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t is easy to create nonperiodic tesselations of the plane
composed of one or a few types of tiles. In most cases,
however, the tiles employed can also be used to create

simpler, periodic patterns. It is much more difficult to find
shapes, or ‘‘prototiles,’’ that can fill space only by making a
nonperiodic structure. We say that such sets are aperiodic,
or that they ‘‘force’’ nonperiodicity, and there are many
open questions about what types of structure can be forced
and the prototiles required. In this article we discuss recent
progress on the fundamental problem of forcing nonper-
iodicity using a single prototile, jokingly called an einstein
(a German pun on ‘‘one stone’’). A new example we found
[6] shows one way in which an einstein can work and
highlights several issues that arise in posing the problem
precisely.

One motivating factor in the search for an einstein comes
from condensed matter physics. Local rules for how tiles fit
together may represent the energetics of a physical system,
which could support self-assembly into an ordered but
nonperiodic structure. The discovery of icosahedral and
decagonal phases of metallic alloys, in which the atomic
structure shares the essential structure of the Penrose tilings,
has opened our eyes to the fact that nonperiodic materials
can indeed form spontaneously [1, 2]. In materials physics
applications, where the tiles may represent clusters of many
atoms or larger building blocks, the tiles can have complex
shapes or markings that determine how they may be joined.
Finding a single shape that can do the job may make the
physical realization of such a material easier.

The first example showing that it is possible to force
nonperiodicity was Berger’s set of 20,426 distinct prototiles
[3]. Aperiodic sets with just two prototiles were subsequently
discovered, the most famous being the Penrose tiles [4],

nicely described by Martin Gardner [5]. Candidates with
einstein–like features have been presented before, but there
is no precise definition of the einstein problem, and several
candidates that could be argued to qualify have not passed
the consensus ‘‘I know it when I see it’’ test. There are several
issues involved, including the specification of what counts as
nonperiodic, what characteristics make for a valid prototile,
and what form the local rules must take.

We recently showed that the prototile in Figure 1 is an
einstein and determined a number of remarkable properties
of the tilings it forces. [6] contains two proofs of the forced
nonperiodicity along with derivations of several intriguing
properties of the tiling (including a surprising connection to
the regular paperfolding sequence [7]). In working out the
properties of the forced limit–periodic structure and search-
ing for different ways of encoding the information about how
the tiles must fit together, we were led to a series of questions
about how the einstein problem should be posed. In the
present paper, we discuss the definitions of the terms local
matching rules and tile, and we propose a new definition
of nonperiodic that emphasizes distinctions that to our
knowledge have not been made explicit before. We use our
hexagonal prototile throughout to clarify key points,
including a 3D version for which the shape alone is sufficient
to force nonperiodicity. We also describe some of the more
intriguing aspects of the forced structure, some of which
require further study. Articulating the criteria satisfied by our
hexagonal prototile reveals the sense in which it is the ‘‘best’’
einstein currently known and delineates a precise problem
that remains open.

The newly discovered tile, shown together with its mirror
image in Figure 1(a), is a regular hexagon with markings that
determine how neighboring tiles must be oriented. Adjacent
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tiles must form continuous black stripes, and flag decorations
at opposite ends of each tile edge must point in the same
direction. (The arrows in (b) point to the twoflags at opposite
ends of a vertical tile edge.) Each tile in (c) is a rotation and/or
reflectionof the single prototile, and the only way to fill space
while obeying the rules everywhere is to form a nonperiodic,
hierarchical extension of the pattern in (c).

Defining the einstein
Two constructions that could conceivably be counted as
einsteins were discovered in 1995. A single prototile that
forces a pattern of the Penrose type was presented by
Gummelt (with a complementary proof by Steinhardt and
Jeong) [8, 9]. But in this case tiles are allowed to overlap and
the covering of the space is not uniform. For this reason the
prototile is not considered to be an einstein.

