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Abstract
Aging is associated to progressive changes impairing fundamental cellular and tissue functions, and the relationships amongst 
them through the vascular and immune systems. Aging factors are key to understanding the pathophysiology of stroke since 
they increase its risk and worsen its functional outcome. Most currently recognised hallmarks of aging are also involved in the 
cerebral responses to stroke. Notably, age-associated chronic low-grade inflammation is related to innate immune responses 
highlighted by induction of type-I interferon. The interferon program is prominent in microglia where it interrelates cell 
damage, danger signals, and phagocytosis with immunometabolic disturbances and inflammation. Microglia engulfment of 
damaged myelin and cell debris may overwhelm the cellular capacity for waste removal inducing intracellular lipid accumu-
lation. Acute inflammation and interferon-stimulated gene expression are also typical features of acute stroke, where danger 
signal recognition by microglia trigger immunometabolic alterations underscored by lipid droplet biogenesis. Aging reduces 
the capacity to control these responses causing increased and persistent inflammation, metabolic dysregulation, and impaired 
cellular waste disposal. In turn, chronic peripheral inflammation during aging induces immunosenescence further worsen-
ing stroke-induced immunodepression, thus increasing the risk of post-stroke infection. Aging also alters gut microbiota 
composition inducing dysbiosis. These changes are enhanced by age-related diseases, such as atherosclerosis and type-II 
diabetes, that further promote vascular aging, predispose to stroke, and exacerbate brain inflammation after stroke. Current 
advances in aging research suggest that some age-associated alterations may be reversed. Future work will unravel whether 
such evolving anti-aging research may enable designing strategies to improve stroke outcome in the elderly.
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Introduction

Aging is associated to a certain degree with cognitive 
decline, and it is a critical risk factor for neurodegeneration 
[1]. The increase in life expectancy parallels the raise of age-
dependent cognitive impairment and dementia associated 

to neurodegenerative and vascular conditions. Epidemio-
logical data reveal that 84% of all stroke cases worldwide 
occur every year in people aged above 49 years [2]. Then, 
the risk of stroke increases every year of age by 9% in men 
and 10% in women [3], and, accordingly, stroke prevalence 
increases with age in both sexes [4]. Moreover, stroke has 
worse functional consequences in the elderly, as assessed 
with different prognostic scales [5]. It is estimated that 
stroke accelerates the age-dependent functional decline by 
nearly tripling the spontaneous annual increase in disability 
[4]. A critical reason underlying the worse response of the 
elderly to stroke is the age-related increase in frailty. The 
frailty status, as assessed with several indexes and scales, is 
common in stroke patients and it is related to poor outcomes 
[6]. Aging-associated frailty is due to the deterioration of 
tissue and organ functions, which enhances the risk of devel-
oping age-associated diseases. Frailty during aging is highly 
variable between individuals of the same age. Accordingly, 
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individuals have a different capacity of brain resilience to 
cope with and respond to challenges such as stroke. Age 
has an impact on neuronal activity and viability, glial cell 
function, structure and function of brain blood vessels and 
the blood-brain barrier (BBB), and the bidirectional com-
munication between the brain and the periphery. Given the 
effects of age in global functional decline, the age factor 
must be considered to understand stroke pathophysiology.

Aging factors relevant for stroke outcome

Complex and interrelated factors are associated to functional 
decline during aging. A seminal paper by López-Otín and 
co-workers [7] identified 9 hallmarks of aging, recently 
updated to 12 ones [8], namely genomic instability, telomere 
attrition, epigenetic alterations, loss of proteostasis, deregu-
lated nutrient sensing, mitochondrial dysfunction, stem cell 
exhaustion, altered intercellular communication, cellular 
senescence, disabled macroautophagy, chronic inflamma-
tion, and dysbiosis. As in global aging, the same mecha-
nisms listed above intervene in brain aging and cognitive 
decline, and they most likely play a role in stroke outcome 
in the elderly. Moreover, the chronic modifications progres-
sively induced by aging may additively or even synergisti-
cally amplify the alterations induced by stroke and prolong 
the responses to acute brain damage. We will briefly discuss 
some of these aging factors for their putative involvement in 

stroke pathophysiology and will expand on the concept of 
chronic inflammation in the elderly (Fig. 1).

