) is
b-normal to all positive integer bases b, but there is no proof,
not for any specific algebraic number to any specific base.

In 2002, one of the present authors (Bailey) and Richard
Crandall showed that given a real number r in [0,1), with rk

denoting the k-th binary digit of r, the real number

a2;3ðrÞ :¼
X

1

k¼1

1

3k23kþrk
ð1Þ

is 2-normal. It can be seen that if r = s, then a2,3(r) = a2,3(s),
so that these constants are all distinct. Since r can range over
the unit interval, this class of constants is uncountable. So, for
example, the constant a2;3 ¼ a2;3ð0Þ ¼

P

k� 1 1=ð3k23k Þ ¼
0:0418836808315030. . . is provably 2-normal (this special
case was proven by Stoneham in 1973 [43]). A similar result
applies if 2 and 3 in formula (1) are replaced by any pair of
coprime integers (b, c) with b C 2 and c C 2 [10]. More
recently, Bailey and Michal Misiurewicz were able to
establish 2-normality of a2,3 by a simpler argument, by uti-
lizing a ‘‘hot spot’’ lemma proven using ergodic theory
methods [11].

In 2004, two of the present authors (Bailey and Jonathan
Borwein), together with Richard Crandall and Carl Pomer-
ance, proved the following: If a positive real y has algebraic
degree D [ 1, then the number #(y, N) of 1-bits in the binary
expansionof y throughbit positionN satisfies #(y,N)[CN1/D,
for a positive number C (depending on y) and all sufficiently
large N [5]. A related result has been obtained by Hajime
Kaneko of Kyoto University in Japan [37]. However, these
results fall far short of establishing b-normality for any irra-
tional algebraic in any base b, even in the single-digit sense.
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1 Twenty-First Century Approaches
to the Normality Problem

In spite of such developments, there is a sense in the field that
more powerful techniques must be brought to bear on this
problem before additional substantial progress can be
achieved. One idea along this line is to study directly the
decimal expansions (or expansions in other number bases) of
various mathematical constants by applying some techniques
of scientific visualization and large-scale data analysis.

In a recent paper [4], by accessing the results of several
extremely large recent computations [46, 47], the authors tes-
ted the first roughly four trillion hexadecimal digits of p by
means of a Poisson process model: in this model, it is
extraordinarily unlikely that p is not normal base 16, given its
initial segment. During that work, the authors of [4], like many
others, investigated visual methods of representing their large
mathematical data sets. Their chosen tool was to represent
these data as walks in the plane.

In thiswork, based inpart on sources such as [22, 23, 21, 19,
14], we make a more rigorous and quantitative study of these
walks on numbers. We pay particular attention to p, for which
we have copious data and which—despite the fact that its
digits can be generated by simple algorithms—behaves
remarkably ‘‘randomly.’’

The organization of the article is as follows. In Section 2 we
describe and exhibit uniform walks on various numbers, both
rational and irrational, artificial and natural. In the next two
sections, we look at quantifying two of the best-known fea-
tures of random walks: the expected distance traveled after
N steps (Section 3) and the number of sites visited (Section 4)
In Section 5 we describe two classes for which normality and
nonnormality results are known, and one for which we have
only surmise. In Section 6 we show various examples and
leave some open questions. Finally, in Appendix 7 we collect

the numbers we have examined, with concise definitions and
a few digits in various bases.

2 Walking on Numbers

2.1 Random and Deterministic Walks

One of our tasks is to compare deterministic walks (such as
those generated by the digit expansion of a constant) with
pseudorandom walks of the same length. For example, in
Figure 1 we draw a uniform pseudorandom walk with one
million base-4 steps, where at each step the path moves one
unit east, north, west, or south, depending on the whether the
pseudorandom iterate at that position is 0, 1, 2, or 3. The color
indicates the path followed by the walk—it is shifted up the
spectrum (red-orange-yellow-green-cyan-blue-purple-red)
following an HSV scheme with S and V equal to one. The HSV
(hue, saturation, and value) model is a cylindrical-coordinate
representation that yields a rainbow-like range of colors.

Figure 1. A uniform pseudorandom walk.
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Let us now compare this graph with that of some rational
numbers. For instance, consider these two rational numbers
Q1 and Q2:

At first glance, these numbers look completely dissimilar.
However, if we examine their digit expansions, we find that
they are very close as real numbers: the first 240 decimal digits
are the same, as are the first 400 base-4 digits.

But even more information is exhibited when we view a
plot of the base-4 digits of Q1 and Q2 as deterministic
walks, as shown in Figure 2. Here, as above, at each step

the path moves one unit east, north, west, or south,
depending on the whether the digit in the corresponding
position is 0, 1, 2, or 3, and with color coded to indicate the
overall position in the walk.
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The rational numbers Q1 and Q2 represent the two possi-
bilities when one computes a walk on a rational number:
either the walk is bounded as in Figure 2(a) (for anywalkwith
more than 440 steps one obtains the same plot), or it is
unbounded but repeating some pattern after a finite number
of digits as in Figure 2(b).

Of course, not all rational numbers are that easily identified
by plotting their walks. It is possible to create a rational
number whose period is of any desired length. For example,
the following rational numbers from [39],

Q3 ¼ 3624360069

7000000001
and Q4 ¼ 123456789012

1000000000061
;

have base-10 periodic parts with length 1,750,000,000 and
1,000,000,000,060, respectively. A walk on the first million
digits of both numbers is plotted in Figure 3. These huge
periods derive from the fact that the numerators and
denominators of Q3 and Q4 are relatively prime, and the
denominators are not congruent to 2 or 5. In such cases, the
period P is simply the discrete logarithm of the denomi-
nator D modulo 10; or, in other words, P is the smallest
n such that 10n mod D ¼ 1.

Graphical walks can be generated in a similarway for other
constants in various bases—see Figures 2 through 7. Where
the base b C 3, the base-b digits can be used to a select, as a
direction, the corresponding base-b complex root of unity—a
multipleof 120� forbase three, amultipleof90� forbase four, a
multiple of 72� for base 5, etc. We generally treat the case
b = 2 as a base-4 walk, by grouping together pairs of base-2
digits (we could render a base-2 walk on a line, but the
resulting images would be much less interesting). In Figure 4
the origin has been marked, but since this information is not
that important for our purposes, and can be approximately
deduced by the color in most cases, it is not indicated in the
others. Thecolor scheme for Figures 2 through7 is the sameas

the above, except that Figure 6 is colored to indicate the
number of returns to each point.