The uniformly space-filling, three-dimensional prototile
of Figure 2, a rhombic biprism, was exhibited by Schmitt,
Conway, and Danzer [10]. To fill space, one is forced to
construct 2D periodic layers of tiles sharing triangular faces,
with ridges running in the direction of one pair of rhombus
edges on top and the other pair below. The layers are then
stacked such that each is rotated by an angle / with respect to
the one below it, where / is the acute angle of the rhombic
base. Any choice of / other than integer multiples of p/3 or
p/4 produces a tiling that is not periodic, and certain choices
permit a tiling in which the number of nearest neighbor
environments is finite, so that the prototile can be endowed
with bumps and nicks in a way that locks the relative posi-
tions of adjacent layers.

Again, however, the universal reaction was ‘‘This is not
really what we are looking for.’’ The nonperiodicity of the

(a) (b) (c)

Figure 1. The hexagonal prototile and its mirror image with color matching rules. (a) The two

tiles are related by reflection about a vertical line. (b) Adjacent tiles must form continuous

black stripes. Flag decorations at opposite ends of a tile edge, such as the indicated flags at

opposite ends of the vertical edge, must point in the same direction. (c) A portion of an infinite

tiling that respects the matching rules.

Figure 2. The SCD prototile and the space–filling tiling it forces.
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tiling does not seem mysterious enough to count; one can
immediately grasp the global structure of simple 2D periodic
lattices stacked with a twist in the third dimension. We
seek structures with long–range correlations that are not
immediately evident from the examination of a single tile.
Goodman–Strauss emphasizes this point and suggests a
classification that distinguishes the SCD structure from the
Robinson tiling and Penrose tiling [11]. Goodman–Strauss
calls the SCD tile weakly aperiodic because it admits a tiling
with a cyclic group of symmetries involving finite (and non-
zero) translations, in this case the screw operations along the
twist axis. We emphasize here an additional feature of the
SCD tiling that also weakens the sense in which it may be
called nonperiodic: every individual tile in the tiling is a unit
cell of a periodic 2D layer. In fact, for the cases with a finite
number of nearest neighbor environments, any finite stack of
layers is periodic in the two transverse directions, a point that
may be important for physical applications. The presence of
infinite periodic substructures within the pattern suggests
that a formal definition be developed to distinguish different
degrees of periodicity or nonperiodicity.

A definition of ‘‘nonperiodic’’
We offer here a new classification scheme, based on the
notion of a ‘‘partial translational symmetry,’’ that we believe
captures the shared intuitive notion of a nontrivial, nonre-
peating pattern. A partial translational symmetry is an
operation that maps some subset of a full pattern into itself.

DE F I N I T I O N 1 Let T be a infinite set of tiles in RN : A

partial translational symmetry of T is an operation of the

form fx~! R � x~þ e~g that acts on some infinite subset of T
and leaves it invariant, where R is a rotation matrix and

e~2 RN is a constant, nonzero, displacement vector. The

magnitude of e~ is the spacing of the partial translational

symmetry.

We say that a tile participates in a partial translational
symmetry if it is a member of the subset of tiles that is left
invariant by the symmetryoperation. The tilesparticipating in
a given partial translational symmetry need not form a con-
nected region.

The SCD tiling has many partial translational symmetries.
The tiles in any one layer form a subset that is invariant under
a 2D lattice of translations (for which R is the identity). In
addition, every tile is an element of a subset that is invariant
under a screw operation (R being a rotation about the
stacking axis) that maps one layer into the next.

Another simple example of a systemwith nontrivial partial
translational symmetries will help clarify the sense in which
our new tiling is nonperiodic. Figure 3 shows a 1D tiling in
which tiles have unit width and the number on a tile indicates
its type. The tiling extends infinitely in bothdirections and the
spacingbetween thenearest tiles of the same type is just twice
their numerical value; type x occurs periodically at positions
x(1 + 2n) for integer n. (The blank element at the center is

not repeated at any finite distance.) Thus, for each value y
occurring in the sequence, the subset of tiles with values less
than or equal to y is invariant under translation by 2y. For
example, under translation by 8, the set of all tiles with values
less thanor equal to 4 is invariant, though the set of remaining
tiles is not.