Aging promotes epigenetic changes mediated by DNA 
methylation, histone modification and expression of non-
coding RNA. Notably, aging-induced changes in the DNA 
methylation pattern are used as epigenetic clocks to predict 
the ‘functional or biological age’, which is dependent on 
genetic and environmental factors, versus the ‘chronological 
age’ [9]. Epigenetic modifications occur in all cells, accu-
mulate with age, and are affected by disease conditions and 
experiences during life. Stressful experiences and other envi-
ronmental factors cumulatively promote epigenetic changes 
and somatic mutations that can accelerate the biological age 
[10]. Accordingly, the rate of functional decline is highly 
variable between individuals [11], and it is more related 
to the biological age rather than the chronological age. By 
similarity, the biological age rather than the chronological 
age is determinant in the worsening effect of age on stroke 
outcome [12].

Loss of proteostasis and disabled macroautophagy 
(termed autophagy in this review) may be particularly rel-
evant at the cellular level in long lived brain cells. Alteration 
of these fundamental cellular processes is expected to impair 
cellular waste disposal leading to the accumulation of pro-
tein aggregates and lipids. Accordingly, an autofluorescent 
pigment termed lipofuscin, which is composed of residual 
lysosome products, can be typically seen by microscopy 

Fig. 1   Chronic aging factors 
influencing stroke outcome in 
the elderly. Selection of aging 
hallmarks that are expected to 
affect stroke outcome converg-
ing through diverse and inter-
related mechanisms, causing 
overactivation of innate immune 
responses in the brain. As a 
consequence, after stroke, the 
aged brain shows exaggerated 
production of inflammatory 
mediators and failure to resolve 
the inflammatory response, 
which persists for longer in the 
elderly
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in cells of brain tissue sections from old individuals [13]. 
Dysfunction of autophagy is associated to a wide range 
of disease conditions, and it is a hallmark of aging [14]. 
Stroke perturbs autophagy by increasing the autophagic 
flux, but this phenomenon is associated with dysfunctional 
lysosomal storage and synaptic activity in neurons [15], and 
stroke-induced alterations in autophagy are associated with 
dysfunctional phagocytosis in microglia [16]. Dysregula-
tion of autophagy after stroke is complex since it may have 
cell type–dependent consequences, and the response of the 
aged brain is expected to differ from the young. Moreover, 
alterations of autophagy and strongly related impairment 
of waste disposal are also interconnected with endoplasmic 
reticulum stress, oxidative stress and inflammation [17]. 
Other aging factors that may be important in stroke include 
mitochondrial dysfunction, as recently reviewed elsewhere 
[18], and age-dependent decrease in neurogenesis due to 
reduced neural stem cell proliferation, which in turn may 
depend on epigenetic deregulation [19]. Interestingly, the 
same processes progressively affected by aging suffer acute 
and strong perturbations after stroke. Moreover, several 
stroke-induced disturbances seem to resolve faster in young 
rather than old individuals.

Finally, aging harbours the accumulation of senescent 
cells, i.e. cells undergoing irreversible growth arrest and 
secreting pro-inflammatory cytokines and other molecules 
conforming the senescence-associated secretory phenotype 
(SASP) [20]. This phenotype is mainly detected in division-
competent cells, such as stem cells. Senescence of stem cells 
has been related to age-dependent functional decline, for 
instance in the hematopoietic system [21]. SASP may also 
contribute to the status of low-grade chronic inflammation 
associated with aging and known as ‘inflammaging’.

Inflammaging

Inflammaging involves a global upregulation of innate 
immune mediators in the elderly [22, 23]. Typical 
molecules associated to senescence-related inflammation 
are interleukin-6 (IL-6), tumor necrosis factor alpha 
(TNF-a), growth factors, acute-phase reactants, and other 
pro-inflammatory molecules, as well as autoantibodies. 
Importantly, inflammatory stimuli from the periphery may 
affect the brain, thus peripheral senescent cells may have an 
impact on brain inflammation. However, cellular senescence 
has also been related to tissue repair and has been proposed 
as a mechanism to alert other cells of functional alterations 
that can trigger a repair response [20].

