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TT
he notion of osculating circle (or circle of curvature)
of a smooth plane curve is familiar to every student of
calculus and elementary differential geometry: this

is the circle that approximates the curve at a point better
than all other circles.

Onemay say that the osculating circle passes through three
infinitesimally close points on the curve. More specifically,
pick threepoints on the curve, and drawa circle through these
points. As the points tend to each other, there is a limiting
position of the circle: this is the osculating circle. Its radius is
the radius of curvature of the curve, and the reciprocal of the
radius is the curvature of the curve.

If both the curve and the osculating circle are represented
locally as graphs of smooth functions, thennot only the values
of these functions, but also their first and second derivatives,
coincide at the point of contact.

Ask your mathematical friend to sketch an arc of a curve
and a few osculating circles. Chances are, you will see some-
thing like Figure 1.

This is wrong! The right picture is Figure 2.
The following theorem was discovered by Peter Guthrie

Tait in the end of the 19th century [9] and was rediscovered by
Adolf Kneser early in the 20th century [4].

Figure 1. Osculating circles?

Figure 2. This is how osculating circles look.
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TH E O R E M 1 The osculating circles of an arc with mono-

tonic positive curvature are pairwise disjoint and nested.

Tait’s article is so short that we quote it almost verbatim
(omitting some old-fashioned terms):

‘‘When the curvature of a plane curve continuously increases
or diminishes (as is the case with a logarithmic spiral, for
instance) no two of the circles of curvature can intersect each
other.
This curious remark occurred to me some time ago in
connection with an accidental feature of a totally different
question...
The proof is excessively simple. For if A, B, be any two
points of the evolute, the chord AB is the distance between
the centers of two of the circles, and is necessarily less than
the arc AB, the difference of their radii...
When the curve has points of maximum or minimum
curvature, there are corresponding … cusps on the evolute;
and pairs of circles of curvature whose centers lie on
opposite sides of the cusp, C, may intersect: – for the chord
AB may now exceed the difference between CA and CB.’’

See Figure 3 for a family of osculating circles of a spiral.1

Evolutes and Involutes
A hundred years ago, perhaps, Tait’s argument was self-
evident and did not require further explanation. Alas, the
situation is different today, and this section is an elaboration of
his proof. The reader is encouraged to consult her favorite
book on elementary differential geometry for the basic facts
that we recall below.

The locus of centers of osculating circles is called the evo-
lute of a curve. The tangent lines to the evolute are the normal
lines to the original curve. See Figure 4.

The evolute typically has cusp singularities, clearly seen in
Figure 4. For generic curves, these are the centers of the sta-
tionary osculating circles, the osculating circles at the vertices
of the curve, that is, the points where the curvature has a local
minimum or a local maximum.

Consider the left Figure 4 again. The curve c is called an
involute of the curve C: an involute is orthogonal to the tan-
gent linesofa curve.The involute c isdescribedby the freeend
of a nonstretchable string whose other end is fixed on C and
which is wrapped around it (for this reason, involutes are also
called evolvents). That this string construction indeed does
the job is obvious: the radial component of the velocity of the
free end point would stretch the string.

.........................................................................................................................................................
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Figure 3. Osculating circles of a spiral. The spiral is not

superimposed on the osculating circles, it as the locus of points

where the circles are especially close to each other.

1Curiously, thecurrentEnglishWikipediaarticleonosculatingcirclescontains three illustrations,andnoneof themdepicts the typical situation: thecurvegoes fromoneside of the

osculating circle to the other. The French Wikipedia article fares better in this respect; the reader may enjoy researching other languages.

62 THE MATHEMATICAL INTELLIGENCER

http://images.math.cnrs.fr
http://images.math.cnrs.fr


A consequence of the string construction is that the length
of an arc of the evolute C equals the difference of its tangent
segments to the involute c, that is, the increment of the radii of
curvature of c. This is true as long as the curvature of c is
monotonic and C is free of cusps.

Another curious consequence is that the evoluteof a closed
curve has total length zero. The length is algebraic: its sign
changes each time that one passes a cusp. We leave it to the
reader to prove this zero-length property (necessary and suf-
ficient for the string construction to yield a closed curve).