DE F I N I T I O N 2 The elements of a set of partial transla-

tional symmetries are independent if and only if it is not

possible to express the displacement e~ for any one of them as

an integer linear combination of the others.

In an ordinary N-dimensional periodic tiling, every tile
participates in N independent partial translational symme-
tries, the displacements e~i; with i ¼ 1; . . .N ; being the basis
vectors of the lattice of translations that leave the tiling
invariant.

DE F I N I T I O N 3 Let the number of independent partial

translational symmetries with spacing less than r that a given

tile t participates in be denoted St(r). A tiling in RN is non-

periodic if for any finite (non-zero) r, the fraction of tiles

with St(r) strictly less than N is finite.

By this definition, the decagonal quasicrystal structures
[12], which are periodic stackings of quasicrystalline layers,
are nonperiodic because the only independent partial
translational symmetry containing any given tile is the one
corresponding to the periodic stacking direction. (There
could conceivably be additional screw operations if the tiling
has an axis of complete 5-fold rotational symmetry, but they
all have the same e~or integer multiples of it.)

But the SCD tiling is not nonperiodic by this definition. As
noted previously, every tile is a member of a subset that is
invariant under two distinct translation operations in the
plane and a subset that is invariant under a screw operation
along the stackingdirection. Toemphasize thehighdegreeof
partial translational symmetry in the SCD structure, we might
classify it as heterogeneously periodic; ‘‘heterogeneously’’
because, unlike familiar periodic structures, the e~’s associated
with the symmetries of tiles in different layers are not all the
same. Heterogeneously periodic is not synonymous with
weakly nonperiodic; some weakly nonperiodic tilings, such
as the stacked layers that form decagonal quasicrystals, are
nonperiodic by our definition (and by common usage in the
physics community).

Many tilings satisfy a more stringent criterion:

DE F I N I T I O N 4 A tiling is maximally nonperiodic if and

only if it contains no partial translational symmetries.

The Penrose tilings are maximally nonperiodic, as are
many tilings generated by substitution rules or projections
from higher-dimensional periodic lattices onto incommen-
surate subspaces.

Figure 3. A limit–periodic pattern with partial translation symmetries.
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Following Grünbaum and Shephard, we adopt the fol-
lowing terminology.

DE F I N I T I O N 5 A prototile is (maximally) aperiodic if the

only space-filling tilings that can be composed from it are

(maximally) nonperiodic.

That is, we call a single prototile ‘‘aperiodic’’ if it can be used
to tile an entire space with no overlaps but only in a pattern
that is nonperiodic by the above definition.

The question of allowable matching rules
Whether or not an aperiodic prototile exists could hinge on
whether one requires that the tile be a simply connected
domain, whether tiles are allowed to overlap so that some
parts of space are doubly covered, whether the rules must be
encoded by tile shape alone as opposed to color-matching
rules, and whether mirror-image sets are considered to count
as a single prototile or not. A highly restrictive definition of an
einstein would demand the following properties:

Rotations only: Reflections of a chiral tile are not allowed;
Simply connected tiles: The prototile is a simply connected
domain (a topological disk in 2D);
Shape alone: All configurations of tiles that do not contain
overlaps are permitted without regard to any colored
markings;

The first condition makes what some may view as an
arbitrary distinction between rotations and reflections. Nev-
ertheless, we see a meaningful distinction between cases
where the tiles could all be manufactured from a single
physical mold and cases where a second, mirror-image mold
must be built.