In the brain, aging induces a specific transcriptomic sig-
nature highlighted by increased inflammation and microglial 
cell priming [24]. Stroke triggers an acute and sharp inflam-
matory response, both in the brain and the periphery, to set 
up mechanisms than can restore homeostasis. The microglial 

inflammatory response to stroke is exacerbated in the elderly 
[24, 25]. Microglia cells also display a more pro-inflamma-
tory, dystrophic and dysfunctional phenotype in the elderly 
[26, 27]. It is likely that the higher production of inflamma-
tory mediators by microglia in the aged brain may occur 
due to a deficient control of inflammation. Accordingly, the 
inflammatory response to acute stroke persists for longer 
in old rather than young mice [24]. Given the involvement 
of microglia in maintaining the integrity of the BBB, it has 
been suggested that changes in microglia of the aging brain 
contribute to the exacerbated BBB breakdown caused by 
hypoxia in the elderly [28].

Age and stroke‑induced innate immune responses

Following stroke, injured cells generate danger signals or 
damage-associated molecular patterns, including nuclear 
proteins, nucleic acids, heat-shock proteins, amongst others, 
triggering immune responses by activating pattern recogni-
tion receptors (PRRs) [29]. Microglial cells are equipped 
with membrane PRRs enabling sensing danger signals 
from the environment, and intracellular PRRs that recog-
nize cytosolic nucleic acids resulting from viral infection 
or cellular stress and damage. For instance, stroke activates 
the cyclic GMP-AMP synthase (cGAS) pathway, which 
induces inflammation and brain damage [30, 31]. cGAS 
senses cytosolic double-stranded DNA, e.g. mitochon-
drial DNA (mtDNA) leaked after mitochondrial damage, 
and activates the receptor stimulator of interferon (STING) 
inducing the type I interferon (IFN) response [32]. Type I 
IFNs (α, β, and ω) bind to IFN receptor type 1, and they 
signal through JAK1 and TYK2, phosphorylating STAT1, 
STAT2, and STAT3, as well as other STAT family members. 
Type I IFN-stimulated genes (ISG) are involved in antiviral 
defence through induction of innate immune responses and 
antiproliferative activities, amongst others [33]. This path-
way must be precisely regulated given that gain of function 
of STING and subsequent chronic IFN type I overproduction 
is involved in the pathogenesis of autoimmune diseases [34].

Stroke induces a strong activation of the type I IFN pro-
gram in microglia [35, 36]. The microglial IFN response 
is superior to that detected in brain infiltrating immune 
cells like dendritic cells [36], suggesting that microglia are 
particularly prone to deploy the transcription of ISGs after 
stroke. In the aged brain, stroke further exaggerates the mag-
nitude of the type I IFN response in microglia and oligoden-
drocytes [24, 25]. Furthermore, the microglial IFN response 
to stroke persists for longer in aged mice compared with 
young mice [24]. Overactivation of the IFN program in the 
aging brain could be mediated by senescent cells since they 
generate cytosolic chromatin fragments that are recognized 
by cGAS, inducing the activation of STING and the produc-
tion of SASP factors [37]. Notably, premature aging in the 
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Hutchinson-Gilford progeria syndrome (HGPS) is associated 
to a potent STAT1-mediated IFN response that appears to be 
involved in cellular decline [38].

