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Are there animal models of IgA nephropathy?
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Abstract
Immunoglobulin A (IgA) nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Up to 40% of IgAN
patients develop end-stage kidney disease after 15–20 years. Despite the poor prognosis associated with this multifactorial
disease, no clear treatment strategy has been identified, primarily due to the lack of understanding of its pathogenesis. Clinical
observations indicate that aberrant IgAN immune systems, rather than intrinsic renal abnormalities, may be involved in its
pathogenesis. Moreover, nephritogenic IgA and its related immune complexes are considered to be produced not only in the
mucosa, but also in systemic immune sites, such as the bone marrow; however, there are numerous challenges to understanding
this dynamic and complex immune axis in humans. Thus, several investigators have used experimental animal models. Although
there are inter-strain differences in IgA molecules and immune responses between humans and rodents, animal models remain a
powerful tool for investigating IgAN’s pathogenesis, and the subsequent development of effective treatments. Here, we intro-
duced some classical models of IgAN with or without genetic manipulation and recent translational approaches with some
promising models. This includes humanized mouse models expressing human IgA1 and human IgA Fc receptor (CD89) that
develops spontaneously the disease. Pre-clinical studies targeting IgA1 are discussed. Together, animal models are very useful
tools to study pathophysiology and to validate new therapeutic approaches for IgAN.
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Classical IgAN animal models without genetic
manipulation

IgA nephropathy (IgAN) is defined as “primary chronic
mesangial proliferative nephritis with predominant deposition
of IgA, mainly in the glomerular mesangial region.” In other

words, diagnosis of IgAN requires proof of glomerular IgA
deposition on a kidney biopsy. However, IgA deposition in
the mesangial region is observed in 5–10% of autopsied cases
without a history of renal disease, and about 20% of donated
kidneys without abnormal urinary findings exhibit similar IgA
deposits [1–3]. Thus, there is no guarantee that glomerular
IgA deposition is always pathological, and we cannot deny
the possibility that deposition occurs on a regular basis. Many
single-gene manipulation models of IgA deposition have been
created before, but IgA deposition and IgAN must be clearly
distinguished from one another when being considered. In this
and other respects, reductionist methodologies are limited in
their scope; the complex system that underlies the pathology
of this disease must be dynamically understood and analyzed.

In 1979, Rifai et al. first reported an animal model of IgAN
[4]. Injection models were constructed using murine anti-
dinitrophenole (DNP) and DNP-conjugated bovine serum al-
bumin (DNP-BSA) to characterize nephritogenic IgA and
IgA-containing immune complexes (IC). They confirmed that
anti-DNP/DNP-BSA IC can be synthesized in the circulation,
and is subsequently localized in the glomerular mesangial
region, for which it has a high affinity. Next, they established

This article is a contribution to the Special issue on: The IgA system, IgA
nephropathy and IgA vasculitis - Guest Editors: Jürgen Floege &
Jonathan Barratt

* Renato C. Monteiro
renato.monteiro@inserm.fr

* Yusuke Suzuki
yusuke@juntendo.ac.jp

1 Université de Paris, Paris, France
2 Centre de recherche sur l’inflammation (CRI); INSERM U1149;

CNRS ERL8252, Inflamex Laboratory of Excellence, Paris, France
3 Service d’Immunologie, Assistance Publique de Paris, Hôpital

Bichat-Claude Bernard, Paris, France
4 Department of Nephrology, Juntendo University Faculty of

Medicine, Tokyo, Japan

https://doi.org/10.1007/s00281-021-00878-5

/ Published online: 7 July 2021

Seminars in Immunopathology (2021) 43:639–648

http://crossmark.crossref.org/dialog/?doi=10.1007/s00281-021-00878-5&domain=pdf
http://orcid.org/0000-0001-5202-5646
mailto:renato.monteiro@inserm.fr
mailto:yusuke@juntendo.ac.jp


that persistent mesangial IC deposition requires repeated ad-
ministration of anti-DNP and DNP-BSA or maintained serum
IC levels. They also confirmed that the size of the IgA-IC
complex, which involves coupling of the ICwith the polymer-
ic form of IgA, is a critical factor for mesangial deposition [5,
6]. Using animal models immunized with a bacterial-derived
polysaccharide or chemically modified dextran, Isaacs et al.
further elucidated glomerular injury induced by the mesangial
deposition of IgA-IC formed in the circulation [7, 8]. These
studies emphasized the importance of continuous IgA-IC for-
mation, especially with polymeric IgA, as a driving force for
the nephritogenicity of mesangial IgA deposition.