The restriction to simply connected prototiles is consistent
with the intuitive notion of a tile as a thin, rigid piece of
material, as is used in mosaics or floor tiling. On the other
hand, there is no obvious reason to insist that a tile cannot be
composed of a set of disconnected domains with fixed rela-
tive positions [13], and in fact certain types of color matching
rules that cannot be enforced by the shape alone using a
simply connected 2D prototile can be enforced using a tile
consisting of disconnected pieces [14]. Grünbaum and
Shephard make a further distinction between tiles with cut-
points (where regions are connected only through a vertex)
and tiles with entirely disconnected regions [13]. From a
materials physics perspective, tiles may represent complex
atomic configurations with low energy, and these may con-
ceivably interpenetrate in ways that could not be represented
by simply connected tiles.

The ‘‘shape alone’’ condition requires further comment, as
there are several kinds of rules that cannot be encoded in the
geometry of the prototile.

Colors required: Instead of bumps and nicks, the rules that
force relative orientations of nearby tiles can be encoded as
a colored decoration of the prototiles together with rules
about how colors must match. Not every rule enforced by
color matching can be implemented through shape alone

without increasing the number of prototiles. A classic
example is Ammann’s aperiodic set A5 (a square and a 45�
rhombus), where rules for how tiles must join at vertices
may be implemented either through constraints on colored
decorations around the vertex or by introduction of a new
tile that must fit at each vertex [13]. Another example is the
hexagonal parquet tile of [14], for which the color rules for
tile edges (either red or black can match black, but red
cannot match red) could be implemented by introducing
two new tiles that fit into notched edges.
Non–adjacent, but pairwise: A rule may specify the relative
orientations of two tiles separated by some bounded
distance but not sharing an edge. In such a case, it is still
possible to check whether the tiling satisfies the rules by
examining only two tiles at a time, or, as physicists would
say, by considering only pairwise interactions between tiles.
Configuration atlases: The set of allowable configurations
may be expressed as an atlas of allowed configurations
within some ball of finite radius, but not be expressible as a
set of pairwise constraints. Examples include the trivial
cases presented by Goodman-Strauss in which rectangular
tiles are required to form pixellated versions of Robinson
square tiles [11] as well as the recent construction of Fletcher
in which face-matching rules for an aperiodic set of 21 cubic
prototiles are expressed as an atlas of allowable configura-
tions for a single cubic prototile in which the 21 different tile
types are encoded as 21 different orientations of a single tile
[15].

The einstein
The discovery of the prototile and rules of Figure 1 was ini-
tiated by Taylor’s observation that a single colored hexagon
together with its mirror image could force a structure similar
to the one forced by a set of 12 tiles (discovered by Socolar
and Goodman-Strauss) that appeared later on Socolar’s web
page. She had been searching since 1993 for a superposition
of matching rules to force nonperiodicity on the hexagon
with black stripes, viewing it as an elementary version of the
Penrose rhombi, which form a quasiperiodic hierarchy of
overlapping, irregular hexagons. Taylor’s constructions were
based heavily on a complex scheme for generating the tilings
through a substitution procedure in which each tile is divided
into smaller tiles that respect the same local rules [16]. A note
from Taylor requesting feedback led Socolar to refine the set
of necessary local rules and construct a simple proof of
aperiodicity, which initiated an extended collaboration
conducted entirely by email between Tasmania and North
Carolina. The conceptual breakthroughs needed to resolve
various subtle issues came about through repeated exchange
of figures and discussion of details specific to these tilings.
There was no clearly generalizable strategy involved, though
we hope that our results will lead by example to further
discoveries.

Theprototile and itsmirror image are shown in Figure 1 as
regular hexagons decorated with colors that encode rules
constraining the relative orientation of nearby tiles. There are
twosuchconstraints, or matching rules: (R1) theblack stripes
must be continuous across all edges in the tiling; and (R2) the
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flags at the vertices of two tiles separated by a single tile edge
must always point in the same direction. The rules are illus-
trated in Figure 1(b), and a portion of a tiling satisfying the
rules is shown in Figure 1(c).1

An alternative way to represent the matching rules is to
allowdecorations that extendbeyond the tile edges as shown
in Figure 4. R1 remains the same and R2 is now enforced by
requiring that the purple stripes be continuous. This makes it
clear that R2 and R1 have identical geometric forms related
by a scale factor of

ffiffiffi

3
p

and a rotation by p/2. It is the relative
positions of the long black and long purple stripe that dis-
tinguish the different reflections of the prototile. The purple
stripes in Figure 4 form hierarchical triangular structures just
like the black stripes, but there are three interpenetrating
purple structures. (See Figure 5 that follows.)