The microglia type I IFN program mediated by Stat1 
transcription factor intervenes in immunometabolic changes 
involving the accumulation of lipid storage organelles in the 
cytoplasm called lipid droplets [25], which are functional 
metabolic hubs and innate immunity first responders [39]. 
After stroke, the proportion of microglia with lipid droplets 
increased 8.3-fold compared to sham-operated mice, sug-
gesting that this effect is part of an adaptation to the immu-
nometabolic challenge imposed by stroke. Lipid droplets 
were described in microglia of old mice under steady state 
accompanied by increased oxidative stress and an inflamma-
tory phenotype [40]. Accordingly, the proportion of lipid-
droplet rich microglia increased from less than 3% in young 
mice to nearly 14% in 21–22-month-old mice under control 
conditions (sham-operation) [25]. Lipid droplet-rich micro-
glia in old mice further increased by 2.7-fold after ischemia 
[25]. This effect suggests an attenuated acute adaptive reac-
tion to the stroke challenge in old compared to young micro-
glia. Lipid droplet accumulation in old microglia may be part 
of the primed phenotype observed in microglial cells of the 
aged brain that acquire some features of disease-associated 
microglia (DAM) [41, 42]. The white matter of aged mice 
shows degenerating myelin and associated microglia display 
overrepresentation of genes involved in phagocytic activity 
and lipid metabolism likely related to myelin removal [43]. 
Overload of phagocytosed lipid-rich material under natural 
aging or after disease conditions may surpass the cellular 
lipid disposal capacity promoting metabolic adaptations 
and lipid accumulation [44]. Independently, inflammation 
may also trigger acute lipid droplet biogenesis, as shown 
in microglia cell cultures treated with lipopolysaccharide 
[40, 45] or in acute stroke [25]. These findings suggest that 
diverse signals converging in immunometabolic alterations 
result in the formation of lipid droplets in microglia.

Overall, stroke induces an acute transcriptional and 
immunometabolic program in microglia of young mice with 
features resembling some of the phenotypic changes dis-
played by microglia of aged mice under steady state. Stroke 
in aged mice further exacerbates this response triggering 
more inflammation and failing to exert an adequate regula-
tory control to terminate the response to the acute challenge.

Immunosenescence

Age-dependent inflammation is strongly associated with 
defects in the immune system. The capacity to mount 
adaptive and innate immune responses is attenuated in 
the elderly due to immunosenescence that explains why 
old people have an increased susceptibility to infections. 
This immunosuppressive state generated in the elderly is 

most likely a counteractive response trying to restrain the 
chronic inflammation. Decrease in naïve T cells and increase 
in memory T cells as well as lower capacity to generate 
antibody reactions against pathogens are prominent features 
of immunosenescence [46]. In fact, the immunosenescent 
state is characterized by a dysfunctional activity in almost 
all immune cell types and an increase in the activity of sup-
pressor cells, including regulatory T cells, myeloid-derived 
suppressor cells, and regulatory B cells [47]. Older people 
retain pathogen-specific immune memory obtained when 
young. However, their response to new infections is often 
low, in part because of the malfunctioning of innate immune 
cells. Indeed, the capacity of macrophages and neutrophils 
to react against a stimulus and exert effector functions is 
reduced in the elderly. For example, macrophage activation 
is impaired in older mice in addition to showing a reduced 
phagocytic activity and limited production of superoxide and 
nitric oxide [48]. Dendritic cells show a reduced migration 
capacity to the lymph nodes and express less co-stimulatory 
markers, impairing their function as antigen-presenting cells 
[49]. Natural Killer cells have a limited production of cyto-
toxic granules too [50]. Neutrophils of old individuals show 
a reduction in superoxide and chemotaxin production that 
ends up in a declined bactericidal activity [51].

The acute brain inflammation induced by stroke is fol-
lowed by systemic immunodepression [52–55]. The combi-
nation of aging-derived immunosenescence with post-stroke 
immunodepression will further increase the probability of 
developing infections in older stroke sufferers. Therefore, 
improving the function of the immune system in the elderly 
will surely help to limit this very important post-stroke com-
plication. Overall, the immunological alterations induced by 
aging appear to be critically involved in the worse outcome 
of stroke in the elderly. Importantly, several lines of evidence 
suggest that the peripheral immune system and blood factors 
of the elderly contribute to age-dependent cognitive decline 
[56, 57] and exacerbate the stroke brain lesion [58].