Macroscopic hematuria following an upper respiratory
tract infection is the hallmark of IgAN; the pathogenic role
of mucosal cells and immune dysregulation on mucosal im-
munity has been discussed in the pathogenesis of IgAN [9].
Emancipator et al. first demonstrated that circulating IgA-IC
generated by repeated mucosal antigen immunization in
healthy Balb/c mice induced glomerular injury withmesangial
deposits of J-chain-associated polymeric IgA [10]. IgAN pa-
tients, especially in Europe, have reported inflammatory bow-
el disease–associated complications, such as Crohn’s disease
and celiac disease, at relatively high frequencies. Indeed, some
reports have demonstrated an increase in IgA anti-gliadin, a
lectin present in gluten, and altered mucosal processing of
gliadin in IgAN patients [11–14]. Coppo et al. demonstrated
renal injury with glomerular deposition of food-specific IgA
in murine models that were orally immunized with ovalbumin
and gliadin [15]. Furthermore, Pestka et al. reported that food-
borne microbial contaminants, such as deoxynivalenol, devel-
oped murine IgAN with mesangial IgA deposition, and in-
creased serum levels of IgA/IgA-IC [16–19]. Impaired oral
tolerance has also been discussed as an immune mechanism
underlying the pathogenesis of IgAN. Gesualdo et al. de-
scribed that murine IgAN induced by oral bovine gamma
globulin (BGG) administration together with cyclophospha-
mide and/or estradiol (to block oral tolerance) led to similar
mesangial IgA deposits as compared to mice without these
drugs but with an aggravated IgAN phenotype due systemic
responses to BGG associated with IgG, IgM, and C3 glomer-
ular co-depositions plus hematuria [20]. It is known that mu-
cosal IgA transcytosis and trafficking by polymeric immuno-
globulin receptor in mucosal cells are strikingly augmented by
estradiol [21, 22].

Models with IgAN caused by specific microbial pathogens
have also been reported. As the glomerulonephritis associated
with methicillinresistant Staphylococcus aureus (MRSA) in-
fection resembles that observed in human IgAN [23, 24],
Koyama et al. generated a murine IgAN model through sub-
cutaneous S. aureus immunization [25]. Based on the clinical
findings of high-frequency glomerular deposition in the outer
membrane of Haemophilus parainfluenzae (HPI) antigens in
IgAN patients [26], Suzuki et al. also demonstrated the

development of murine IgAN in models orally immunized
with HPI [27]. IgAN-like murine models induced by viral
infection with parvo and sendai viruses have also been report-
ed [28–30].

Experimental findings in these animal models support the
idea that mucosal polymeric IgA and related ICs immunized
by mucosal exposure to food and microbial antigens can in-
duce IgAN-like injury in the glomerulus.

Development of a mouse model
of spontaneous IgA nephropathy
for translational research

1) Generation of spontaneous IgAN model (grouped ddY
mice)

To more comprehensively assess the pathogenesis of
IgAN, our group focused on developing a spontaneous mouse
model. In 1985, Imai et al. reported that some ddYmice wide-
ly used in pharmacological and toxicity studies developed
chronic mesangial proliferative nephritis with glomerular
IgA [31]. However, because these mice were a non-inbred
line, significant variance in onset was present, and the line
could not serve as a good model. Muso et al. established an
inbred line by mating ddY mice with high IgA levels (HIGA
mice) [32]. However, while these HIGA mice had high serum
IgA levels, the same problem of onset variance remained. To
test the possibilities of this model, we carried out time-course
renal biopsies of more than 300 ddY mice, and analyzed their
onset patterns [33]. We found that one-third of mice exhibited
mesangial proliferative nephritis with glomerular IgA and
complement C3, and proteinuria by 20 weeks (early onset
group). Another third of mice exhibited the same nephropathy
by 40 weeks (late onset group), and the last 1/3rd did not
exhibit nephropathy at all over the course of their lives (qui-
escent group) (Fig. 1) [33]. Upon conducting genomic asso-
ciation studies of onset-related genes between the early onset
and quiescent groups, we found a candidate gene similar to
one discovered on genetic analysis of human familiar IgAN
[33]. In response to this, we interbred early onset group mice
alone, and successfully established a 100% onset model of
spontaneous IgAN (grouped ddYmice: gddY) [34]. In human
IgAN, IgA1 with abnormal hinge O-glycosylation, particular-
ly galactose-deficient IgA1 (GdIgA1), is known to be in-
volved in the pathology, and in gddY mice, abnormal glyco-
sylation of the IgA molecule was observed [34]. In this man-
ner, we established a model exceedingly similar to human
IgAN phenotypically, genetically, and pathologically, and
have used this model to advance translational research on
the pathology of this condition. At the same time, various
discoveries have further highlighted the validity of this model.
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2) Testing the mucosa-bone marrow axis hypothesis