Theonly space-filling tilings allowedby the2Dprototileof
Figure 1 are nonperiodic. The proof given in [6] shows that
the tiling forms an infinite hierarchy of interpenetrating
honeycomb lattices of black rings, and the tiles in latticeswith
translational symmetry scales larger than r cannot participate
in partial translational symmetries with spacing smaller than
r. For any r, the density of tiles in larger scale lattices is clearly
finite (nonzero), so the tiling is indeed nonperiodic by our
definition. Thus, assuming thatweallowcolormatching rules
and count mirror images as a single prototile, we have an
einstein that requires only pairwise matching rules!

The partial translational symmetries of the black ring
structure are immediately clear, but because of the interplay
between that and the purple stripes, the partial translational
symmetries of the full pattern are more difficult to locate.
Figure 5displays a subsetof them.The shaded tiles are amotif
that is repeated periodically to form a triangular lattice. For
visual clarity, theblack stripedecoration is displayed for every
tile and thepurple stripe decoration of Figure 4 is shownonly
for a subset of the tiles that form a triangular lattice consisting
of one third of all of the tiles. There is no partial translational
symmetry in this tiling with a smaller spacing than the ones
shown except for the special cases where partial translational
symmetries occur along one infinite line in the tiling. The
proof involves analysis of the separate symmetries of the
black stripe and purple stripe patterns. We omit it here
because it is not terribly illuminating and we have not yet
solved thegeneral problemofwhich tilesparticipate inpartial
translational symmetries with given spacings.

The matching rules R1 and R2 may appear to be unen-
forceableby shape alone. R2 necessarily refers to tiles that are
not in contact in the tiling and R1 cannot be implemented
using only the shape of a single prototile and itsmirror image.
Both of these obstacles can be overcome, however, if one
relaxes the restriction that the prototile must be a simply
connected shape. Figure 6(a) shows how the color–match-
ing rules canbe encoded in the shapeof a single prototile that
consists of several disconnected regions. In the figure, all
regions of the same color are considered to comprise a single
tile. R1 is enforced by the small rectangles along the tile
edges. R2 is enforced by the pairs of larger rectangles located
radially outward from each vertex. The flag orientations
are encoded in the chirality of these pairs. Thus we have
an einstein that does not require color matching rules!
Figure 6(b) shows a deformation of the disconnected pro-
totile to a prototilewith cutpoints; that is, a tile inwhich all the
pieces are connected throughvertices and tiles are allowed to
overlap at those points. For a beautiful rendering of this
construction, see Araki’s beetles [18].

Whether you prefer to enforce the matching rules using
colors or a disconnected prototile is a matter of taste. Of
course you may find both less than fully satisfying, in which
case we can offer a third way out—via escape to the third
dimension. The tiles of Figure 1 are related by reflection
through a line in the 2D plane, but they can also be thought of
as related by a rotation in 3D space of 180� about that same
line, suggesting that the two mirror-image tiles be thought of
as the front and back faces of a single 3D tile. Such a tile is
shown in Figure 7.

The colored bars running through the 3D tile are guides to
the eye that display the black and purple stripe structure, but
they are not required. The continuity of the bars is enforced
by the shape of the tile alone. To see how, consider first the
flag matching rule R2. To enforce this rule, we must have
arms extending outward from the basic hexagonal prism to
meet with the arms of next-nearest-neighbor hexagons. At
each vertex of the hexagonal tiles, three arms must somehow
pass through each other. The tile shown in Figure 7 solves
this problem by allowing tiles to be staggered at three dif-
ferent heights. The full tiling is divided into three triangular
lattices of tiles, each of which contains tiles at one height. The
top facesof the tiles in the threedifferent lattices are at heights
0, h/3, and 2h/3, where h is the height (or thickness) of a tile.