2.2 Normal Numbers as Walks

As noted previously, proving normality for specific constants
of interest in mathematics has proven remarkably difficult.
The tenor of current knowledge in this arena is illustrated by
[45, 14, 34, 38, 40, 39, 44]. It is useful to know that, while small
in measure, the ‘‘absolutely abnormal’’ or ‘‘absolutely non-
normal’’ real numbers (namely those that are not b-normal for
any integer b) are residual in the sense of topological category
[1]. Moreover, the Hausdorff–Besicovitch dimension of the set
of real numbers having no asymptotic frequencies is equal to
1. Likewise the set of Liouville numbers has measure zero but
is of the second category [18, p. 352].

(a) (b)

Figure 2. Walks on the rational numbers Q1 and Q2.

Figure 4. A million-step base-4 walk on e.

(a) (b)

Figure 3. Walks on the first million base-10 digits of the rationals Q3 and Q4 from [39].
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One question that has possessed mathematicians for cen-
turies is whether p is normal. Indeed, part of the original
motivation of the present study was to develop new tools for
investigating this age-old problem.

In Figure 5 we show a walk on the first 100 billion base-4
digits of p. This may be viewed dynamically in more detail
online at http://gigapan.org/gigapans/106803, where the full-
sized image has a resolution of 372,224 9 290,218 pixels
(108.03 gigapixels in total). This must be one of the largest
mathematical images ever produced. The computations for
creating this image took roughly a month, where several parts
of the algorithm were run in parallel with 20 threads on
CARMA’s MacPro cluster.

By contrast, Figure 6 exhibits a 100 million base-4 walk on
p, where the color is coded by the number of returns to the
point. In [4], the authors empirically tested the normality of its
first roughly four trillion hexadecimal (base-16) digits using a
Poisson process model, and they concluded that, according to
this test, it is ‘‘extraordinarily unlikely’’ that p is not 16-normal
(of course, this result does not pretend to be a proof).

In what follows, we propose various methods of analyzing
real numbers and visualizing them as walks. Other methods
widely used to visualize numbers include the matrix repre-
sentations shown in Figure 8, where each pixel is colored

depending on the value of the digit to the right of the decimal
point, following a left-to-right up-to-down direction (in base 4
the colors used for 0, 1, 2, and 3 are red, green, cyan, and
purple, respectively). This method has been mainly used to
visually test ‘‘randomness.’’ In some cases, it clearly shows the
features of some numbers; as for small periodic rationals, see
Figure 8(c). This scheme also shows the nonnormality of the
numbera2,3—seeFigure 8(d) (where the horizontal redbands
correspond to the strings of zeroes)—and it captures some of
the special peculiarities of the Champernowne’s number C4

(normal) in Figure 8(e). Nevertheless, it does not reveal
the apparently nonrandom behavior of numbers such
as the Erd}os–Borwein constant; compare Figure 8(f) with
Figure 7(e). See also Figure 21.

Aswewill see inwhat follows, the studyofnormalnumbers
and suspected normal numbers as walks will permit us to
compare them with true random (or pseudorandom) walks,
obtaining in this manner a new way to empirically test ‘‘ran-
domness’’ in their digits.

3 Expected Distance to the Origin
Let b 2 f3; 4; . . .g be a fixed base, and let X1;X2;X3; . . . be a
sequence of independent bivariate discrete random variables
whose common probability distribution is given by

P X ¼ cos 2p
b k
� �

sin 2p
b k
� �

� �� �

¼ 1

b
for k ¼ 1; . . .; b: ð2Þ

Then the random variable SN:=
P

m=1
N Xm represents a

base-b random walk in the plane of N steps.
The following result on the asymptotic expectation of the

distance to the origin of a base-b random walk is probably
known, but being unable to find any reference in the litera-
ture, we provide a proof.

TH E O R E M 3.1 The expected distance to the origin of a

base-b random walk of N steps is asymptotically equal

to
ffiffiffiffiffiffiffi

pN
p

=2.

PR O O F . By the multivariate central limit theorem, the ran-

dom variable 1=
ffiffiffiffi

N
p

PN
m¼1ðXm � lÞ is asymptotically

bivariate normal with mean
0
0

� �

and covariance matrix M,

where l is the two-dimensional mean vector of X and M is its

2 9 2 covariance matrix. By applying Lagrange’s trigono-

metric identities, one obtains

l ¼
1
b

Pb
k¼1 cos 2p

b k
� �

1
b

Pb
k¼1 sin 2p

b k
� �

 !

¼ 1

b

�1
2þ

sin ðbþ1=2Þ2p
bð Þ

2 sinðp=bÞ

1
2 cotðp=bÞ � cos ðbþ1=2Þ2p

bð Þ
2 sinðp=bÞ

0

B

@

1

C

A

¼
0

0

� �

: ð3Þ

Thus,

M ¼ 1

b

Pb
k¼1 cos2 2p

b k
� �

Pb
k¼1 cos 2p

b k
� �

sin 2p
b k
� �

Pb
k¼1 cos 2p

b k
� �

sin 2p
b k
� �

Pb
k¼1 sin2 2p

b k
� �

" #

:

ð4Þ

Figure 5. A walk on the first 100 billion base-4 digits of p
(normal?).