Mucosal infection or the presence of mucosal immune ab-
normalities has been assumed to play a role in the pathology
of the condition. For many years, a mechanism of nephropa-
thy progression involving an immune complex of mucosal
antigens and antigen-specific IgA has been investigated with
some experimental models above mentioned, and multiple
antigens reported, but none of these findings was successfully
reproduced on follow-up studies. On the other hand, case re-
ports describing IgAN patients who suffered from leukemia
experiencing remission of both nephropathy and leukemia
after bone marrow transplantation, and other reports of abnor-
mal bone marrow biopsy findings in IgAN patients have sug-
gested the involvement of the bone marrow in the pathophys-
iology of the disease. These findings led several groups to
propose the “mucosa-bone marrow axis” hypothesis in the
first half of the 1980s, which proposed that the main cause
of the disease involved mucosae and bone marrow [9, 35, 36].
Unfortunately, lack of a suitable model prevented this hypoth-
esis from being tested. Thus, our group has worked to use the
mouse model we established to test the “mucosa-bone marrow
axis” hypothesis [9, 37].

To verify the involvement of exogenous antigens, we
raised model mice in specific pathogen-free (SPF) and con-
ventional environments. We found that when raising these
mice in a conventional environment, only their serum IgA
levels increased significantly as they aged, suggesting that

exogenous pathogens deeply affect IgA production [38]. At
the same time, upon conducting the aforementioned onset-
related genome association analysis between the early and late
onset groups, MyD88, a pattern recognition receptor and an
adapter molecule for Toll-like receptors (TLRs) which plays a
central role in innate immunity, was highlighted as a candidate
gene for progression [38]. Thus, we analyzed the correlation
between the expression of each TLR associated with MyD88
and disease progression/severity and serum IgA levels. We
found a strong correlation with TLR9, which recognizes the
unmethylated CpG DNA of bacteria and viruses [38]. For
further verification, when CpG DNA was nasally and perito-
neally sensitized, serum IgA level clearly increased, and uri-
nary protein and nephropathy were exacerbated only after
nasal administration [38, 39]. This fact indicates that at the
least, aggravation of the innate immune system especially in
nasopharyngeal mucosa is deeply involved in the mechanism
by which the IgAN model worsens and progresses. Recent
study revealed that, although gddY mice in germ-free condi-
tion show no glomerular lesions without glomerular IgA, only
nasal challenge of CpG DNA, but not fecal transplantation,
r e c o n s t i t u t e s t h e mu r i n e I gAN , s u g g e s t i n g
nasopharyngeal-associated lymphoid tissue (NALT) is
more involved in the pathogenesis of this disease than
gut-associated lymphoid tissue (GALT) [40].

To further confirm the involvement of TLR9/MyD99 path-
ways in human IgAN, subjects were divided into two groups
according to renal tissue severity, and genetic analysis was
performed. A single nucleotide polymorphism (SNP:

Fig. 1 Development of spontaneous IgAN model for translational research
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rs352140) in TLR9 itself, and not in MyD88, showed a very
high correlation with disease severity [38]. Since a similar
mechanism was hypothesized in humans, we proceeded to
verify these findings using the tonsils as the mucosal tissue.
It is known that tonsillectomy causes a reduction in IgA levels
in IgAN leading to good prognosis [41, 42]. We confirmed
that the larger the decrease, the earlier the therapeutic effect of
tonsillectomy pulse, and that TLR9 expression in the tonsils
was significantly higher in the group of patients whose serum
GdIgA1 level had decreased only on tonsillectomy [41, 43].
Thus, it was shown for the first time that abnormal IgA pro-
duction in humans depends on the degree of innate im-
mune activation in the mucosa and does not necessarily
require a specific antigen. This suggests that something
as mundane as the common cold can serve as an exac-
erbating factor for IgAN.