Vascular aging

Blood factors and immune cells may influence stroke out-
come by affecting the function of brain vessels. The status of 
the vasculature is a critical player in the individual response 
to aging, as postulated long ago by the English physician 
Thomas Sydenham in the seventeenth century, who wrote 
the famous quote ‘A man is as old as his arteries’. All aging 
factors described above affect the vasculature, as recently 
reviewed [59]. The aging brain vessels develop characteristic 
features of vascular dysfunction including increased BBB 
permeability, rarefaction, and formation of string vessels 
[60]. Loss of BBB integrity can facilitate access of blood 
molecules to the brain inducing inflammation, and in turn, 
inflammation may weaken the BBB integrity. Increases in 
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BBB permeability are detected in healthy aging, and this 
phenomenon is further exacerbated in patients with vascular 
or Alzheimer’s dementia [61]. Accordingly, the brain blood 
vessels are more prone to rupture in the elderly increasing 
the rate of hemorrhagic transformation after ischemic stroke 
[58]. Age-associated BBB dysfunction may have secondary 
effects, like the induction of transforming growth factor-β 
(TGFβ) in astrocytes impairing neuronal function associated 
with age-dependent functional decline [62]. Further stud-
ies will determine whether and which vascular factors and 
components of the peripheral immune system in the elderly 
may contribute to the described spontaneous age-dependent 
leakage of the BBB and promote subsequent brain inflam-
mation exacerbating stroke brain damage.

Microbiota

The intestinal microbiota has been implicated in normal 
development of the brain, including the normal functioning 
of microglia [63] and the development of the BBB [64], 
but it has been also associated to multiple brain diseases, 
including stroke [65–67]. Stroke pathophysiology is affected 
by the intestinal microbiota [65–70] (see review [71]), and 
the intestinal microbiota is disrupted by stroke [67, 72, 73]. 
Transplantation of microbiota of mice with stroke into naïve 
germ-free mice followed by induction of stroke in these ani-
mals increased the size of the brain lesion, suggesting that 
stroke might induce a pro-inflammatory bias in the intestinal 
microbiota [67, 68]. Since it has been demonstrated that the 
intestinal immune status can be translated into the central 
nervous system (specifically, into the meningeal compart-
ment through cell migration of IL17γδ-T cells from the 
small intestine to the meninges), stroke neuroprotection can 
be achieved by remodeling the intestinal immune system 
to a more “anti-inflammatory” phenotype, consisting of an 
increase in regulatory T cells and a reduction in IL17 pro-
ducing γδ-T cells (IL17 γδ-T cells) [65]. After stroke, the 
immune status in the gut was translated into the central nerv-
ous system, specifically, into the meningeal compartment 
through cell migration of IL17γδ-T cells from the small 
intestine to the meninges. Similar findings were furtherly 
obtained when using different antibiotic cocktails to induce 
intestinal dysbiosis [66]. Noteworthy, other studies using 
broad-spectrum antibiotic cocktails failed to induce any pro-
tection from brain damage after stroke [69]. Intestinal micro-
biota alterations are highly depend on the type of antibiotics 
and also on the original composition of the microbiota that 
highly depends on the breeding conditions and even on the 
commercial breeders that provide the animal models [70].

Stroke-induced dysbiosis can secondarily affect the stroke 
outcome by a feedback loop between brain-gut-brain bidirec-
tional pathway. Therefore, any process that alters the intesti-
nal microbiota is susceptible of affecting stroke outcome. In 

this sense several vascular risk factors have been associated 
to intestinal dysbiosis, including diabetes, obesity, or hyper-
tension, as well as aging [74]. Aging induces changes in the 
microbiota composition and, at the same time, alterations in 
the microbiome affect the rate of age-related decline. Some 
microbial commensals are lost during aging (e.g. Bifido-
bacterium), some commensals increase (e.g. Akkermansia) 
and some pathobionts are over-represented (e.g. Enterobac-
teriaceae) [75]. Whether these changes are consequence of 
general physiological decline, including inflammaging is 
still an open question. Of note, acute stroke causes a bloom 
of Enterobacteriaceae in the gut microbiota [76], that in the 
elderly will add to their basal increase in opportunistic com-
mensals. Aging effects on microbiota, through their impact 
on the immune homeostasis, will plausibly affect stroke 
pathophysiology in old individuals and promote a poorer 
outcome. In addition, changes in commensal/pathobiont 
derived metabolites have been also reported. Thus, aging is 
associated with an increase in the production of detrimental 
metabolites and the consumption of beneficial metabolites 
[77]. For example, butyrate, a short-chain fatty acid (SCFA) 
metabolite that has been associated with a healthy status of 
microbiota is reduced with aging [78] and, this reduction 
is less severe in healthy centenarians [79]. Moreover, acute 
reduction of fecal SCFA is reported in stroke patients [80]. 
Therefore, both aging and stroke affect the intestinal micro-
biota shifting the intestine to a more pro-inflammatory state.