Figure 6. A walk on the first 100 million base-4 digits of p, col-

ored by number of returns (normal?). Color follows an HSV model

(green-cyan-blue-purple-red)dependingon thenumberof returns

to each point (where the maxima show a tinge of pink/red).
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Since

X

b

k¼1

cos2 2p
b

k

� �

¼
X

b

k¼1

1þ cos 4p
b k
� �

2
¼ b

2
;

X

b

k¼1

sin2 2p
b

k

� �

¼
X

b

k¼1

1� cos 4p
b k
� �

2
¼ b

2
;

X

b

k¼1

cos
2p
b

k

� �

sin
2p
b

k

� �

¼
X

b

k¼1

sin 4p
b k
� �

2
¼ 0; ð5Þ

formula (4) reduces to

M ¼
1
2 0
0 1

2

� �

: ð6Þ

Hence, SN=
ffiffiffiffi

N
p

is asymptotically bivariate normal with mean

0
0

� �

and covariance matrix M. Because its components

ðSN
1 =

ffiffiffiffi

N
p

; SN
2 =

ffiffiffiffi

N
p
ÞT are uncorrelated, then they are inde-

pendent random variables, whose distribution is (univariate)

(a) (b)

(c) (d)

(e) (f)

Figure 7. Walks on various numbers in different bases.
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normal with mean 0 and variance 1/2. Therefore, the random
variable

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffi

2
p
ffiffiffiffi

N
p SN

1

� �2

þ
ffiffiffi

2
p
ffiffiffiffi

N
p SN

2

� �2
s

ð7Þ

converges in distribution to a v random variable with two
degrees of freedom. Then, for N sufficiently large,

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðSN
1 Þ

2 þ ðSN
2 Þ

2
q

� �

¼
ffiffiffiffi

N
p
ffiffiffi

2
p E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffi

2
p
ffiffiffiffi

N
p SN

1

� �2

þ
ffiffiffi

2
p
ffiffiffiffi

N
p SN

2

� �2
s

0

@

1

A

�
ffiffiffiffi

N
p
ffiffiffi

2
p Cð3=2Þ

Cð1Þ ¼
ffiffiffiffiffiffiffi

pN
p

2
; ð8Þ

where Eð�Þ stands for the expectation of a random
variable. Therefore, the expected distance to the

(a) (b)

(c) (d)

(e) (f)

Figure 8. Horizontal color representation of a million digits of various numbers.
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origin of the random walk is asymptotically equal to
ffiffiffiffiffiffiffi

pN
p

=2.

As a consequence of this result, for any random walk of
N steps inanygivenbase, theexpectationof thedistance to the
origin multiplied by 2=

ffiffiffiffiffiffiffi

pN
p

(which we will call normalized
distance to the origin) must approach 1 as N goes to infinity.
Therefore, for a ‘‘sufficiently’’ big random walk, one would
expect that the arithmetic mean of the normalized distances

(which will be called average normalized distance to the
origin) should be close to 1.

We have created a sample of 10,000 (pseudo)random
walks base-4 of one million points each in Python1, and we
have computed their average normalized distance to the ori-
gin. The arithmetic mean of these numbers for the mentioned
sample of pseudorandom walks is 1.0031, whereas its stan-
darddeviation is0.3676, so theasymptotic result fitsquitewell.
We have also computed the normalized distance to the origin
of 10,000walks ofonemillion steps eachgenerated by the first
ten billion digits of p. The resulting arithmetic mean is 1.0008,
whereas the standard deviation is 0.3682. In Table 1 we show
the average normalized distance to the origin of various
numbers. There are several surprises in there data, such as the

Table 1. Average of the normalized distance to the origin of the walk of

various constants in different bases

Number Base Steps Average normalized

distance to the origin

Normal

Mean of 10,000

random walks

4 1,000,000 1.00315 Yes

Mean of 10,000 walks

on the digits of p

4 1,000,000 1.00083 ?

a2,3 3 1,000,000 0.89275 ?

a2,3 4 1,000,000 0.25901 Yes

a2,3 5 1,000,000 0.88104 ?

a2,3 6 1,000,000 108.02218 No

a4,3 3 1,000,000 1.07223 ?

a4,3 4 1,000,000 0.24268 Yes

a4,3 6 1,000,000 94.54563 No

a4,3 12 1,000,000 371.24694 No

a3,5 3 1,000,000 0.32511 Yes

a3,5 5 1,000,000 0.85258 ?

a3,5 15 1,000,000 370.93128 No

p 4 1,000,000 0.84366 ?

p 6 1,000,000 0.96458 ?

p 10 1,000,000 0.82167 ?

p 10 10,000,000 0.56856 ?

p 10 100,000,000 0.94725 ?

p 10 1,000,000,000 0.59824 ?

e 4 1,000,000 0.59583 ?
ffiffiffi

2
p

4 1,000,000 0.72260 ?

log 2 4 1,000,000 1.21113 ?

Champernowne C10 10 1,000,000 59.91143 Yes

EB(2) 4 1,000,000 6.95831 ?

CE(10) 4 1,000,000 0.94964 ?

Rational number Q1 4 1,000,000 0.04105 No

Rational number Q2 4 1,000,000 58.40222 No

Euler constant c 10 1,000,000 1.17216 ?

Fibonacci F 10 1,000,000 1.24820 ?

fð2Þ ¼ p2

6
4 1,000,000 1.57571 ?

fð3Þ 4 1,000,000 1.04085 ?

Catalan’s constant G 4 1,000,000 0.53489 ?

Thue–Morse TM2 4 1,000,000 531.92344 No

Paper-folding P 4 1,000,000 0.01336 No

Table 2. Number of points visited in various N-step base-4 walks. The

values of the two last columns are upper and lower bounds on the

expectation of the number of distinct sites visited during an N-step

random walk; see [31, Theorem 2] and [32]

Number Steps Sites visited Bounds on the expectation

of sites visited by a random

walk

Lower

bound

Upper

bound

Mean of 10,000

random walks

1,000,000 202,684 199,256 203,060

Mean of 10,000

walks on the

digits of p

1,000,000 202,385 199,256 203,060

a2,3 1,000,000 95,817 199,256 203,060

a4,3 1,000,000 68,613 199,256 203,060

a3,2 1,000,000 195,585 199,256 203,060

p 1,000,000 204,148 199,256 203,060

p 10,000,000 1,933,903 1,738,645 1,767,533

p 100,000,000 16,109,429 15,421,296 15,648,132

p 1,000,000,000 138,107,050 138,552,612 140,380,926

e 1,000,000 176,350 199,256 203,060
ffiffiffi

2
p

1,000,000 200,733 199,256 203,060

log 2 1,000,000 214,508 199,256 203,060

Champernowne

C4

1,000,000 548,746 199,256 203,060

EB(2) 1,000,000 279,585 199,256 203,060

CE(10) 1,000,000 190,239 199,256 203,060

Rational number

Q1

1,000,000 378 199,256 203,060

Rational number

Q2

1,000,000 939,322 199,256 203,060

Euler constant c 1,000,000 208,957 199,256 203,060

fð2Þ 1,000,000 188,808 199,256 203,060

fð3Þ 1,000,000 221,598 199,256 203,060

Catalan’s

constant G

1,000,000 195,853 199,256 203,060

TM2 1,000,000 1,000,000 199,256 203,060

Paper-folding P 1,000,000 21 199,256 203,060

1Python uses the Mersenne Twister as the core generator and produces 53-bit precision floats, with a period of 219937 - 1 & 106002. Compare the length of this period to the

comoving distance from Earth to the edge of the observable universe in any direction, which is approximately 4:6 � 1037 nanometers, or to the number of protons in the universe,

which is approximately 1080.
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fact that by this measure, Champernowne’s number C10 is far
from what is expected of a truly ‘‘random’’ number.