In order to clarify the pathological role of bone marrow in
this disease, bone marrow transplantation studies were also
carried out. IgAN was reconstituted in normal mice through
the transplantation of gddY bone marrow, and conversely,
nephropathy in gddY mice disappeared after transplantation
of bone marrow from normal mice [44–46]. It was therefore
shown that the cells responsible for abnormal IgA production
in murine IgAN are present not only in the mucosa but also in
the bone marrow, as is the case in humans. Furthermore, the
discovery that nephropathy could also be reconstituted by
adoptive transfer of gddY spleen cells into nude mice showed
that responsible cells may be disseminated to systemic lym-
phoid tissues [46]. It was also found that the severity of these
reconstituted IgAN correlated with serum IgA-IgG IC levels
rather than serum IgA levels [44].

In this manner, abnormalities in the “mucosa-bone marrow
axis” were slowly uncovered using the spontaneous IgAN
model; however, the cells responsible for and the genetic
mechanism of abnormal IgA production remained unknown.
In the 2010s, genome-wide association studies (GWAS) for
IgAN [47–49] revealed some candidate genes involved in
mucosal immunity including TNFSF13, which codes for the
TNF superfamily ligand member (TNFSF) cytokine A
proliferation–inducing ligand (APRIL). It is known that
APRIL is produced from dendritic cells and neutrophils and
is deeply involved in B cell maturation/differentiation, induc-
tion, and IgA class switching. We first tested it in the gddY
model, using a neutralizing antibody against APRIL. It was
confirmed that antibody administration improved proteinuria
and glomerular lesions, and decreased glomerular IgA depo-
sition [50, 51]. Next, we examined human IgAN. It was found
that the expression of APRIL and its receptors TACI and
BCMA was dramatically increased in patients with IgAN
when compared with expression levels in the tonsils of pa-
tients with chronic tonsillitis. [52]. Surprisingly, the germinal-
center B cells of the tonsils strongly expressed APRIL
(APRIL-α), and its positivity rate and degree correlated with

decrease in blood GdIgA1 levels after tonsillectomy [52]. We
also found that APRIL expression in B cells themselves was
induced by continuous stimulation of CpG DNA, a ligand for
TLR9, even in tonsil B cells derived from patients with chron-
ic tonsillitis [52]. In consistent with this finding, APRIL and
TLR9 expressions in palatine tonsil were highly correlated in
IgAN patients [52]. Recent study with gddY model and hu-
man samples showed that APRIL and IL-6 synergistically, as
well as independently, enhance the synthesis of TLR9-
mediated GdIgA1 [53].

The details of the mechanism by which IgG/IgM form the
GdIgA1 IC in IgAN are still unclear. Our group and others
have reported the mechanism by which amino acid substitu-
tions occur in the variable domain of IgG, giving it affinity for
the abnormal glycan portions of IgA in human IgAN patients.
We also reported that IC formation is an effector molecule that
correlates with renal prognosis, and that IgG is useful as a
biomarker [54–58]. In recent years, the soluble scavenger re-
ceptor, Apoptosis Inhibitor of Macrophage (AIM), has been
found to play an important role in various renal diseases such
as acute kidney injury [59]. By editing the genome of gddY
mice with CRISPR-Cas9, we have revealed that abnormally
glycosylated IgA develops complement activity and subse-
quent nephritis only after forming IC with IgM/IgG via
AIM, and mainly after glomerular deposition [60]. AIM co-
stains glomerular IgA deposits in all human IgAN cases, sug-
gesting a similar mechanism is involved in both human and
murine IgAN [60]. Most cases die of renal failure in cat are
caused by the abnormal binding and dissociation of AIMwith
IgM [61], and therapeutic applications of this finding are cur-
rently being developed. It is possible that therapeutic applica-
tions that modulate AIM binding and dissociation will emerge
for human IgAN.

Transgenic and humanized mouse models

Since the description of IgAN by professor Jean Berger in the
1960s [62], several groups around the world attempted to
reproduce the disease in animals. However, difficulties to ob-
tain a good and reproducible model were faced due to the
profound interspecies differences with rodents concerning
structure and function of IgA and its main receptor, the
FcαR (CD89). While humans display two IgA isotypes, mice
and rats have only one which differs from human IgA1 by
displaying a shorter hinge region without O-glycan contents.
In contrast, rabbits have 13 isotypes of IgA [29]. Another
major difference is that mice do not express CD89 whereas
rats do express a CD89 homolog [63].