Tait’s argument is straightforward now; see Figure 5. Let r1

and r2 be the radii of osculating circles at points x1 and x2, and
z1 and z2 be their centers. Then the length of the arc z1z2

equals r1 - r2, hence |z1z2|\ r1 - r2. Therefore the circle
with center z1 and radius r1 contains the circle with center z2

and radius r2.

A Paradoxical Foliation
Let us take a look at Figure 3 again. We see an annulus
bounded by the smallest and the largest of the osculating
circles of a curve c with monotonic curvature. This annulus is
foliated by the osculating circles of c, and the curve ‘‘snakes‘‘
between these circles, always remaining tangent to them.
How could this be possible?

Isn’t this similar to having a nonconstant function with
everywhere zero derivative? Indeed, if the foliation consists of
horizontal lines and the curve is the graph of a differentiable
function f(x), then f 0(x) = 0 for all x, and f is constant. But
then the curve is contained within one leaf.

The resolution of this ‘‘paradox’’ is that this foliation is not
differentiable, and we cannot locally map the family of oscu-
lating circles to the family of parallel lines by a smooth map. A
foliation is determined by a function whose level-curves are
the leaves; a foliation is differentiable if this function can be
chosen differentiable. A foliation may have leaves as good as
onewishes (smooth, analytic, algebraic) andmay still fail tobe
differentiable.

TH E O R E M 2 If a differentiable function in the annulus is

constant on each osculating circle, then this is a constant

function.

For example, the radius of a circle is a function constant on
the leaves. As a function in the annulus, it is not differentiable.

To prove the theorem, let F be a differentiable function
constant on the leaves. Then dF is a differential 1-form whose
restriction toeachcircle is zero.The curve c is tangent tooneof
these circles at each point. Hence dF is zero on c as well.
Therefore F is constant on c. But c intersects all the leaves, so
F is constant in the annulus.

Thus a perfectly smooth (analytic, algebraic) curve pro-
vides an example of a nondifferentiable foliation by its
osculating circles.

Taylor Polynomials
In this section we present a version of Tait-Kneser theorem for
Taylor polynomials. It is hard to believe that this result was not
known for a long time, but we did not see it in the literature.

Let f(x) be a smooth function of the real variable x. The
Taylor polynomial Tt(x) of degree n approximates f up to the
n-th derivative:

γ

Γ

Figure 4. (Left) the red curve is the evolute of the blue one;

the tangent lines to the former are the normals of the latter.

(Right) the evolute of an ellipse.

Figure 5. Tait’s proof: r1 � r2 ¼ jz1z2
_j[ jz1z2j:
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TtðxÞ ¼
Xn

i¼0

f ðiÞðtÞ
i!
ðx � tÞi:

Assume that n is even and that f (n+1)(x) = 0 on some
interval I.

TH E O R E M 3 For any distinct a, b [ I, the graphs of the

Taylor polynomials Ta and Tb are disjoint over the whole real

line.

To prove this, assume that f (n+1)(x)[ 0 on I and that
a \ b. One has:

oTt

ot
ðxÞ ¼

Xn

i¼0

f ðiþ1ÞðtÞ
i!

ðx � tÞi �
Xn

i¼0

f ðiÞðtÞ
ði � 1Þ! ðx � tÞi�1

¼ f ðnþ1ÞðtÞ
n!

ðx � tÞn;

and hence (qTt /qt) (x)[ 0 (except for x = t). It follows that
Tt(x) increases, as a function of t, therefore Ta(x) \
Tb(x) for all x.

The same argument proves the following variant of The-
orem 3. Let n be odd, and assume that f (n+1) (x) = 0 on an
interval I.

TH E O R E M 4 For any distinct a, b [ I, a \b, the graphsof

the Taylor polynomials Ta and Tb are disjoint over the interval

[b, ?).