4 Number of Points Visited during an N-Step
base-4 Walk

The number of distinct points visited during a walk of a given
constant (on a lattice) can be also used as an indicator of how
‘‘random’’ the digits of that constant are. It is well known that
the expectation of the number of distinct points visited by an
N-step random walk on a two-dimensional lattice is asymp-
totically equal to p N/log(N); see, for example, [36, pg. 338] or
[13, pg. 27]. This result was first proven by Dvoretzky and
Erd}os [33, Thm. 1]. The main practical problem with this
asymptotic result is that its convergence is rather slow; spe-
cifically, it has order of O N log log N=ðlog N Þ2

� �

. In [31, 32],
Downhamand Fotopoulos show the followingbounds on the
expectation of the number of distinct points,

 

pðN þ 0:84Þ
1:16p� 1� log 2þ logðN þ 2Þ;

pðN þ 1Þ
1:066p� 1� log 2þ logðN þ 1Þ

!

;

ð9Þ

which provide a tighter estimate on the expectation than the
asymptotic limit p N/log(N). For example, for N = 106, these
bounds are (199256.1, 203059.5), whereas pN/log(N) =

227396, which overestimates the expectation.
InTable 2wehave calculated thenumber of distinct points

visited by the base-4 walks on several constants. One can see
that the values for different step walks on p fit quite well the
expectation.On theother hand, numbers that areknown tobe
normal such as a2,3 or the base-4 Champernowne number
substantially differ from the expectation of a random walk.
These constants, despite being normal, do not have a ‘‘ran-
dom’’ appearance when one draws the associated walk, see
Figure 7(d).

At first look, the walk on a2,3 might seem random, see
Figure 7(c). A closer look, shown in Figure 12, shows a more
complex structure: the walk appears to be somehow self-
repeating. This helps explain why the number of sites visited
by the base-4 walk on a2,3 or a4,3 is smaller than the

expectation for a random walk. A detailed discussion of the
Stonehamconstants and their walks is provided in Section 5.2,
where the precise structure of Figure 12 is conjectured.

5 Copeland–Erd}os, Stoneham, and Erd}os–
Borwein Constants

As well as the classical numbers—such as e, p, c—listed in the
Appendix, we also considered various other constructions,
which we describe in the next three subsections.

5.1 Champernowne Number and Its Concatenated

Relatives

The first mathematical constant proven to be 10-normal is
the Champernowne number, which is defined as the concat-
enation of the decimal values of the positive integers, that
is, C10 ¼ 0:12345678910111213141516. . . Champernowne
proved that C10 is 10-normal in 1933 [24]. This was later
extended to base-b normality (for base-b versions of the
Champernowne constant) as in Theorem 5.1. In 1946,
Copeland and Erd}os established that the corresponding
concatenation of primes 0:23571113171923. . . and the con-
catenation of composites 0:46891012141516. . ., among
others, are also 10-normal [26]. In general they proved that
concatenation leads tonormality if the sequence grows slowly
enough. We call such numbers concatenation numbers:

THEOREM 5.1 ([26]). If a1;a2; . . . is an increasing sequence

of integers such that for every h\ 1 the number of ai’s up

to N exceeds Nh provided N is sufficiently large, then the

infinite decimal

0:a1a2a3 � � �

is normal with respect to the base b in which these integers
are expressed.

This result clearly applies to the Champernowne numbers
(Fig. 7(d)), to the primes of the form ak + c with a and c rel-
ativelyprime, in anygivenbase, and to the integers that are the
sum of two squares (since every prime of the form 4k + 1 is

(a) (b)

Figure 9. Number of points visited by 104 base-4 million-step walks.
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included). In further illustration, using the primes in binary
leads to normality in base 2 of the number

CEð2Þ ¼ 0:101110111110111101100011001110111111011

1111100101101001101011. . .2;

shown as a planar walk in Figure 10.

5.1.1 Strong Normality

In [14] it is shown that C10 fails the following stronger test of
normality,whichwenowdiscuss. The test is is a simpleone, in
the spirit of Borel’s test of normality, as opposed to other more
statistical tests discussed in [14]. If the digits of a real number a
are chosen at random in the base b, the asymptotic frequency
mk(n)/n of each 1-string approaches 1/b with probability 1.
However, the discrepancy mk(n) - n/b does not approach
any limit, but fluctuates with an expected value equal to the
standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb� 1Þn
p

=b. (Precisely mkðnÞ :¼
#fi: ai ¼ k; i�ng when a has fractional part 0:a0a1a2 � � � in
base b.)

Kolmogorov’s law of the iterated logarithm allows one to
make a precise statement about the discrepancy of a random
number. Belshaw and P. Borwein [14] use this to define their
criterion and then to show that almost every number is
absolutely strongly normal.

DEFINITION 5.2 (Strong normality [14]). For real a, and

mk (n) as above, a is simply strongly normal in the base b if for

each 0 B k B b - 1 one has

lim sup
n!1

mkðnÞ � n=b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n log log n
p ¼

ffiffiffiffiffiffiffiffiffiffiffi

b� 1
p

b
and

lim inf
n!1

mkðnÞ � n=b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n log log n
p ¼ �

ffiffiffiffiffiffiffiffiffiffiffi

b� 1
p

b
:

ð10Þ

A number is strongly normal in base b if it is simply

strongly normal in each base bj ; j ¼ 1; 2; 3; . . ., and is abso-

lutely strongly normal if it is strongly normal in every base.

In paraphrase (absolutely) strongly normal numbers are
those that distributionally oscillate as much as is possible.