As CD89 is not expressed in mice, two groups developed
in the late 1990s transgenic mice expressing CD89 gene either
under its own regulatory sequences or under control of the
human CD11b promoter. While the first strategy resulted in
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CD89 expression almost exclusively on neutrophils and no
signs of IgAN [64], the mice obtained in the second strategy
showed monocyte/macrophage CD89 expression which was
associated to late (40 weeks) spontaneous mouse IgA renal
deposits with mesangial expansion and macrophage infiltra-
tion but without major renal dysfunction except for hematuria
[65]. Mouse IgA complexed to soluble (s) CD89 was detected
in the serum of these animals that were able to passively trans-
fer the disease to rag2 deficient animals [65]. The late IgAN
development of CD89Tg mice was recently explained by the
low-affinity interaction between mouse IgA and human CD89
as detected in surface plasmon resonance (Biacore) experi-
ments [66]. Nevertheless, this human CD89 Tg mouse model
allowed the demonstration of the role of transmembrane cel-
lular CD89 FcRγ adaptor in disease progression [67].
Glomerular macrophage infiltration is observed following
triggering of CD89 by immune complexes resulting in secre-
tion of chemoattractants such as TNF-α and MCP-1. Tg mice
expressing a mutated, signaling-incompetent, human
FcαR(R209L) that cannot associate with FcRγ developed
mesangial IgA deposits but without macrophage infiltration
and no proteinuria [67]. These results allow to propose that
CD89 triggering by large IgA-immune complexes may induce
macrophage recruitment into injured kidneys during IgAN
development.

As mouse IgA is not O-glycosylated, a fully humanized
mouse model was next generated by backcrossing human
IgA1 knock-in (KI) mice [68] with human CD89 transgenic
mice, named theα1KICD89Tgmice [66]. Thesemice express
chimeric IgA1 (human α1 chain with mouse light chains) and
the humanCD89 receptor. They develop an IgAN-like disease
much earlier than the CD89 Tg mice due to the stronger af-
finity of human IgA1 to its CD89 receptor as compared to
mouse IgA. As early as 12 weeks of age, these mice present
significant hematuria, albuminuria, altered renal function (re-
cent unpublished data revealed an increase in cystatin C plas-
matic level) and exhibit serum immune complexes containing
human IgA1 and sCD89. Furthermore, histological examina-
tion shows mesangial IgA1 and C3 deposits, glomerular mac-
rophage infiltration, and mesangial cell proliferation. Further
studies revealed an increased expression of mouse transferrin
receptor 1 (CD71) in the α1KICD89Tg mice. CD71 is the
main IgA1 receptor at the surface of mesangial cells of
IgAN patients and in enterocytes of celiac disease patients
[69–71]. In α1KICD89Tg mouse model, transglutaminase-2
and CD71 overexpression are involved in IgA1-complex de-
position in the mesangium [66]. In contrast, mice expressing
IgA1 alone (α1KI mice) display mainly endothelial cell IgA1
deposits associated with some mesangial deposits but do not
have functional alteration and fail to display complement de-
position in their mesangium [66, 72]. Recently, using α1KI
mice it was shown that low-affinity innate-like IgA formed, in
the absence of normal antigen-driven maturation, was

involved in IgA glomerular deposition [73]. However,
mesangial expansion, macrophage infiltration, proteinuria,
and hematuria were only observed in α1KICD89Tg mice
[66] suggesting a potential pathogenic role of CD89
expression.