Theorems 3 and 4 are illustrated in Figure 6.
The same proof establishes more: not only the function

Tb(x) - Ta(x) is positive, but it is also convex. Furthermore, all
its derivatives of even orders are positive. Certain analogs of
this remark apply to the variations on the Tait-Kneser theorem
presented in the next section, but we shall not dwell on this
intriguing subject here.

Variations
TheTait-Kneser theoremcanbeextended fromcircles toother
classesof curves. Let us consider a very general situationwhen
a d-parameter family of plane curves is given; these curveswill

be used to approximate a test smooth curve at a point. For
example, a conic dependsonfiveparameters, so d = 5 for the
family of conics.

Given a smooth curve c and point x [ c, the osculating curve
from our family is the curve that has tangency with c at point x of
order d - 1; in other words, it is the curve from the family that
passes through d infinitesimally close points on c. The curve
hyperosculates if theorderof tangency isgreater, that is, thecurve
passes through d + 1 infinitesimally close points on c.

For example, one has the 1-parameter family of osculating
conics of a plane curve c parameterized by the point x [ c.
A point x is called sextactic if the osculating conic hyperos-
culates at this point. In general, a point of c is called extactic if
the osculating curve hyperosculates at this point.

We shall now describe a number of Tait-Kneser-like the-
orems. Our discussion is informal; the reader interested in
more details is referred to [3, 8]. Let us consider the case of
osculating conics.

TH E O R E M 5 The osculating conics of a curve, free

from sextactic points, are pairwise disjoint and nested (see

Figure 7).

This theorem is better understood in the projective plane
whereall nondegenerate conics areequivalent, and there isno

Figure 6. Quadratic Taylor polynomials of the function f(x) = x3 and cubic Taylor polynomials of the function f(x) = x4.

Figure 7. Osculating conics of a spiral. The conics depicted in

the figure are pairwise nested ellipses, increasing from tiny

ones in the center to large ones on the periphery.

2A similar argument applies to osculating circles as well.
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difference between ellipses, parabolas, and hyperbolas. In
particular, a nondegenerate conic divides the projective plane
into two domains, the inner one, which is a disc, and the outer
one, which is the Möbius band.

Here is a sketch of a proof.2 Give the curve a parameteri-
zation, c(x), and let Cx be the osculating conic at point x. Let
Fx = 0 be a quadratic equation of the conic Cx.

It suffices to establish the claim for sufficiently close oscu-
lating conics, so consider infinitesimally close ones. The
intersection of the conics Cx and Cx+e (for infinitesimal e) is
given by the system of equations

Fx ¼ 0;
oFx

ox
¼ 0:

Both equations are quadratic so, by the Bezout theorem,
the number of solutions is at most 4 (it is not infinite
because x is not a sextactic point). But the conics Cx and
Cx+e already have an intersection of multiplicity 4 at point
x: each is determined by 5 ‘‘consecutive’’ points on the
curve c, and they share 4 of these points. Therefore they
have no other intersections, as needed.

Another generalization, proved similarly, concerns diffeo-
morphisms of the real projective line RP1. At every point, a
diffeomorphism f: RP1?RP1 can be approximated, up to the
second derivative, by a fractional-linear (Möbius) transfor-
mation

x 7! ax þ b

cx þ d
:

It is natural to call this the osculating Möbius transformation of
f. Hyperosculationoccurswhen the approximation is finer, up
to the third derivative; this happens when the Schwarzian
derivative of f vanishes:

Sðf ÞðxÞ ¼ f 000ðxÞ
f 0ðxÞ �

3

2

f 00ðxÞ
f 0ðxÞ

� �2

¼ 0

(see [6, 7] concerning the Schwarzian derivative).

TH E O R E M 6 Let f : [a,b] ? RP1 be a local diffeomorphism

whose Schwarzian derivative does not vanish. Then the graphs

of the osculatingMöbius transformations are pairwise disjoint.

Of course, these graphs are hyperbolas with vertical and
horizontal asymptotes.