Belshaw and Borwein show that strongly normal numbers
are indeed normal. They also make the important observation
thatChampernowne’sbase-bnumber isnot stronglynormal in
base b. Indeed, there are bm-1 digits of length m and they all start
with a digit between 1 and b - 1 whereas the following

m - 1 digits take values between 0 and b - 1 equally. In
consequence, there is a dearth of zeroes. This is easiest to
analyze in base 2. As illustrated below, the concatenated
numbers start

1; 10; 11; 100; 101; 110; 111; 1000; 1001; 1010; 1011;
1100; 1101; 1110; 1111

For m = 3 there are 4 zeroes and 8 ones, for m = 4 there are
12 zeroes and 20 ones, and for m = 5 there are 32 zeroes
and 48 ones.

Because the details were not provided in [14], we present
them here.

THEOREM 5.3 (Belshaw and P. Borwein) Champer-

nowne’s base-2 number is is not 2-strongly normal.

PROOF . In general, let nk: = 1 + (k - 1)2k for k C 1. One

has m0(nk) = 1 + (k - 1)2k and so

m1ðnkÞ �m0ðnkÞ ¼ nk � 2m0ðnkÞ ¼ 2k � 1:

In fact m1(n)[ m0(n) for all n. To see this, suppose it true
for n B nk, and proceed by induction on k. Let us arrange
the digits of the integers 2k; 2k þ 1; . . .; 2k þ 2k�1 � 1 in a
2k-1 by k + 1 matrix, where the i-th row contains the digits
of the integer 2k + i - 1. Each row begins 10, and if we
delete the first two columns we obtain a matrix in which
the i-th row is given by the digits of i - 1, possibly pre-
ceded by some zeroes. Neglecting the first row and the
initial zeroes in each subsequent row, we see the first nk-1

digits of Champernowne’s base-2 number, where by our
induction hypothesis m1(n)[ m0 (n) for n B nk-1.

If we now count all the zeroes as we read the matrix in the

natural order, any excess of zeroes must come from the initial

zeroes, and there are exactly 2k-1 - 1 of these. As shown

above, m1(nk) - m0(nk) = 2k - 1, so m1(n)[m0(n) +

2k-1 for every n B nk + (k + 1) 2k-1. A similar argument for

the integers from 2k + 2k-1 to 2k+1 - 1 shows that

m1(n)[m0(n) for every n B nk+1. Therefore, 2m1(n)[
m0(n) + m1(n) = n for all n, and so

lim inf
n!1

m1ðnÞ � n=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n log log n
p � 0 6¼ � 1

2
;

and, as asserted, Champernowne’s base-2 number is not
2-strongly normal.

It seems likely that by appropriately shuffling the integers,
one should be able to display a strongly normal variant. Along
this line, Martin [40] has shown how to construct an explicit
absolutely nonnormal number.

Finally, although the log log limiting behavior required by
(10) appears difficult to test numerically to any significant
level, it appears reasonably easy computationally to check
whether other sequences, such as many of the concatenation
sequences of Theorem 5.1, fail to be strongly normal for
similar reasons.

Heuristically, we would expect the number CE(2) above to
fail to be strongly normal, because eachprime of length k both
starts and ends with a one, whereas intermediate bits should

Figure 10. A walk on the first 100,000 bits of the primes

(CE(2)) base two (normal).
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show no skewing. Indeed, for CE(2) we have checked that
2m1(n)[n for all n B 109, see also Figure 11(a). Thus
motivated, we are currently developing tests for strong nor-
mality of numbers such as CE(2) and a2,3 below in binary.

For a2,3, the corresponding computation of the first 109

values of m1ðnÞ�n=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n log log n
p leads to the plot in Figure 11(b) and leads

us to conjecture that it is 2-strongly normal.

5.2 Stoneham Numbers: A Class Containing Provably

Normal and Nonnormal Constants

Giving further motivation for these studies is the recent pro-
vision of rigorous proofs of normality for the Stoneham
numbers, which are defined by

ab;c :¼
X

m� 1

1

cmbcm ; ð11Þ

for relatively prime integers b, c [10].

TH E O R E M 5.4 (Normality of Stoneham constants [3]). For

every coprime pair of integers (b, c) with b C 2 and c C 2,

the constant ab,c =
P

mC1 1/(cm bcm

) is b-normal.

So, for example, the constant a2;3 ¼
P

k� 1 1=ð3k23k Þ ¼
0:0418836808315030. . . is provably 2-normal. This special
case was proven by Stoneham in 1973 [43]. More recently,
Bailey and Misiurewicz were able to establish this normality
result by a much simpler argument, based on techniques of
ergodic theory [11] [16, pg. 141–173].

Equally interesting is the following result:

TH E O R E M 5.5 (Nonnormality of Stonehamconstants [3] ).

Given coprime integers b C 2 and c C 2, and integers p,

q, r C 1, with neither b nor c dividing r , let B = bp cq r.

Assume that the condition D = cq/pr1/p/bc-1 \ 1 is satisfied.

Then the constant ab;c ¼
P

k� 0 1=ðckbck Þ is B-nonnormal.

In variousof theFigures andTables,weexplore the striking
differences of behavior—proven and unproven—for ab,c as
we vary the base. For instance, the nonnormality of a2,3 in

base-6 digits was proved just before we started to draw walks.
Contrast Figure 7(b) to Figure 7(c) and Figure 7(a). Now
compare the values presented in Table 1 and Table 2. Clearly,
fromthis sort ofvisual andnumeric data, thediscoveryofother
cases of Theorem 5.5 is very easy.

As illustrated also in the ‘‘zoom’’ of Figure 12, we can use
these images to discover more subtle structure. We conjecture
the following relations on the digits of a2,3 in base 4 (which
explain the values in Tables 1 and 2):

CO N J E C T U R E 5.6 (Base-4 structure of a2,3). Denote

by ak the kth digit of a2,3 in its base-4 expansion; that

is, a2;3 ¼
P1

k¼1 ak=4
k,with ak 2 f0; 1; 2; 3g for all k. Then,

for all n ¼ 0; 1; 2; . . . one has:

(i)
P

3
2ð3nþ1Þþ3n

k¼3
2ð3nþ1Þ

eakpi=2 ¼ ð�1Þnþ1�1
2 þ ð�1Þn�1

2 i ¼ � i; n odd
1; n even

	

;

(ii) ak ¼ akþ3n ¼ akþ2�3n for all k ¼ 3
2ð3n þ 1Þ; 3

2ð3n þ 1Þ þ 1;
. . .; 3

2ð3n þ 1Þ þ 3n � 1.