Co‑morbidities

Several additional co-morbidities that are commonly present 
in stroke patients further increase systemic inflammation. 
We will focus on two of the most important ones: athero-
sclerosis and diabetes. Overall, a common factor amongst 
aging, stroke, atherosclerosis and type II diabetes is the con-
tribution of chronic inflammation to the pathophysiologi-
cal process. Controlling chronic inflammation should have 
a positive impact on the aging process, the progression of 
important comorbidities, and the outcome of stroke in the 
elderly.

Atherosclerosis

Atherosclerosis is a chronic inflammatory condition more 
prevalent in the elderly and therefore associated with aging. 
Atherosclerosis increases the risk of stroke, and in turn 
stroke increases the progression of atherosclerosis. Both 
directions are mediated, at least in part, by systemic inflam-
mation. Inflammation has a fundamental role in every step 
of atherosclerosis formation, from the initial points to the 
final complications of thrombosis. Atherosclerosis is a 
hardening and narrowing of arteries caused specially by the 
accumulation of cholesterol plaques in the inner lining of 
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an artery, inducing inflammatory mediators, such as IL-6, 
and the recruitment of leukocytes to the arterial wall [81]. 
Increase in IL-6 affects hematopoietic stem cells in the bone 
marrow promoting the production of myeloid cells with a 
higher capacity to produce inflammatory cytokines such as 
IL-6 and IL-1β, thus entering in a positive feedback loop 
of re-inflammation [82]. Inflammation and matrix remod-
eling facilitate atheroma plaque destabilization and rupture 
that may lead to stroke [83]. In turn, the acute inflammatory 
response caused by stroke will contribute even further to 
the progression of the atherosclerosis in the whole organism 
[84]. Atherosclerosis, aging, and stroke seem to be a triad 
of factors that reinforced each other in a process strongly 
linked to inflammation. Therefore, efficient managing of 
chronic inflammation during the progression of atheroscle-
rosis/aging and post-stroke inflammatory responses may 
have a beneficial effect to prevent stroke and its secondary 
complications.

Type II diabetes

The risk of type II diabetes increases with age, affecting 
around 25% of the population over 65 years old. Aging is 
associated with an increase in abdominal obesity, a major 
contributor of insulin resistance, and therefore aging and type 
II diabetes are intricately linked. In addition, aging affects 
adipose tissue homeostasis and metabolic functions both of 
which decline with aging and obesity. Aging is associated to 
adipose tissue senescence, which causes defective adipogen-
esis, inflammation and insulin resistance [85]. Patients with 
diabetes present more than double the risk of stroke and, 
diabetes and/or high glucose levels at the onset of stroke have 
been associated with worse outcomes [86], related at least in 
part to glucose-driven oxidative stress [87]. Type II diabetes 
influences stroke outcome in several different ways. First, 
hyperglycemia induces brain infarct growth [86]. Second, 
hyperglycemia primes the thromboinflammatory cascade by 
activating the endothelium, platelets and neutrophils [86]. 
Third, diabetic patients show increased susceptibility to 
infections [88]. Fourth, diabetes also promotes atherogenesis 
[89]. Finally, type II diabetes, triggered by insulin resistance 
is caused by a mechanism involving chronic inflammation. 
As with other stroke comorbidities, ameliorating age-asso-
ciated diabetes may have an impact not only reducing stroke 
incidence but also improving stroke prognosis.

Future therapeutic options

Finding ways to prevent aging has been for centuries the 
search for the Holy Grail. However, recent solid findings 
suggest that some hallmarks of aging may be reversible. 
For instance, loss of epigenetic information is postulated as 
a mechanism causative of aging that can be reversed [90]. 