1We note that this tiling is similar in many respects to a tiling exhibited previously by Penrose [17], but the two are not equivalent [6].

(a) (b) (c)

Figure 4. Alternative coloring of the 2D tiles. The arrows indicate stripes on next nearest

neighbor tiles that must join to form a continuous line.
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The hexagonal blocks on each arm have thickness h/3,
allowing the blocks from three crossing arms to make a full
column. The six arms on the prototile have outer faces that
are tilted from the vertical in a pattern that encodes the chi-
rality of the flags of the 2D tile. Forming one triangular lattice
requires that bevels of opposite type be joined, and hence
that flags of opposite chirality match in accordance with R2.

The small bumps on the tiles and the holes in the arms are
arranged such that adjacent tiles can fit together if and only if
the black stripes match up properly, as required by R1. The
three square holes in each arm are positioned so that pro-
jections from the faces on neighboring tiles can meet with
eachother. Theholes are all the same; they donot themselves
encode the positions of the black stripes. Next, we create two
types of plug that can be inserted into a hole. One type

consists of two square projections that fill opposite quadrants
of the hole; the other type fills the entire hole but only to half
its depth. The two types are both invariant under rotation by
180�. Two plugs of the same type can fit together to fill a hole,
but plugs of different types cannot. Finally, we place two
columnsof threeplugs eachon eachof the large vertical faces
of the main hexagonal portion of the tile. Each column
aligned with a black stripe has plugs of one type, and the
other columns have plugs of the other type. (The latter are
needed to fill the holes in the arms at those positions.) Three
plugs are needed because of the staggered heights of
neighboring tiles. If a prototile that is a topological sphere is
desired, the plugs can be moved toward the middle of their
respective faces so that the left and right side plugs meet and
the holes in the arms are converted to U-shaped slots.

Figure 5. The partial translational symmetry with the smallest spacing. Clusters of 24 shaded

tiles (two of each of the twelve tile orientations) are repeated throughout the tiling, forming a

triangular lattice. Purple stripes are shown only for a subset of one third of the tiles.

(a) (b)

Figure 6. (a) Enforcing by the shape alone with a disconnected 2D tile. All the patches

of a single color, taken together, form a single tile. (b) A deformation of the disconnected

prototile in (a) to a prototile with cutpoints.
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Tofill 3Dspace, thestaggered layercanbestacked.Note that
in its current form the tiles in a single stacked column do not
have to have identical orientations; the 2D tilings constituting
successive staggered layers need not coincide, though each
must be a version of the nonperiodic tiling. If desired, a bump
could be placed on the segments on the top face of the tile
directly over the point where purple and black stripes cross,
with a matching indentation on the bottom face, so the tiling
would be unique (periodic in the stacking direction).

Thus we see that matching rules equivalent to those of the
2D tile can be enforced by the shape of a simply connected
three-dimensional prototile. The space-filling tiling forced
purely by the shape of this tile consists of a corrugated slab
isomorphic to the structure forcedby the 2D tiles, as shown in
Figure 8, which may be stacked periodically to fill the 3D

space. This forced structure means that the tile satisfies a
rather strict definition of an einstein—the strictest definition
currently known to be satisfiable. Though the periodicity in
the thirddimensionmakes this aweaklynonperiodic tilingby
Goodman-Strauss’s definition, it has a verydifferent character
from the SCD type of weak nonperiodicity. In particular, the
3D tiling does satisfy our definition of nonperiodic, which
indicates that the structure has complex correlations over
large scales.