In Figure 13, we show the position of the walk after
3
2ð3n þ 1Þ; 32ð3n þ 1Þ þ 3n and 3

2ð3n þ 1Þ þ 2 � 3n steps for

(a) (b)

Figure 11. Plot of the first 109 values of m1ðnÞ�n=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n log log n
p .

Figure 12. Zooming in on the base-4 walk on a2,3 of

Figure 7(c) and Conjecture 5.6.
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n ¼ 0; 1; . . .; 11, which, together with Figures 7(c) and 12,
graphically explain Conjecture 5.6. Similar results seem to
hold for other Stoneham constants in other bases. For
instance, for a3,5 base 3 we conjecture the following.

CO N J E C T U R E 5.7 (Base-3 structure of a3,5). Denote by

ak the kth digit of a3,5 in its base-3 expansion; that is,

a3;5 ¼
P1

k¼1 ak=3
k, with ak 2 f0; 1; 2g for all k. Then, for

all n ¼ 0; 1; 2; . . . one has:

(i)
P

2þ5nþ1þ4�5n

k¼2þ5nþ1

eakpi=2 ¼ ð�1Þn �1þ
ffiffi

3
p

i
2


 �

¼ eð3nþ2Þpi=3;

(ii) ak ¼ akþ4�5n ¼ akþ8�5n ¼ akþ12�5n ¼ akþ16�5n for k ¼
5nþ1 þ j; j ¼ 2; . . .; 2þ 4 � 5n.

Along this line, Bailey and Crandall showed that, given a
real number r in [0,1), and rk denoting the k-th binary digit of r,
the real number

a2;3ðrÞ :¼
X

1

k¼0

1

3k23kþrk
ð12Þ

is 2-normal. It can be seen that if r = s, then
a2,3(r) = a2,3(s), so that these constants are all distinct.
Thus, this generalized class of Stoneham constants is un-
countably infinite. A similar result applies if 2 and 3 in this
formula are replaced by any pair of co-prime integers
(b, c) greater than 1, [10] [16, pg. 141–173]. We have not yet
studied this generalized class by graphical methods.

5.3 The Erd}os–Borwein Constants

The constructions of the previous two subsections exhaust
most of what is known for concrete irrational numbers. By
contrast, we finish this section with a truly tantalizing case:

In a base b C 2, we define the Erd}os–(Peter) Borwein
constant EB(b) by the Lambert series [18]:

EBðbÞ :¼
X

n� 1

1

bn � 1
¼
X

n� 1

sðnÞ
bn

; ð13Þ

where s(n) is the number of divisors of n. It is known that
the numbers

P

nC1 1/(bn - r) are irrational for r a nonzero
rational and b ¼ 2; 3; . . . such that r = bn for all n [20].

Whence, as provably irrational numbers other than the
standard examples are few and far between, it is interesting
to consider their normality.

Crandall [27] has observed that the structure of (13) is
analogous to the ‘‘BBP’’ formula for p (see [7, 16]) and used
this, as well as some nontrivial knowledge of the arithmetic
properties of s, to establish results such as that the googol-th
bit (namely, the bit in position 10100 to the right of the ‘‘deci-
mal’’ point) of EB(2) is a 1.

In [27] Crandall also computed the first 243 bits (one Tbyte)
of EB(2), which required roughly 24 hours of computation,
and found that there are 4359105565638 zeroes and
4436987456570ones. There is a corresponding variation in the
second and third place in the single-digit hex (base-16) dis-
tributions. This certainly leaves some doubt as to its normality.
Likewise,Crandall finds that in thefirst 1,000decimalpositions
after thequintillionthdigit (1018), the respectivedigit counts for
digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are 104, 82, 87, 100, 73, 126,
87, 123, 114, 104. Our own more modest computations of
EB(10) base-10 again leave it far from clear that EB(10) is
10-normal. See also Figure 7(e) but contrast it to Figure 8(f).

We should note that for computational purposes, we
employed the identity

X

n� 1

1

bn � 1
¼
X

n� 1

bn þ 1

bn � 1

1

bn2 ;

for |b|[ 1, due to Clausen, as did Crandall [27].

6 Other Avenues and Concluding Remarks
Let us recall two further examples used in [14], that ofXðnÞ, the
Liouville function, which counts the parity of the number of
prime factors of n (see Figure 14), and the human genome
taken from the UCSC Genome Browser at http://hgdownload.
cse.ucsc.edu/goldenPath/hg19/chromosomes/ (see Fig. 15).
Note the similarity of the genome walk to the those of con-
catenation sequences. We have explored a wide variety of
walks on genomes, but we will reserve the results for a future
study.

We should emphasize that, to the best of our knowledge,
the normality and transcendence status of the numbers
explored is unresolved other than in the cases indicated in
sections 5.1 and 5.2 and indicated in Appendix 7. Although
one of the clearly nonrandom numbers (say Stoneham or
Copeland–Erd}os)maypassmuster ononeorothermeasureof
the walk, it is generally the case that it fails another. Thus, the
Liouville number k2 (see Fig. 14) exhibits a much more
structured drift than p or e, but looks more like them than like
Figure 15(a).

This situation provides hope for more precise future anal-
yses. We conclude by remarking on some unresolved issues
and plans for future research.

6.1 Fractal and Box-Dimension

Another approach is to estimate the fractal dimensions of
walks, which is an appropriate toolwithwhich tomeasure the
geometrical complexity of a set, characterizing its space-filling
capacity (see, e.g., [6] for a nice introduction about fractals).
The box-counting dimension, also known as the Minkowski–

Figure 13. A pattern in the digits of a2,3 base 4. We show

only positions of the walk after 3
2ð3n þ 1Þ; 32ð3n þ 1Þ þ 3n and

3
2ð3n þ 1Þ þ 2 � 3n steps for n ¼ 0; 1; . . .; 11.
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Bouligand dimension, permits us to estimate the fractal
dimension of a given set and often coincides with the fractal
dimension. The box-dimension of the walk of numbers such
as p turns out to be close to 2, whereas for nonrandom num-
bers as a2,3 in base 6 or Champernowne’s number, the box-
dimension is nearly 1.