Can one generalize to algebraic curves of higher degree?
The space of algebraic curves of degree d has dimension
n(d) = d(d + 3)/2. The osculating algebraic curve of degree
d passes through n(d) infinitesimally close points of a smooth
curve c. Two infinitesimally close osculating curves of degree
d at point x [ c have there an intersection of multiplicity
n(d) - 1, whereas two curves of degree d may have up to
d2 intersections altogether. For d C 3, one has d2 [
d(d + 3)/2 - 1, so one cannot exclude intersections of
osculating algebraic curves of degree d.

However, one can remedy the situation for cubic curves. A
cubic curve looks like that shown in Figure 8: it may have one
or two components, and in the latter case one of them is
compact. The compact component is called the oval of a cubic
curve. Two ovals intersect in an even number of points, hence
one can reduce the number 9 = 32 to 8 if one considers ovals
of cubic curves as osculating curves. This yields

TH E O R E M 7 Given a plane curve, osculated by ovals of

cubic curves and free from extactic points, the osculating ovals

are disjoint and pairwise nested.

See Figure 9 for an illustration.

4-Vertex Theorem and Beyond
This story would be incomplete without mentioning a close
relation of various versions of the Tait-Kneser theorem and
numerous results on the least number of extactic points. The
first such result is the 4-vertex theorem discovered by
S. Mukhopadhyaya in 1909 [5]: a plane oval3 has at least four
vertices. In the samearticle,Mukhopadhyayaproved the6-vertex
theorem: a plane oval has at least six sextactic points. Note that
these numbers, 4 and 6, are one greater than the dimensions of
the spaces of osculating curves: circles and conics, respectively.

A similar theorem holds for Möbius transformations
approximating diffeomorphisms of the projective line: for
every diffeomorphism of RP1, the Schwarzian derivative
vanishes at least four times [2].Figure 8. Two types of cubic curves.

Figure 9. A spiral (in blue) osculated by ovals of cubic curves:

the ovals are shown in red, and the outermost osculating cubic

is shown with the unbounded component, in green.

2A similar argument applies to osculating circles as well.
3Closed smooth strictly convex curve.
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And what about approximating by cubic curves? Although
not true for arbitrary curves, the following result holds: a plane
oval, sufficiently close to an oval of a cubic curve, has at least
10 extactic points [1]. Once again, 10 = 9 + 1 where 9 is the
dimension of the space of cubic curves. We refer to [6] for
information about the 4-vertex theorem and its relatives.

By the way, the reader may wonder whether there is a
‘‘vertex‘‘ counterpart to Theorem 3. Here is a candidate: if
f(x) is a smooth function of the real variable x, flat at infinity
(for example, coinciding with exp(-x2) outside of some
interval), then, for each n, the equation f (n)(x) = 0 has at
least n solutions. The proof easily follows from Rolle’s
theorem.

One cannot help wondering about the meaning of this
relation between two sets of theorems. Is there a general
underlying principle in action here?
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auf geschlossenen Kurven und über verwandte Fragen in einer

nichteuklidischen Geometrie, Festschrift H. Weber, 1912, 170–180.

[5] S. Mukhopadhyaya. New methods in the geometry of a plane arc,

Bull. Calcutta Math. Soc. 1 (1909), 32–47.

[6] V. Ovsienko, S. Tabachnikov. Projective differential geometry, old

and new: from Schwarzian derivative to cohomology of diffeomor-

phism groups, Cambridge University Press, 2005.

[7] V. Ovsienko, S. Tabachnikov. What is ... the Schwazian derivative,

Notices of AMS, 56 (2009), 34–36.

[8] S. Tabachnikov, V. Timorin. Variations on the Tait-Kneser theorem.

arXiv math.DG/0602317.

[9] P. G. Tait. Note on the circles of curvature of a plane curve, Proc.

Edinburgh Math. Soc. 14 (1896), 403.

66 THE MATHEMATICAL INTELLIGENCER

http://www.umpa.ens-lyon.fr/ghys/articles/
http://www.umpa.ens-lyon.fr/ghys/articles/

	Osculating Curves: Around the Tait-Kneser Theorem
	Evolutes and Involutes
	A Paradoxical Foliation
	Taylor Polynomials
	Variations
	4-Vertex Theorem and Beyond
	Acknowledgments
	References