Our 3D prototile, like the SCD prototile, is not isomorphic
to its reflection. It is not possible, however, to construct a
tiling that contains a mixture of the two enantiomorphs. The
shapes of the plugs enforcing the black stripe rule do not
allow placing a left–handed tile adjacent to a right–handed
one. Thus the prototile is aperiodic even if one does not

Figure 7. A 3D einstein. Colored bars are included only to clarify the relation of the 3D

shape to the matching rules for the 2D tile. A translucent tile is shown in two orientations

to emphasize the relation of the colored bars to the shape. Three solid tiles that fit

together properly are shown (with the ends of the colored bars visible).

Figure 8. Two renderings of portions of the 3D tiling. For visual clarity, the purple

stripes on translucent tiles at different heights are rendered in different colors.
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explicitly prohibit reflections. For the SCD rhombic biprism,
which is also chiral, reflections allow the construction of a
periodic tiling with layers that alternately twist clockwise and
counterclockwise. In order to prevent mixing of the two
enantiomorphs, one may decorate the SCD tile with chiral
plugs, though the prototile then loses the appealing property
of convexity.

The einstein pattern
The fundamental structure of the tiling is visually evident in
the patterns of black rings and purple rings in Figure 5. The
black rings form truncated triangles with side lengths rela-
ted by powers of two. Any set of triangles of the same size
forms a periodic honeycomb pattern equivalent to that of
the smallest ones. As expected from the similarity of the
black and purple decorations of Figure 4, the purple rings
form exactly the same pattern, rotated by p/2 and scaled up
by a factor of

ffiffiffi

3
p

:
Two proofs of aperiodicity are given in [6]. The first begins

with an inspection of the possible ways of surrounding a
given tile, which quickly reveals that a subset consisting of

3/4 of all the tiles in the plane must be arranged to form the
honeycomb of smallest black rings. One then shows that the
markings of those tiles induce precisely the same set of rules
applied to the remaining tiles, so that 3/4 of those will have to
form the truncated vertices of the next largest honeycomb of
black triangles. Iterating the reasoning implies that there is no
largest honeycomb, so that for any finite r, there will be a
finite density of tiles that do not participate in partial trans-
lational symmetries with spacings smaller than r.

The second proof makes use of the invariance of the tiling
under inflation, a procedure in which tiles are grouped into
larger tiles that obey the same matching rules on the larger
scale. By identifying seven distinct local environments of
each chiral tile type (fourteen environments altogether) and
assigning central tiles in them, labels A through G and �A
through �G; it is possible to obtain the tiling from an iterated
substitution rule, as shown in Figure 9. The scale factor
associated with the substitution rule is 2, which implies that
the tiling is limit-periodic (rather than quasiperiodic). [19, 20]
A proof that the pattern of tile types can be enforced by a
single prototile is given in [6].

Figure 9. Top: The fourteen-tile set. Bottom: Illustration of the substitution rule. The

label of the central black hexagon within each red hexagon is C if the red label is

unbarred and �C if the red label is barred.
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A curious feature of the set of forced tilings is that there is a
particular arrangement of three tiles around a vertex for
which the entire tiling is uniquely determined; that is, there is
a local configuration that has a unique extension to thewhole
plane [6]. This may be surprising, as one might expect the
uniqueness of the extension to imply that the tiling must be
periodic. Almost every finite patch that appears in a complete
tiling appears an infinite number of times and permits an
infinite number of distinct extensions to the entire plane.
There is, however, oneparticular tiling (plus itsmirror image)
that contains a single threefold symmetric vertex thatdoesnot

appear in anyof theother tilings. The situation is analogous to
having a decapod defect at the center of a Penrose tiling [5],
but the ‘‘defect’’ in the present case does not violate the
matching rules in its interior.

A good visualization of the complexity of the tiling is
obtained by shading the two mirror images differently, as
shown in Figure 10. Figure 11 shows a larger portion of the
tiling with one tile type shaded light grey and the mirror
image tile shaded dark grey. We have noticed a curious fea-
ture of this pattern. There are islands of 13 dark (or light) tiles
that are surrounded completely by light (or dark) tiles. We

Figure 10. Another coloring of the forced 2D tiling. The purple stripes have been moved

outward from the center of each tile to make it easier to see the purple triangles, and the

handedness of each tile is encoded in the gray and white tile colors.