6.2 Three Dimensions

We have also explored three-dimensional graphics—using
base-6 for directions—both in perspective and in a large
passive (glasses-free) three-dimensional viewer outside the
CARMA laboratory; but we have not yet quantified these
excursions.

6.3 Genome Comparison

Genomes are made up of so-called purine and pyrimidine
nucleotides. InDNA, purine nucleotidebases are adenine and
guanine (A and G), whereas the pyrimidine bases are thymine
and cytosine (T and C). Thymine is replaced by uracyl in RNA.
The haploid human genome (i.e., 23 chromosomes) is

estimated to hold about 3.2 billion base pairs and so to contain
20,000-25,000 distinct genes. Hence there are many ways of
representing a stretch of a chromosome as a walk, say as a
base-4 uniform walk on the symbols (A, G, T, C) illustrated in
Figure 15 (where A, G, T, and C draw the new point to the
south, north, west, and east, respectively, and we have not
plotted undecoded or unused portions), or as a three-
dimensional logarithmic walk inside a tetrahedron.

We have also compared random chaos games in a square
with genomes and numbers plotted by the same rules.2 As an
illustration, we show twelve games in Figure 16: four on a
triangle, four on a square, and four on a hexagon. At each step
we go from the current point halfway toward one of the ver-
tices, chosen depending on the value of the digit. The color
indicates the number of hits, in a similarmanner as in Figure 6.
The nonrandom behavior of the Champernowne numbers is
apparent in the coloring patterns, as are the special features of
the Stoneham numbers described in Section 5.2 (the non-
normality ofa2,3 and a3,2 in base 6 yields a paler color,whereas
the repeating structureofa2,3 anda3,5 is theoriginof thepurple
tone, see Conjectures 5.6 and 5.7).

(a) (b)

Figure 14. Two different rules for plotting a base-2 walk on the first two million values of k(n) (the Liouville number k2).

(a) (b)

Figure 15. Base-4 walks on 106 bases of the X-chromosome and 106 digits of log 2.

2The idea of a chaos game was described by Barnsley in his 1988 book Fractals Everywhere [6]. Games on amino acids seem to originate with [35]. For a recent summary see

[17, pp. 194–205].
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6.4 Automatic Numbers

We have also explored numbers originating with finite state
automata, such as those of the paper-folding and the Thue–
Morse sequences,P andTM2, see [2] and Section7. Automatic
numbers arenever normal andare typically transcendental; by
comparison, the Liouville numberk2 is not p-automatic for any
prime p [25].

The walks on P and TM2 have a similar shape, see
Figure 17, butwhile theThue–Morse sequencegenerates very
large pictures, the paper-folding sequence generates very
small ones, because it is highly self-replicating; see also the
values in Tables 1 and 2.

A turtle plot on these constants, where each binary digit
corresponds to either ‘‘forward motion’’ of length 1 or

‘‘rotate the Logo turtle’’ in a fixed angle, exhibits some of
their striking features (see Fig. 18). For instance, drawn
with a rotating angle of p=3; TM2 converges to a Koch
snowflake [41]; see Figure 18(c). We show a corresponding
turtle graphic of p in Figure 18(d). Analogous features
occur for the paper-folding sequence as described in [28,
29, 30], and two variants are shown in Figures 18(a) and
18(b).

6.5 Continued Fractions

Simple continued fractions often encode more information
than base expansions about a real number. Basic facts are that
a continued fraction terminates or repeats if and only if the

Figure 16. Chaos games on various numbers, colored by frequency. Row 1: C3, a3,5, a (pseudo)random number, and a2,3. Row 2:

C4, p, a (pseudo)random number, and a2,3. Row 3: C6, a3,2, a (pseudo)random number, and a2,3.

(a) (b)

Figure 17. Walks on two automatic and nonnormal numbers.
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number is rational or a quadratic irrational, respectively; see
[16, 7]. By contrast, the simple continued fractions for p and
e start as follows in the standard compact form:

p ¼½3; 7; 15; 1; 292; 1; 1; 1; 2; 1; 3; 1; 14; 2; 1;

1; 2; 2; 2; 2; 1; 84; 2; 1; 1; 15; 3; 13; 1; 4; . . .�

e ¼½2; 1; 2; 1; 1; 4; 1; 1; 6; 1; 1; 8; 1; 1; 10; 1; 1; 12; 1; 1; 14; 1;

1; 16; 1; 1; 18; 1; 1; 20; 1; . . .�;

from which the surprising regularity of e and apparent
irregularity of p as continued fractions is apparent. The
counterpart to Borel’s theorem—that almost all numbers
are normal—is that almost all numbers have ‘‘normal’’
continued fractions a ¼ ½a1;a2; . . .;an; . . .�, for which the
Gauss–Kuzmin distribution holds [16]: for each
k ¼ 1; 2; 3; . . .

Probfan ¼ kg ¼ � log2 1� 1

ðk þ 1Þ2

 !

; ð14Þ

so that roughly 41.5% of the terms are 1, 16.99% are 2,
9.31% are 3, etc.

In Figure 19, we show a histogram of the first 100 million
terms, computed by Neil Bickford and accessible at http://
neilbickford.com/picf.htm, of the continued fraction of p.
We have not yet found a satisfactory way to embed this in
awalkonacontinued fraction, but inFigure 20weshowbase-
4 walks on p and e where we use the remainder modulo 4 to
build the walk (with 0 being right, 1 being up, 2 being left, and
3 being down). We also show turtle plots on p, e.

Andrew Mattingly has observed that:

PR O P O S I T I O N 6.1 With probability 1, a mod-4 random

walk (with 0 being right, 1 being up, 2 being left, and 3 being

down) on the simple continued fraction coefficients of a real

number is asymptotic to a line making a positive angle with

the x-axis of:

arctan
1

2

log2ðp=2Þ � 1

log2ðp=2Þ � 2 log2 C 3=4ð Þð Þ

� �

� 110:44�:

(a) (b)

(d)(c)

Figure 18. Turtle plots on various constants with different rotating angles in base 2—where ‘‘0’’ gives forward motion and ‘‘1’’

rotation by a fixed angle.
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PR O O F . The result comes by summing the expected

Gauss–Kuzmin probabilities of each step being taken as

given by (14).