Indeed, interventions on the aging epigenetic landscape to 
attempt its rejuvenation emerge as putative strategies to 
delay aging or promote healthy aging [91]. An astonish-
ing finding in the field of brain aging was the rejuvenating 
effect of providing blood of young mice to old mice [56]. 
The study used parabiotic mice and the findings pointed to 
some soluble blood factor able to communicate with the 
brain to improve cognitive functions that had deteriorated 
due to aging, thus implying that the cognitive decline may 
be reversible, at least in part. Recent studies also suggest that 
immunosenescence can be modified since transplantation of 
splenocytes from old mice to young mice caused immunose-
nescence in the latter, while this phenomenon was attenu-
ated by transplantation of young splenocytes to old mice 
[57]. Several lines of evidence suggest that improving aging 
features has an impact in stroke outcome too. Rietzel and 
co-workers [58] performed interesting experiments using 
transplantation of bone marrow of young mice to old mice 
reporting improvement of several signs of brain aging, such 
as reduction in certain growth factors and improved behav-
ioural performance of some motor tasks. Notably, induction 
of stroke in these heterochronic old mice with young bone 
marrow resulted in milder behavioural deficits compared 
with those in corresponding controls [58].

Other studies also suggested that age-dependent BBB 
dysfunction might be attenuated or reversed. For instance, 
inhibition of TGF-β diminished neuronal dysfunction medi-
ated by age-associated BBB alteration [62]. Long-term treat-
ment of old mice with small extracellular vesicles derived 
from inducible pluripotent stem cells (iPSCs) attenuated 
signs of BBB senescence and, after stroke, treated mice 
showed protection of BBB integrity, attenuated inflamma-
tory responses, showed less neuronal death and better neuro-
functional recovery [92]. Age-dependent impairment of the 
autophagic flux has been improved by dietary administration 
of spermidine, a polyamine that naturally induces autophagy 
[93]. Nevertheless, stroke increases the autophagic flux and 
there are controversial results in the field regarding the 
effect of drugs acting on autophagy. Pharmacological fine 
tuning of the process may be the key to regulate autophagy 
after stroke [94]. However, the age factor must be consid-
ered since the marked effects of aging may be critical in 
the response of the processes of autophagy to stroke. Drugs 
called senolytics can eliminate senescent cells and improve 
the aging phenotype [95, 96]. Targeting senescent cells can 
attenuate age-dependent cognitive decline, at least in ani-
mals [97]. Moreover, several lines of evidence suggest that 
eliminating senescent cells may also have therapeutic value 
in the treatment of ischemic stroke [98, 99].

Interventions directed to influence the microbiota com-
position and derived metabolites may offer new therapeutic 
opportunities for implementing the treatment of stroke in the 
elderly. Notably, transplantation of fecal matter from young 
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mice enriched in butyrate-producing bacteria to old mice can 
reverse at least part of the phenotypes associated with aging 
by improving cognitive functions [100]. Furthermore, a 
seminal study demonstrated that the gut microbiota compo-
sition of uninjured old mice was similar to that altered after 
stroke in young mice [78]. Then, microbiota manipulation by 
fecal transplants showed that young mice harboring an “old-
microbiota” developed higher deficits post-stroke and that 
aged mice with “young-microbiota” developed milder post-
stroke alterations. The latter phenotype was also accompa-
nied by a reduction in post-stroke mortality and circulating 
immune markers.

Final remarks

Aging is associated with a plethora of alterations that 
increase frailty, predispose to age-related diseases, and 
reduce the brain resilience to injury (Fig.  1). Not only 
stroke risk increases with age, but stroke outcome is worse 
in the elderly. Critical players are aging-induced intrinsic 
alterations of brain cell function, the BBB, and the immune 
system. Two main hallmarks of aging, namely chronic age-
associated inflammation or inflammaging and immunose-
nescence, impact the outcome of stroke. The acute inflam-
matory and immunometabolic reactions triggered by stroke 
appear to be exacerbated in the elderly and, perhaps more 
importantly, they fail to resolve and persist for longer in aged 
compared with young individuals. Moreover, the combina-
tion of peripheral inflammation and the more immunosup-
pressive status of the elderly will facilitate stroke-associated 
immunodepression and increase the risk of post-stroke infec-
tion. Possibly, future drugs or interventions that promise to 
slow down or even reverse some aging features may also 
delay or reduce the rate of cognitive decline and onset of 
age-associated diseases, including stroke. Moreover, in the 
event of stroke, such treatments may promote a better func-
tional outcome. Future studies will determine whether drugs 
targeting aging-related features may also be a therapeutic 
option in acute stroke capable of improving stroke outcome 
in the elderly.
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