Figure 11. The pattern of mirror image tiles. Red tiles show the islands mentioned in the text.
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refer to these as ‘‘llamas.’’ (See Figure 11.) Islands of 63 tiles
can also be seen in the figure. These are obtained from llamas
and a few nearby tiles by application of the substitution rule.
We have also found islands of 242 tiles formed by a second
iteration of the substitution rule. Those islands each surround
one llama, so the total size of the patch is 255 tiles. We have
not determined, however, whether islands of arbitrarily large
size exist or whether the fraction of tiles that are not in an
island of some finite size is nonzero.

The parity pattern can be specified completely as a func-
tion of tile locations with a closed-form expression [6]. An
unexpected feature is the emergence of regular paperfolding
sequences (A014577 of the Online Encyclopedia of Integer
Sequences). Inspection of the substitution rules for hexagons
along certain rays shows that they recapitulate precisely
the iterative rule that produces the regular paperfolding
sequence. This connection suggests that the full 2D pattern
exhibits a rich algebraic structure that holds additional sur-
prises andpossibly affords anewwindowonto theproperties
of paperfolding and related sequences.

Closing remarks
We have exhibited a tile that lies in a distinct new class—a
single tile that forces nonperiodicity in a space-filling tiling—
and we have presented a supporting classification scheme
that captures certain intuitive distinctions between classes of
nonperiodic tilings.

If mirror image tiles are counted as equivalent to the ori-
ginal tile, and if disconnected tiles or tiles with cutpoints are
allowed, we have a 2D tile that forces a nonperiodic tiling (in
exactly the same sense that the Robinson tilings are nonpe-
riodic). Our 3D construction gives the long-sought simply
connected einstein with matching rules enforced by shape
alone (and no mirror image tile required). The structure of
our 3D aperiodic tile is somewhat complex and does not
appear open to simplification, but two elements of the con-
struction suggest new directions in the search for an einstein.
First, we use the possibility of rotation in 3D to create a single
tile that is equivalent to two different 2D tiles, mirror images
in the present case. Second, we use the third dimension to
implement rules that require either disconnected tiles or
color matching in 2D.

The crucial point, in our view, is that our 3D prototile is the
first known to force a nonperiodic structure that cannot be
easily anticipated by examination of a single tile. It is still
interesting, however, to search for a single, simply connected
2D or 3D prototile that forces maximal nonperiodicity by
shape alone, or one that does not permit any weakly non-
periodic tilings. As we write, we are aware of several current
computer-based searches for an aperiodic topological
disk in 2D. The general strategy is to enumerate all possible
prototiles consisting of the union of simple triangles (polyi-
amonds), squares (polyominoes), hexagons (polyhexes), or
certain pairs of triangles (polykleins), and, for each prototile,
to examine all possible ways of forming small portions of a
space-filling tiling. Typically, one quickly finds a portion that
can tile the whole plane periodically, or one finds that the
prototile does not admit a space-filling tiling at all. In each
case, there is a measure of complexity associated with how

many prototiles are needed to form the unit cell (the smallest
anisohedral number permitted) or how many rings of tiles
can be added around a central one before an irresolvable
conflict is encountered (the Heesch number). [11, 14, 21, 22]
The hope is that these computer searches will turn up a
prototile that does not appear to have a finite Heesch number
but does appear to have an infinite isohedral number. Such a
prototile would then have to be examined analytically to
establish that it really does have both properties. To date, the
largest anisohedral number discovered is 10, which is
achieved for aparticular 16-hex [21]. It is not yet clearwhether
computer search will beat human creativity to finding the
elusive unmarked, simply connected, two-dimensional ein-
stein—if such a thing exists at all.
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