The α1KICD89Tg mouse model was used as a pre-clinical
model for proof-of-concept of several new therapeutic ap-
proaches in IgAN. The first study addressed the role of food
antigens notably gluten in the disease development. Indeed,
since the 1990s, the detection of anti-gliadin antibodies and an
uncontrolled trial with gluten-free diet leading to decreased
proteinuria suggested a role for gluten in the physiopathology
of IgAN [74]. The α1KICD89Tg mice were recently subject-
ed to gluten-free diet for three generations [75]. This treatment
led to a marked decrease in mesangial IgA1 deposits and
hematuria, as well as reduced mesangial CD71 and
transglutaminase 2 expression. Mice on a gluten-free diet
lacked IgA1-sCD89 complexes in serum and kidney eluates.
Disease reappeared following refeeding with gluten diet.
Gluten diet exacerbated intestinal IgA1 secretion, inflamma-
tion, and villous atrophy, and increased serum IgA1 anti-
gliadin antibodies, which correlated with proteinuria. A direct
mechanism was proposed involving induction of IgA anti-
gliadin complexes and a newly discovered interaction of gli-
adin with sCD89. Interestingly, early treatment of humanized
mice from only one generation with a gluten-free diet
prevented mesangial IgA1 deposits and hematuria suggesting
that a new controlled trial with gluten-free diet may need to be
organized for IgAN patients with preserved renal function.

The humanized α1KICD89Tg mouse model was also used
to test specific therapies targeting the IgA1 hinge region.
α1KICD89Tg mice were treated with recombinant IgA1 pro-
tease, a bacterial-derived protein which cleaves human IgA1
in the hinge region [76]. These IgA1 protease-treated animals
showed Fcα1 fragments in both serum and urine, decreased
levels of IgA1-sCD89 complexes, and marked abolishment of
mesangial IgA1 deposits and hematuria. Glomerular deposit
partners (sCD89, transferrin receptor, transglutaminase 2, and
C3) were also decreased after treatment, as well as CD11b(+)
cells, and fibronectin. Anti-IgA1 protease antibodies were
found during the treatment but did not alter the protease ac-
tivity. This pre-clinical study indicated that IgA1 protease
could be a new treatment for IgAN patients specially those
with rapid deterioration of the renal function. A phase 1b
study targeting IgG autoantibodies by an IgG protease
(Imlifidase) has been successful and associated with an overall
renal survival of 67% at 6 months for patients with
Goodpasture syndrome [77] which seems to validate the usage
of bacterial recombinant proteases cleaving immunoglobulins
in clinics, hoping that IgA proteases will be available in a near
future for initial single-shot treatment of severe IgAN patients
with rapid deterioration of renal function aiming to clear IgA1
deposits before other therapeutic approaches.
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The α1KICD9Tg mice were also essential to study the role
of microbiota in IgAN. Gut mucosal involvement has been
indicated by genome-wide association studies performed on
IgAN patients revealing new loci associated with risk of in-
flammatory bowel disease or maintenance of intestinal barrier
and MALT response to pathogens [47] plus beneficial treat-
ment with corticosteroids targeting the gut mucosa protecting
renal function in patients with IgAN [78]. Moreover, analysis
of microbiota from IgAN patients indicated that some traits of
gut microbiota significantly varied between healthy control
subjects, non-progressor and progressor IgAN patients, and
that urinary and fecal metabolome consistently differed be-
tween groups [79]. As germ-free housing impairs IgA1 pro-
duction in animals [72], the strategy used was an intervention
targeting the gut microbiota by broad antibiotics in 8- or 12-
week-old animals, the age when IgA1 reached expected serum
levels and IgA1 deposits were clearly detected [80]. Antibiotic
treatment efficiently depleted the fecal microbiota and mark-
edly prevented human IgA1mesangial deposition, glomerular
inflammation, and the development of proteinuria.
Interestingly, antibiotic treatment did not affect serum levels
of human IgA1 and mouse IgG but significantly decreased
circulating hIgA1-mIgG autoantibody complexes. Moreover,
treatment with broad-spectrum antibiotics reverted established
disease (12- to 16-week-old animals). Finally, fecal bacterial
load correlated with pathophysiological features of IgAN such
as proteinuria and hIgA1-mIgG complexes. To demonstrate
the role of microbiota in disease progression, fecal material
transfer (FMT) experiments with stools from IgAN patients
(progressor versus non-progressor) were performed in
antibiotic-pretreated α1KICD9Tg animals. FMT from
progressors clearly induced an IgAN phenotype which was
associated with BAFF levels [81]. Recently, the
α1KICD9Tg mice were also challenged by rifaximin
(NORMIX®) treatment, a non-absorbable oral antibiotic, that
induces positive modulation of the gut microbiota, favoring
the growth of bacteria beneficial to the host [82]. Rifaximin
treatment decreased the hIgA1 glomerular deposition,
CD11b+ cell infiltration, and urinary protein-to-creatinine ra-
tio, serum levels of hIgA1–sCD89 and mIgG–hIgA1 com-
plexes. Moreover, rifaximin treatment decreased signifi-
cantly B-cell activating factor (BAFF)-, poly immuno-
globulin receptor (pIgR)-, and TNF-mRNA expression.
This study suggests rifaximin as a possible approach in
the treatment of the disease.