This is illustrated in Figure 20(a) with a 90� anticlockwise
rotation; thus making the case that one must have some
a priori knowledge before designing tools.

It is also instructive to compare digits and continued frac-
tions of numbers as horizontal matrix plots of the form already

used in Figure 8. In Figure 21, we show six pairs of million-
term digit-strings and the corresponding continued fraction.
In some cases both look random, in others one or the other
does.

Inconclusion,wehaveonly scratched the surfaceofwhat is
becoming possible in a period in which data—for example,
five-hundred million terms of the continued fraction or five-
trillion binary digits of p, full genomes, and much more—can
be downloaded from the Internet, then rendered and visually
mined, with fair rapidity.

(a) (b)

Figure 19. Expected values of the Gauss–Kuzmin distribution of (14) and the values of 100 million terms of the continued fraction

of p.

(a) (b)

(d)(c)

Figure 20. Uniform walks on p and e based on continued fractions.
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7 Appendix Selected Numerical Constants
In what follows, x :¼ 0:a1a2a3a4. . .b denotes the base-
b expansion of the number x, so that x ¼

P1
k¼1 akb�k. Base-

10 expansions are denoted without a subscript.

Catalan’s constant (irrational?; normal?):

G :¼
X

1

k¼0

ð�1Þk

ð2k þ 1Þ2
¼ 0:9159655941. . . ð15Þ

Champernowne numbers (irrational; normal to correspond-
ing base):

Cb :¼
X

1

k¼1

Pbk�1
m¼bk�1 mb�k m�ðbk�1�1Þ½ �

b
Pk�1

m¼0 mðb� 1Þbm�1
ð16Þ

C10 ¼ 0:123456789101112. . .

C4 ¼ 0:1231011121320212223. . .4

Copeland–Erd}os constants (irrational; normal to
corresponding base):

CEðbÞ :¼
X

1

k¼1

pkb� kþ
Pk

m¼1
blogb pmc

� �

;

where pk is the kthprime number

ð17Þ

CEð10Þ ¼ 0:2357111317. . .

CEð2Þ ¼ 0:1011101111. . .2

Exponential constant (transcendental; normal?):

e :¼
X

1

k¼0

1

k!
¼ 2:7182818284. . . ð18Þ

Erd}os–Borwein constants (irrational; normal?):

EBðbÞ :¼
X

1

k¼1

1

bk � 1
ð19Þ

EBð2Þ ¼ 1:6066951524. . . ¼ 1:212311001. . .4

Euler–Mascheroni constant (irrational?; normal?):

c :¼ lim
m!1

X

m

k¼1

1

k
� log m

 !

¼ 0:5772156649. . . ð20Þ

Fibonacci constant (irrational [12, Theorem 2]; normal?):

F :¼
X

1

k¼1

Fk10� 1þkþ
Pk

m¼1
blog10 Fmc

� �

;where

Fk ¼
1þ
ffiffi

5
p

2


 �k

� 1�
ffiffi

5
p

2


 �k

ffiffiffi

5
p

¼ 0:011235813213455. . .

Liouville number (irrational; not p-automatic):

k2 :¼
X

1

k¼1

kðkÞ þ 1

2

� �

2�k ð22Þ

Figure 21. Million-step comparisons of base-4 digits and continued fractions. Row 1: a2,3 (base 6) and C4. Row 2: e and p. Row 3:

Q1 and pseudorandom iterates; as listed from top left to bottom right.

58 THE MATHEMATICAL INTELLIGENCER



where kðkÞ :¼ ð�1ÞXðkÞ and XðkÞ counts prime factors of k

¼ 0:5811623188. . . ¼ 0:10010100110. . .2

Logarithmic constant (transcendental; normal?):

log 2 :¼
X

1

k¼1

1

k2k
ð23Þ

¼ 0:6931471806. . . ¼ 0:10110001011100100001. . .2

Pi (transcendental; normal?):

p :¼ 2

Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

dx ¼ 4
X

1

k¼0

ð�1Þk

2k þ 1
ð24Þ

¼ 3:1415926535. . . ¼ 11:00100100001111110110. . .2

Riemann zeta function at integer arguments (transcen-
dental for n even; irrational for n = 3; unknown for n C 5
odd; normal?):

fðsÞ :¼
X

1

k¼1

1

ks
ð25Þ

In particular:

fð2Þ ¼ p2

6
¼ 1:6449340668. . .

fð2nÞ ¼ ð�1Þnþ1ð2pÞ2n

2ð2nÞ!B2n

ðwhere B2n are Bernoulli numbersÞ

fð3Þ ¼ Apery’s constant ¼ 5

2

X

1

k¼1

ð�1Þkþ1

k3 2k
k

� �

¼ 1:2020569031. . .

Stoneham constants (irrational; normal in some bases; non-
normal in different bases; normality still is unknown other
bases):

ab;c :¼
X

1

k¼1

1

bck ck
ð26Þ

a2;3 ¼ 0:0418836808. . . ¼ 0:0022232032. . .4

¼ 0:0130140430003334. . .6

a4;3 ¼ 0:0052087571. . . ¼ 0:0001111111301. . .4

¼ 0:0010430041343502130000. . .6

a3;2 ¼ 0:0586610287. . . ¼ 0:0011202021212121. . .3

¼ 0:0204005200030544000002. . .6

a3;5 ¼ 0:0008230452. . . ¼ 0:00000012101210121. . .3

¼ 0:002ba00000061d2. . .15

Thue–Morse constant (transcendental; 2-automatic, hence
nonnormal):

TM2 :¼
X

1

k¼1

1

2tðnÞ where tð0Þ ¼ 0; while tð2nÞ ¼ tðnÞ

and tð2nþ 1Þ ¼ 1� tðnÞ ð27Þ

¼ 0:4124540336. . .

¼ 0:01101001100101101001011001101001. . .2

Paper-folding constant (transcendental; 2-automatic, hence
nonnormal):

P :¼
X

1

k¼0

82k

22kþ2 � 1
¼ 0:8507361882. . .

¼ 0:1101100111001001. . .2 ð28Þ
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