Other transgenic models have been developed, as the
uteroglobin antisense-transgenic mice. Uteroglobin is an
anti-inflammatory protein secreted by mucosal epithelia, with
high affinity for fibronectin, interfering with IgA-fibronectin
spontaneous interaction. This model is characterized by
microhematuria, albuminuria, and glomerular IgA, C3, and
collagen deposits [83]. However, uteroglobin does not seem
to be implicated in IgAN pathogenesis in humans [84].

T lymphocytes are commonly found in mononuclear cell
infiltrates from biopsies of IgAN patients. To explain how T
cells contribute to the pathogenesis of IgAN, a mechanism has
been suggested following data obtained with LIGHT trans-
genic mice [85]. These animals spontaneously develop fea-
tures similar to those of human IgAN associated with T cell–
mediated intestinal inflammation. LIGHT overexpression–
induced intestinal inflammation was dependent on its ligand
interaction, the lymphotoxin beta receptor (LTbetaR).
LIGHT-LTbetaR interaction not only induces IgA synthesis
in the intestinal sub mucosa but also increases IgA
transcytosis into the gut lumen, causing a major increase in
polymeric mouse IgA levels in the serum. These data suggest
that dysregulation of LIGHT-LTbetaR pathway may lead to
intestinal inflammation and hyper IgA synthesis in mice and
that it may become a putative pathogenic factor for IgAN.

More recently, a particular interest in B-cell implication in
IgAN led to the generation of two transgenic models for hu-
man Bcl-2 (B-cell lymphoma 2) and BAFF. Bcl-2 is usually
overexpressed in B cells in autoimmune states, inducing a
defect in the regulation of B-cell apoptosis and enhancing
the systemic IgA-immune response [86]. BAFF is also a pro-
tein of interest in IgAN, involved in antibody class switching
and B cell survival. Overexpression of human BAFF has been
reported in IgAN patients [87]. Interestingly, BAFF-Tg mice
have mesangial deposits of IgA along with high circulating
levels of polymeric IgA that are aberrantly glycosylated. It
was quite striking that commensal flora was essential for the
elevated levels of serum IgA, and that commensal bacteria-
reactive IgA antibodies were found in the blood. These data
illustrate how excess B cell activation signaling alters the mi-
crobiota and are among the first indications of connections
between mucosal environments and renal pathology.

Finally, the galactosylation status of IgA1 is essential in the
pathophysiological process of IgAN. Murine IgA has N-
glycans but not O-glycans, contrary to human IgA1. Nishie
et al. found that mice deficient for β-1,4-galactosyltransferase
(β4GalT-I), the enzyme responsible for transferring galactose
to the terminal N-acetylglucosamine in a beta-1,4 linkage,
spontaneously developed IgAN-like lesions with IgA deposi-
tion and expanded mesangial matrix. It was associated with
high serum IgA levels, increased polymeric IgA forms, albu-
minuria, hematuria, mesangial matrix expansion,
glomerulosclerosis, mesangial IgA, and mesangio-parietal
C3 deposits [88]. The authors propose that carbohydrates of
serum IgA are involved in the development of IgAN, whether
the carbohydrates are O-glycans or N-glycans.

Conclusion

One should state that animal models will never completely
replicate human diseases as diseases are often heterogeneous

644 Semin Immunopathol (2021) 43:639–648



and the human system is quite different from that of rodents
notably concerning the molecular feature of human IgA and
mucosal immune system. Nevertheless, insights from experi-
mental models with or without genetic manipulation indeed
contribute to elucidation of multiple aspects of the pathogen-
esis of IgAN and facilitate development of IgAN-specific
drugs. Transgenic mouse models brought particular answers
to specific questions in the pathophysiology of the disease
whereas humanized mouse models for IgA1 have been ex-
tremely helpful in pre-clinical stages to test new drugs or
new diets in attempts to propose new clinical trials for treat-
ment of IgA nephropathy. Translational approaches with ap-
propriate experimental models continue to be critical for fu-
ture therapies for IgAN.
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